

PII: S0040-4020(96)00871-X

Stereodivergent Routes from Tyrosine to the 7-(R) and 7-(S) Diastereomers of the 7-Hydroxy-2,3,7,7a-Tetrahydroindole Ring Found in Gliotoxin

Todd C. Henninger, Michal Sabat and Richard J. Sundberg

Department of Chemistry, McCormick Road, University of Virginia, Charlottesville, VA 22901, USA

Abstract: Two routes from the oxidative cyclization product 1 derived from tyrosine to methyl 7-(*tert*butyldimethylsiloxy)-N-(benzyloxycarbonyl)-2,3,7,7a-tetrahydroindole-2-carboxylate are described. The routes are stereodivergent leading to the 2-S,7-S,7a-S (6) and 2-S,7-R,7a-S-(13) diasteromers. The former stereochemistry corresponds to that present in gliotoxin. Copyright © 1996 Elsevier Science Ltd

The epidithioketopiperazine (EDTKP) fungal metabolites were originally isolated as the result of their toxicity.¹ Among this group of compounds the most studied are gliotoxin² and the sporidesmins.³ More recently, interest in gliotoxin has resulted from its immunosuppressant activity.⁴ Gliotoxin has also been observed to inhibit farnesylation of the Ras p21 protein^{5a} and to induce apoptosis in thymocytes.^{5b} Gliotoxin was synthesized in both racemic and enantiomerically pure form in the 1970's by Kishi and coworkers.⁶ Their synthetic approach was to construct the dithioketopiperazine core in protected form and then close the dihydroindole ring. The enantioselective synthesis was based on resolution of an early intermediate. A similar strategy was used for sporidesmin A.⁷ Since gliotoxin and the sporidesmins are biosynthetically derived from tyrosine and tryptophan, respectively, we were interested in exploring stereospecific synthetic pathways from the chiral aminoacids to the EDTKPs. In this paper we report two synthetic routes from tyrosine to the 7-hydroxy-2,3,7,7a-tetrahydro-1*H*-indole ring system found in gliotoxin. The two routes are stereodivergent leading to both the natural 7-(*S*) structure and the 7-(*R*) diastereoisomer.

Results and Discussion

The gliotoxin molecule poses two major challenges for a synthetic route from tyrosine. The first, which is the topic of this paper, is the construction of the 7-hydroxytetrahydroindole ring with correct stereochemistry. The second is construction of the epidithioketopiperazine ring on a functionalized 7hydroxytetrahydroindole ring while avoiding the potential aromatization reaction which the tetrahydroindole system presents. The starting point was methyl 1-benzyloxy-carbonyl-3a-hydroxy-6-oxo-2,3,3a,6,7,7ahexahydroindol-2-carboxylate 1, prepared by Wipf and Kim by oxidative cyclization of tyrosine.⁸ This material has the correct configuration at C2 and C7a and conversion to gliotoxin functionality requires redox modification with introduction of an S-hydroxyl group (β) at C7. Our initial concept was to use the β orientation of the 3a-hydroxyl to establish the stereochemistry at C7. Work by Adam has shown that hydroxyl groups have syn-directing effects in singlet oxygen cycloadditions⁹ and thus the diene 3 became the initial target. It was successfully prepared from 1 by reduction of the C6 carbonyl with NaBH,-CeCl,, acetylation and Pd(OAc), mediated elimination.¹⁰ The diene 3 was subjected to photooxidation. The best results achieved on a 150 mg scale involved use of a 300W Tungsten projection lamp with tetraphenylporphine (TPP) as the sensitizer in CH,Cl,. The endoperoxide 4a was reduced immediately by zinc in acetic acid to provide the triol 4b. Use of CHCl, or methanol as solvent or use of Rose Bengal as the sensitizer gave poorer results. The triol was then converted to the boronate 5a, which was protected at the C7 hydroxyl using TBDMSOTF.¹¹ Removal of the boronate group by H₂O₂ gave 5c in overall 30% yield from 4a. This material was converted to the thiocarbonate 5d using thiocarbonyldimidazole (TCDI). Warming with 1.3dimethyl-2-phenyl-1,3,2-diazaphospholidine 12 gave 6 in 47% yield (Scheme 1). This provides a fully protected version of the 7-hydroxy-2,3,7,7a-tetrahydroindole component of the gliotoxin structure (Scheme 1).

a: NaBH4, CeCl3, MeOH (94%); b: Ac2O, Et3N, DMAP (90%); c: Pd(OAc)2, Ph3P, Et3N, 110° (74%); d: O2, hv,TPP, CH2Cl2 (87%); e: Zn, AcOH, THF, 0° (60%); LiBHEt3, THF, then H2O (not purified); g: TBDMSOTf, Et3N (not purified); H2O2 (29% from 4b); i: TCDI (71%); j: 1,3-dimethyl-2-phenyl-1,3,2-diazaphospholidine, 40° (47%).

As is true for most of the other Cbz-protected intermediates in this series, the NMR spectrum of **6** revealed signals due to two rotamers at ambient temperature. However coalescence could be observed >70° and detailed spectral analysis was carried out in toluene- d_s at 100°. In addition to the readily assigned methyl, Cbz and TBDMS peaks, the spectrum contained seven series of peaks accounting for the eight ring protons. The C4, C5 and C6 vinyl protons were evident as an ABC system located at 5.31 (dd, J=5, 3 Hz) 5.58 (ddd, J=10, 5, 3 Hz) and 5.67 (d, J=10 Hz). The C7 and C7a protons appeared at 4.67 (dt) and 4.84 (dd), respectively. The C2 and C3 protons comprised a AMM' system at 4.37 and 2.41. Decoupling experiments were performed to confirm the assignments. The assignments and coupling constants are given in Figure 1.

The β (S) configuration was provisionally assigned to the C7 hydroxyl on the basis of the presumed directing effect of the C3a hydroxyl in the photoxidation.⁹ The fact that the C3a and C4 hydroxyls readily form boronate and thiocarbonate rings in **5a** and **5d**, respectively, is consistent with this assignment. The coupling of 12 Hz observed between the C7 and C7a protons is also consistent with the *trans* diaxial arrangement in **6**.

While this route provided the 7-hydroxytetrahydroindole structure of gliotoxin with the correct stereochemistry, the overall yield was low (about 3.5% from 1) and the scale of the photoxidation step was limited. A second route was therefore explored. The overall shape of 1 presents a convex and concave surface because of the *cis* ring fusion. A direct oxidation on a C6-C7 double bond from the convex face might then provide the desired *S*-stereochemistry at C7. While the 3a-benzoyloxy substituent is capable of shielding the β -face, the extent of shielding is dependent on the orientation of the benzoyl group with respect to the remainder of the ring. To explore this route, 1 was converted to the benzoate 7 which was then converted to the silyl enol ether 8. Oxidation of 8 by dimethyldioxirane (DMDO) afforded 9. Silyloxy epoxides are usually transient intermediates but they have been isolated occasionally.¹³ The steric bulk of the TBDMS group also probably contributes to the relative stability of 9. Heating 9 in 1,2-dichloroethane led to a clean rearrangement to a silyl-oxyenone 10. This material was converted to a 7-*tert*-butyldimethylsilyloxy-2,3,7,7a-tetra-hydroindole in three steps. Compound 10 was reduced (NaBH₄, CeCl₃), acetylated (Ac₂O, DMAP, Et₃N) and then subjected to 1,4 reductive elimination using buffered sodium amalgam.¹⁴ The product 13 was different from 6, suggesting it must have 7-(*R*) (α) configuration. The efficiency of this synthesis is much higher (31% from 1 in seven steps) than the photoxidation route (Scheme 2).

- a: (PhCO)2O, DMAP, Et3N (80%); b: TBDMSOTf, Et3N (84%); c: DMDO, 0º, (not purified);
- d: CICH2CH2CI, 83º (82%); e: NaBH4, CeCl3 (quant); f: Ac2O, DMAP, Et3N (96%);
- g: Na(Hg) MeOH, Na2HPO4 (58%); h: 10% Pd/C, cyclohexadiene.

Figure 2. Ortep drawing of crystal structure of 14.

Full coalescence of the rotamers in the ¹H NMR spectrum of **13** was achieved at 145° in DMSO. The spectrum was analyzed with decoupling, leading to the assignments in Figure 1. In particular, the H-7, H-7a coupling constant is <2 Hz, consistent with the 7-(R) stereochemistry. The structure and stereochemistry were further supported by an X-ray crystal structure on compound **14**, prepared by deprotection of intermediate **12**. This structure confirms the α -orientation of the C7 oxygen substituent (Figure 2). Since sily-loxyepoxide rearrangements normally occur with retention of configuration, ¹⁵ the α -orientation of the 7-oxygen substituent implies that epoxidation took place from the concave α face, contrary to our initial expectation.

In order to explore the origin of the possible steric shielding by the benzoyloxy, benzyloxycarbonyl and *tert*-butyldimethylsilyloxy substituents, energy minimization was done for several conformations using the MM2 force field in the Cache system.¹⁶ The benzoyloxy group was found to be oriented away from the C6-C7 double bond in all minima found and appeared unlikely to exert steric control. In the lowest minimum found, the TBDMS group was in a conformation in which the silyl substituent is oriented toward the α -face with one methyl group located beneath the C6-C7 double bond, suggestive of a β -orienting effect, which is opposite to the observed stereochemistry. However, a related conformation with the TBDMS group is oriented toward the β face is within 1 kcal. The Monte Carlo conformation search routines of macro model program¹⁷ also located as the global minimum conformation in which the TBDMS group is oriented toward the α face. These ground state structures do not offer a convincing explanation for the observed α stereoselectivity. DMDO is generally presumed to approach from the least hindered side of the molecule¹⁸ but there have been few studies explicitly designed to explore this point.¹⁹ Several specific instances exist where stereoselectivity appears to be under directive control of nearby substituents.²⁰

These two routes provide stereochemically complementary routes to the 7-(S) and 7-(R) oxygenated tetrahydroindole rings found in gliotoxin. The results also demonstrate a considerable degree of stability for silylated hydroxycyclohexadiene intermediates such as 6 and 13. It is particularly impressive that the 7-(R) isomer 13, which has the potential for an aromatization by *trans*-elimination, survives several hours at 145° in DMSO during the decoupling NMR experiments. The stability of the protected 7-hydroxytetrahydro-indole ring will be crucial to an overall synthetic strategy for gliotoxin involving such intermediates since it must survive introduction of the epidithioketopiperazine ring.

Experimental

General. All reactions except the photooxidation were run in an inert atmosphere (N_2 or Ar) in distilled solvents: MeOH, EtOH (from Mg/I₂); CH₂Cl₂, CHCl₃, ClCH₂CH₂Cl, CH₃CN, toluene, pyridine, Et₃N (from CaH); THF (from benzophenone, Na); acetone dried over 4A Molecular sieves). Chromatography was done with silica gel, 230-400 mesh. ¹H NMR spectra were recorded at 300 MHz and ¹³C NMR at 75 MHz and chemical shifts are relative to TMS. Most of the carbobenzyloxy-protected compounds show ¹H spectra for two rotamers. The chemical shift of the peak of the major rotamer is listed first and coupling constants are given in Hz only for the major rotamer. In ¹³C spectra, peaks listed together in parentheses are assigned to rotamers.

<u>[25-(26.3aβ.6α.7aβ)]-2.3.3a.6.7,7a-Hexahydro-3a.6-dihydroxy-1*H*-indole-1.2-dicarboxylic acid 1-Benzyl 2-Methyl Ester 2a. Hydroxyenone 1 (2.53 g, 7.3 mmol) was dissolved in MeOH (30 mL). CeCl₃ (1.8 g, 7.3 mmol) and NaBH₄ (280 mg, 7.4 mmol) were added and reaction was stirred for 10 min.²¹ The reaction solution was diluted with water (30 mL) and extracted with EtOAc (1 x 50 mL, 2 x 30 mL). The combined organic layers were washed with brine (50 mL), dried over MgSO₄, and evaporated *in vacuo* to give 2.39 (94%) of 2a as a cream-colored foam. This material was sufficiently pure for further use. ¹H NMR (CDCl₃) 7.37-7.27 (m, 5H); 5.81 (m, 1H); 5.68 (m, 1H); 5.22 + 5.19 (d, J=12, + d', 1H); 5.12 + 5.00 (d, J=12, + d', 1H); 4.51-4.37 (m, 2H); 4.15 + 4.09 (dd, J=10,5, + dd', 1H); 3.55 + 3.80 (s + s', 3H); 2.72 + 2.53 (m + m', 1H); 2.45 (m, 1H); 2.17 + 2.13 (d, J=8, + d', 1H); 1.31 (m, 1H).</u>

<u>[25-(2β.3aβ.6α.7aβ)]-2.3.3a.6.7.7a-Hexahydro-6-acetyloxy-3a-hydroxy-1*H*-indole-1.2-dicarboxylic acid 1-<u>Benzyl 2-Methyl Ester 2b.</u> Allylic diol **2a** (2.17 g, 6.2 mmol) was dissolved in CH₂Cl₂ (30 mL) and cooled to 0°C. Et₃N (1.1 mL, 7.9 mmol), DMAP (38 mg, 0.31 mmol), and acetic anhydride (680 mL, 7.2 mmol) were added, and the solution was stirred for 1 h at 0°C. MeOH (0.5 mL) was added, and stirring was continued for 5 min. The solution was then washed with 1N HCl, sat. aq. NaHCO₃, and brine (20 mL each), dried over MgSO₄, and evaporated to yield 2.19 g (90%) of **2b** as an off-white foam. This material was sufficiently pure for further use. Four crystallizations from EtOAc/hexane provide an analytical sample as an off-white solid (mp 131-132°C). ¹H NMR (CDCl₃) 7.38-7.27 (m, 5H); 5.82-5.69 (m, 2H); 5.47 (m, 1H); 5.20 + 5.21 (d, J=13, + d', 1H); 5.14 + 5.01 (d, J=13, + d', 1H); 4.47 (t, J=10, 1H); 4.18 (m, 1H); 3.81 + 3.55 (s + s', 3H); 2.75 + 2.58 (m + m', 1H); 2.48 + 2.44 (dd, J=10,5, + d', 1H); 2.08 + 2.04 (d, J=8, + d',</u> 1H); 2.05 + 2.04 (s + s', 3H); 1.44 (m, 1H). MS (CI) m/z calcd. for C₂₀H₂₃NO₇ (389), found 390 (M+1). Anal. Calcd: C, 61.69; H, 5.95; N, 3.60. Found: C, 61.54; H, 5.98; N, 3.60.

[$2S-(2\beta.3a\beta.7a\beta)$]-2.3.3a.7a-Tetrahydro-3a-hydroxy-1*H*-indole-1.2-dicarboxylic acid 1-Benzyl 2-Methyl Ester 3. Toluene (35 mL) which had been purged with argon for 30 min was added to allylic acetate 2b (2.08 g, 5.3 mmol), Pd(OAc)₂ (24 mg, 0.11 mmol, 2 mol %), and Ph₃P (140 mg, 0.53 mmol, 10 mol %) to give a yellow solution. (10) Et₅N (0.9 mL, 6.5 mmol) was added, and then the solution was heated at reflux for 2h. The solution was cooled to room temperature, diluted with EtOAc (40 mL), and washed with 1N HCl, sat. aq. NaHCO₃, and brine (40 mL each). After drying over MgSO₄, evaporation gave an oil that was purified by chromatography on silica gel (5:2 hexane/EtOAc) giving 1.3 g (74%) of 3 as a yellow oil. ¹H NMR (CDCl₃) 7.38-7.28 (m, 5H); 6.06-5.80 (m, 4H); 5.28 + 5.25 (d, J=13, + d', 1H); 5.13 + 5.06 (d, J=13, + d', 1H); 4.79 + 4.85 (bs + bs', 1H); 4.27 (t, J=10, 1H); 4.17 + 3.81 (s + s', 1H); 3.83 + 3.57 (s + s', 3H); 2.31 + 2.36 (dd, J=10,4, + dd', 1H); 2.19 + 2.16 (m + m', 1H). MS (CI) m/z calcd. for C₁₈H₁₉NO₅ (329), found 330 (M+1).

[2S-(2B.3aB.4B.7B.7aB)]-2.3.3a.4.7.7a-Hexahydro-4.7-endoperoxy-3a-hydroxy-1*H*-indole-1.2-dicarboxylic acid 1-Benzyl 2-Methyl Ester 4a. Diene 3 (416 mg, 1.26 mmol) and tetraphenylporphine (12 mg, 0.020 mmol) were dissolved in CH_2Cl_2 (60 mL). Oxygen was bubbled through the solution and the flask was irradiated with a 300W slide projector lamp for 9 h. The solvent was evaporated and the residue was taken up in MeOH (10 mL) and filtered through a small pad of Celite. The Celite pad was washed with MeOH (2 x 10 mL), and the filtrate was evaporated to give 396 mg (87%) of 4a as a brown foam. This material was used without purification in the next reaction. ¹H NMR (CDCl₂) 7.38-7.27 (m, 5H); 6.64 (m, 1H); 6.54 + 6.38 (m + m', 1H); 5.53 (m, 1H); 5.19 + 5.25 (d, J=13, + d', 1H); 5.02 + 5.13 (d, J=13, + d', 1H); 4.55 (m, 1H); 4.32 + 4.36 (dd, J=9,2, + dd', 1H); 4.12 + 4.09 (d, J=5, + d', 1H); 3.61 + 3.76 (s + s', 3H); 2.57-2.09 (m, 2H).

[2S-(2β.3aβ.4β.7β.7aβ)]-2.3.3a.4.7.7a-Hexahydro-3a.4.7-trihydroxy-1*H*-indole-1.2-dicarboxylic acid 1-Benzyl 2-Methyl Ester 4b. Crude endoperoxide 4a (145 mg, 0.40 mmol) was dissolved in THF (2 mL) and AcOH (1 mL) and cooled to 0°C. Zinc dust (260 mg, 4.0 mmol) was added and the suspension was vigorously stirred for 1 h at 0°C. The excess zinc was removed by filtration and washed with EtOAc (3 x 5 mL). The combined filtrate was washed with water (2 x 5 mL), and the combined aqueous layers were reextracted with EtOAc (5 mL). The combined organic layers were washed with sat. NaHCO₃ (2 x 5 mL) and brine (5 mL), dried over MgSO₄, and evaporated to give a brown oil. Purification by chromatography on silica gel (1:3 hexane/EtOAc) yielded **4b** as a tan foam (88 mg, 57% overall from diene **4a**). Two recrystallizations of a sample from CH₂Cl₂/hexane provided colorless needles (mp 107-108°C). ¹H NMR (CDCl₃) 7.42-7.28 (m, 5H); 6.03 + 6.10 (ddd, J=10,5,2, + ddd', 1H); 5.89 + 5.93 (dd, J=10,3, + dd', 1H); 5.24 + 5.30 (d, J=13, + d', 1H); 5.10 + 5.14 (d, J=13, + d', 1H); 4.62 (bs, 1H); 4.42 (dd, J=7,5, 1H); 4.20-4.02 (m, 4H); 3.62 + 3.82 (s + s', 3H); 3.13 + 2.87 (bs + bs', 1H); 2.13 (m, 2H). ¹³C NMR (CDCl₃) (173.7, 172.6); (156.4, 154.5); (135.3, 135.2); (130.8, 130.1); 128.6; 128.3; 128.2; 128.1; 127.8; 127.7; 127.5; (79.6, 77.9); (71.8, 70.9); (69.7, 69.1); 67.5; (66.8, 66.3); (57.6, 57.5); (52.5, 52.1); (39.3, 37.7). MS (CI) m/z calcd. for C₁₄H₂₁NO₇ (363), found 364 (M+1). Anal. Calcd.: C, 59.49; H, 5.83; N, 3.86. Found: C, 59.58; H, 5.84; N, 3.83.

[2*S*-(2β.3aβ.4β.7β.7aβ)]-2.3.3a.4.7.7a-Hexahydro-3a.4.7-trihydroxy-1*H*-indole-1.2-dicarboxylic acid 3a.4-(*B*-Ethylboronate) 1-Benzyl 2-Methyl Ester 5a. Triol 4b (400 mg, 1.1 mmol) was dissolved in THF (15 mL) and cooled to 0°C, and then LiEt₃BH (1.0 M in THF, 2.3 mL, 2.3 mmol) was added dropwise. (11) The solution was stirred for 5 min at 0°C and then for 1 h at room temperature. Distilled water (420 mL, 23.3 mmol) was added and stirring was continued for 30 min. The solvent was evaporated and the residue was taken up in CH₂Cl₂ (15 mL) and filtered through a small pad of MgSO₄/Celite (5 g, 2:1 w/w). The pad was washed with additional CH₂Cl₂ (5 mL) and the filtrate was evaporated *in vacuo* to yield 464 mg (105%) of crude 5a as a light yellow foam. ¹H NMR (CDCl₃) 7.40-7.31 (m, 5H); 5.87 (dt, J=10,2,2, 1H); 5.81 (dt, J=10,1,1, 1H); 5.74 (s, 1H); 5.28 (d, J=12, 1H); 5.12 (d, J=12, 1H); 4.57 (d, J=10, 1H); 4.53 (m, 1H); 4.08 (bd, 1H); 3.87 (d, J=7.5); 3.61 (s, 3H): 2.50 (d, J=13.5, 1H); 2.15 (dd, J=13.5, 9, 1H); 0.89 (t, 3H); 0.77 (t, 2H). MS (CI) m/z calcd. for C₂₀H₂₄BNO₇ (401), found 402 (M + 1).

<u>[2S-(2β,3aβ,4β,7β,7aβ)]-2.3,3a,4,7,7a-Hexahydro-7-(*tert*-butyldimethylsilyloxy)-3a,4-dihydroxy-1*H*indole-1.2-dicarboxylic acid 3a,4-(*B*-Ethylboronate) 1-Benzyl 2-Methyl Ester **5b**. Crude hydroxy boronate **5a** (464 mg, 1.16 mmol) was dissolved in CH_2Cl_2 (10 mL) and cooled to 0°C. Et₃N (0.50 mL, 3.6 mmol) was added followed by TBSOTf (0.55 mL, 2.4 mmol). After 1 h at 0°C and 1 h at room temperature, TLC</u> (2:1 hexane/EtOAc) indicated that some starting material remained. More Et₃N (0.50 mL, 3.6 mmol) and TBSOTf (0.55 mL 2.4 mmol) were added. After 1 h, there was no starting material by TLC. The solution was washed with water (10 mL) and brine (10 mL), dried over MgSO₄, and evaporated to give 701 mg (>100%) of **5b** as an orange oil that was used without further purification. ¹H NMR (CDCl₃) 7.40-7.30 (m, 5H); 5.88-5.77 (m, 2H); 5.16 + 5.43 (d, J=12, + d', 1H); 5.02 + 4.96 (d, J=12, + d', 1H); 4.48 (m, 2H); 4.00 (m, 2H); 3.50 + 3.66 (s + s', 3H); 2.44-2.27 (m, 2H); 0.87 (m, 12H); 0.76 (t, 2H); 0.03 (m, 6H). MS (CI) m/z calcd. for $C_{2a}H_{u}BNO_{s}Si$ (515), found 516 (M + 1).

[25-(2β.3aβ.4β.7β.7aβ)]-2.3.3a.4.7.7a-Hexahydro-7-(*tert*-butyldimethylsilyloxy)-3a.4-dihydroxy-1*H*indole-1.2-dicarboxylic acid 1-Benzyl 2-Methyl Ester 5c. The crude TBDMS boronate 5b from above was dissolved in EtOAc (10 mL). Distilled water (1.0 mL) and 30% H_2O_2 (1.0 mL) were added and the twophase mixture was stirred vigorously for 1h.¹⁷ The mixture was washed with water (2 x 10 mL) and brine (10 mL), dried over MgSO₄, and evaporated to give an orange oil. Purification by chromatography on silica (2:1 hexane/EtOAc) provided 150 mg (29% from 4b) of 5c as a colorless oil. ¹H NMR (CDCl₃) 7.38-7.28 (m, 5H); 6.40 + 6.36 (dd, J=10,5, + dd', 1H); 6.17 + 6.09 (dd, J=10,6, + dd', 1H); 5.29, 5.19, 5.05 (3 d's, 2H); 4.72 (m, 1H); 4.43 (m, 1H); 4.36 (dd, J=9,1); 4.12 (bs, 1H); 3.61 + 3.76 (s + s', 3H); 2.16 + 2.20 (d, J=15, + d', 1H); 2.06 + 2.03 (dd, J=15,1.5, + dd', 1H); 0.90 + 0.80 (s + s', 9H); 0.27 + (-0.04) (s + s', 3H); 0.17 + (-0.07) (s + s', 3H). ¹³C NMR (CDCl₃) 172.3; 154.8; 153.6; (133.8, 132.3); (132.8, 132.3); 128.1; 128.0; 127.9; 127.9; 127.6; 127.5; (80.5, 80.4); (71.1, 69.9); (68.0, 67.8); (67.3, 66.8); (67.0, 65.2); (58.9, 58.6); (52.1, 51.9); (39.4, 38.4); (25.2, 25.1); -5.1; -5.3. MS (CI) m/z calcd. for C₂₄H₃₅NO₇Si (477), found 478 (M + 1).

[2S-(2β , $3a\beta$, 4β , 7β , $7a\beta$)]-2.3, 3a, 4, 7, 7a-Hexahydro-7-(*tert*-butyldimethylsilyloxy)-3a, 4-dihydroxy-1Hindole-1.2-dicarboxylic acid 3a, 4-Thionocarbonate 1-Benzyl 2-Methyl Ester 5d. Mono TBDMS ether 5c (52 mg, 0.11 mmol) and TCDI (90%, 25 mg, 0.13 mmol) were dissolved in toluene (1 mL) and heated at reflux for 1 h. The solution was cooled to RT, diluted with EtOAc (5 mL), washed with water (2 x 5 mL) and brine (5 mL), dried (MgSO₄), and evaporated to give a yellow oil. Purification by chromatography on silica gel (3:1 hexane/EtOAc) gave 5d as a colorless oil (40 mg, 71%). ¹H NMR (CDCl₃) 7.38-7.27 (m, 5H); 6.14 + 6.09 (bd, J=10, + bd', 1H); 5.94 + 5.91 (dd, J=10, 3, + dd', 1H); 5.17 + 5.32 (d, J=12, + d', 1H); 5.01 (m, 2H); 4.43-4.20 (m, 3H); 3.50 + 3.72 (s + s', 3H); 2.65 (m, 1H); 2.53 + 2.49 (d, J=9, + d', 1H); 0.84 + 0.90 (s + s', 9H); 0.06 + 0.01 (s + s', 3H); 0.05 + (-0.01) (s + s', 3H). MS (CI) m/z calcd. for $C_{23}H_{33}NO_{2}SSi$ (519), found 520 (M+1).

[2S-(2B,7B,7aB)]-2.3,7,7a-Tetrahydro-7-(tert-butyldimethylsilyloxy)-1H-indole-1,2-dicarboxylic acid 1-Benzyl 2-Methyl Ester 6. TBDMS thionocarbonate 5d (37 mg, 0.071 mmol) and 1,3-dimethyl-2-phenyl-1,3,2-diazaphospholidine (50 μ L, 0.27 mmol) were diluted with THF (200 μ L) and heated at 40°C in an oil $bath^{12}$ for 3 h. The solution was cooled to room temperature and then directly chromatographed on silica gel (8:1 hexane/EtOAc) to provide material (28 mg) which was contaminated with the phosphine sulfide. Chromatography of this material on silica (98:2 CH,Cl/EtOAc) gave the pure diene 6 as a white solid (15 mg, 47%). ¹H NMR (toluene-d, at 100°C) 7.10-6.85 (m, 5H); 5.67 (d, J=10, 1H); 5.58 (ddd, J=10, 5.3, 1H); 5.31 (dd, J=5.3, 1H); 5.08 (d, J=12, 1H); 4.97 (d, J=12, 1H); 4.84 (dd, J=12.3, 1H); 4.67 (ddd, J=12,2,2, 1H); 4.37 (t, J=8, 1H); 3.23 (s, 3H); 2.41 (d, J=8, 1H); 0.99 (s, 9H); 0.15 (s, 3H); 0.08 (s, 3H). ¹³C NMR (CDCl3) 134.6, 128.3, 127.8, 124.3, 117.9, 75.6, 67.0, 64.8, 62.4, 52.0, 34.5, 25.9, -4.7, -5.2. MS (CI) m/z calcd. for $C_{24}H_{33}NO_{5}Si$ (443); found 444 (M + 1), 443, 428, 400, 386, 268, 91. [25-(28,3a6,7aB)]-2.3,3a,6,7,7a-Hexahydro-3a-benzoyloxy-6-oxo-1H-indole-1,2-dicarboxylic acid 1-Benzyl 2-Methyl Ester 7. Hydroxyenone 1 (1.7 g, 4.9 mmol), benzoic anhydride (3.35 g, 14.8 mmol), Et,N (2.1 mL, 15.1 mmol), and DMAP (60 mg, 0.49 mmol) were dissolved in CHCl, (40 mL) and heated at reflux for 48 h. The solution was washed with 1N HCl, sat. NaHCO,, and brine (30 mL each), dried (MgSO,), and evaporated. The crude material was purified by flash chromatography on silica gel $(2:1 \rightarrow 1:1 \text{ hex})$ ane/EtOAc) to yield 7 as an off-white foam (1.78 g, 80%). A small amount was recrystallized twice from EtOAc/hexane to give an analytical sample as a white solid mp 129-131°C. ¹H NMR (CDCl.) 7.95-7.27 (m, 10H); 7.09 + 7.04 (d, J=10, + d', 1H); 6.14 + 6.12 (d, J=10, + d', 1H); 5.24 + 5.19 (d, J=12, + d', 1H); 5.11+ 5.05 (d, J=12, + d', 1H); 5.03 (m, 1H); 4.75 + 4.65 (dd, J=9,2, + dd', 1H); 3.59 + 3.33 (s + s', 3H); 3.47 + 3.27 (dd, J=16,7, + dd', 1H); 3.08 + 3.14 (bd, J=6, + bd', 1H); 2.73 + 2.62 (dd, J=15,9, + dd', 1H); 2.51 + 2.39 (dd, J=16,9, + dd', 1H). Anal. Calcd. for $C_{2}H_{2}NO_{2}$: C, 66.81; H, 5.16; N, 3.12. Found: C, 66.86; H, 5.20; N. 3.07.

[25-(2β , $3a\beta$, $7a\beta$)]-2.3.3a, 7a-Tetrahydro-3a-benzoyloxy-6-(*tert*-butyldimethylsilyloxy)-1*H*-indole-1.2dicarboxylic acid 1-Benzyl 2-Methyl Ester 8. Benzoate 7 (3.14 g, 7.0 mmol) and Et₃N (2.0 mL, 14.3 mmol) were dissolved in CH₂Cl₂ (45 mL) and TBSOTf (2.4 mL, 10.5 mmol) was added.¹⁸ After 30 min , the solution was washed with cold sat. NaHCO₃ (45 mL), dried (Na₂SO₄), and evaporated to give a light yellow solid. This material was dissolved in a minimum of CH₂Cl₂ and passed through a small plug of silica (30 g) with 3:1 hexane/EtOAc (250 mL). Evaporation of the filtrate gave an off-white solid which was triturated with cold hexane (25 mL), filtered, washed with cold hexane (25 mL), and dried to give 8 as a white solid (3.3 g, 84%). Two recrystallizations from hexane gave an analytical sample mp 143-145°C. ¹H NMR (CDCl₃) 7.94-7.29 (m, 10H); 6.12 + 6.07 (d, J=10, + d', 1H); 5.79 + 5.74 (dd, J=13,3, + dd', 1H); 5.43 + 5.12 (t, J=2, + t', 1H); 5.38 + 5.34 (m + m', 1H); 5.37 + 5.23 (d, J=12, + d', 1H); 5.08 + 5.03 (d, J=12, + d', 1H); 4.43 + 4.50 (d, J=9, + d', 1H); 3.62 + 3.35 (s + s', 3H); 2.99 + 2.94 (bd, J=15, + bd', 1H); 2.48 + 2.42 (dd, J=15,9, + dd', 1H); 0.90 + 0.94 (s + s', 9H); 0.07 + 0.21 (s + s', 3H); 0.05 + 0.18 (s + s', 3H). MS (CI) m/z calcd. for C₃₁H₃₇NO₇Si (563), found 564 (M+1). Anal. Calcd.: C, 66.05; H, 6.62; N, 2.49. Found: C, 65.92; H, 6.69; N, 2.44.

[2*S*-(2β.3aβ.7α.7aβ)]-2.3.3a.6.7.7a-Hexahydro-3a-benzoyloxy-7-(*tert*-butyldimethylsilyloxy)-6-oxo-1*H*indole-1.2-dicarboxylic acid 1-Benzyl 2-Methyl Ester 10. TBDMS dienol ether 8 (300 mg, 0.53 mmol) was dissolved in acetone (6 mL) and cooled to 0°C. DMDO (0.13 M in acetone, 5.4 mL, 0.70 mmol) was added in one portion¹³ and the solution was stirred for 30 min at 0°C. Evaporation of solvent gave the silyloxy epoxide 9 as a colorless oil. ¹H NMR (CDCl₃) 7.90-7.29 (m, 10H); 6.13 + 6.08 (d, J=10, + d', 1H); 5.93 + 5.89 (d, J=10, + d', 1H); 5.27 + 5.38 (d, J=12, + d', 1H); 5.07 + 5.03 (d, J=12, + d', 1H); 4.95 + 4.86 (d, J=3, + d', 1H); 4.59 + 4.53 (d, J=9, + d', 1H); 4.20 + 3.87 (d, J=3, + d', 1H); 3.65 + 3.36 (s + s', 3H); 2.77 + 2.83 (d, J=15, + d', 1H); 2.29 + 2.27 (dd, J=15,10, + dd', 1H); 0.88 + 0.93 (s + s', 9H); 0.22 + 0.12 (s + s', 3H); 0.18 + 0.07 (s + s', 3H).

The crude epoxide was dissolved in 1,2-dichloroethane (5 mL) and heated at reflux for 2 h. The solvent was evaporated to give a light yellow oil. Purification by chromatography on silica gel (6:1 hexane/EtOAc) gave 10 as a white foam (255 mg, 82%). [A similar reaction on a 5 mmol scale provided a 73% yield of 10.] A small amount was recrystallized twice from hexane to give an analytical sample as a white solid, mp 101-103°C. ¹H NMR (CDCl₂) 8.00-7.28 (m, 10H); 7.02 + 6.96 (d, J=10, + d', 1H); 6.14 + 6.12 (dd, J=10, 2 + dd', 1H); 5.22 + 5.25 (d, J=12, + d', 1H); 5.01 + 5.11 (d, J=12, + d', 1H); 5.03 + 4.99 (d, J=12, + d', 1H); 5.90 (d, J=12, +J=12, + d', 1H); 4.75-4.38 (m + dd, 2H); 3.60 + 3.34 (s + s', 3H); 2.95-2.85 (m, 2H); 0.82 + 0.80 (s + s', 9H); 0.02 + (-0.10) (s + s', 3H); 0.03 + (-0.12) (s + s', 3H). ¹³C NMR (CDCL) (194.6, 194.4); (171.1, 170.6); (164.9, 164.7); (153.1, 153.0); (143.2, 142.6); (135.5, 135.3); 133.0; (129.3, 129.3); 129.3; 129.3; 129.1; 128.2; 128.2; 127.9; 127.7; 127.6; 127.2; (83.7, 82.8); (72.0, 70.5); (67.3, 66.9); (65.8, 65.1); (59.3, 59.0); (51.8, 51.7); (39.7, 39.0); 25.1; 17.4; -5.8; -5.9. MS (CI) m/z calcd. for C₁,H₂NO₂Si (579), found 580 (M+1). Anal. Calcd.: C, 64.22; H, 6.43; N, 2.42. Found: C, 64.33; H, 6.48; N, 2.37. [2S-(2β.3aB.6α.7α.7aB)]-2.3.3a.6.7.7a-Hexahydro-3a-benzoyloxy-7-(tert-butyldimethylsilyloxy)-6hydroxy-1H-indole-1,2-dicarboxylic acid 1-Benzyl 2-Methyl Ester 11. Enone 10 (1.2 g, 2.1 mmol) was dissolved in THF (12 mL) and MeOH (12 mL) and placed in a room temperature water bath. CeCl, (510 mg, 2.1 mmol) was added followed by NaBH₄ (80 mg, 2.1 mmol).²¹ After 5 min the reaction was neutralized with 1N HCl, diluted with water (40 mL), and extracted with EtOAc (3 x 30 mL). The combined organic layers were washed with brine (30 mL), dried (MgSO₂), and evaporated to give 11 as a white foam (1.2 g, 100%) which was used without further purification. ¹H NMR (CDCl.) 7.92-7.27 (m, 10H); 5.93 + 5.85 (dd, J=10,3, + dd', 1H; 5.80 (m, 1H); 5.22 + 5.30 (d, J=12, + d', 1H); 5.00 + 5.08 (d, J=12, + d', 1H); 4.83 + 4.80 (d, J=3, + d', 1H); 4.72 + 4.44 (m + m', 1H); 4.57 (m, 2H); 3.28 + 3.55 (s + s', 3H); 2.82 + 2.73 (bd, 1H); 4.80 (d, J=3, + d', 1H); 4.72 + 4.44 (m + m', 1H); 4.57 (m, 2H); 3.28 + 3.55 (s + s', 3H); 2.82 + 2.73 (bd, 1H); 4.80 (d, J=3, + d', 1H); 4.80 (d, J=3, + d'J=13, + bd', 1H); 2.66 + 2.63 (dd, J=13,10, + dd', 1H); 1.92 + 1.88 (overlapping d, J=10, + d', 1H); 0.88 + 0.86 (s + s', 9H); 0.14 + (-0.06) (s + s', 3H); (-0.02) + (-0.14) (s + s', 3H). ¹³C NMR (CDCl₂) (171.5, 170.9); (165.0, 164.6); 153.6; 135.6; 135.6; 133.6; (133.1, 132.6); 129.8; 129.1; 128.3; 128.1; 127.9; 127.8; 127.6; (123.8, 123.4); (85.6, 84.6); (72.2, 71.0); (68.7, 68.5); (67.1, 66.8); (64.3, 63.5); (58.9, 58.7); (51.7, 51.6); (40.0, 39.3); 25.5; 17.7; -5.0; -5.2; -5.5.

 $[2S-(2\beta.3a\beta.6\alpha.7\alpha.7a\beta)]-2.3.3a.6.7.7a-Hexahydro-6-acetyloxy-3a-benzoyloxy-7-($ *tert*-butyl-dimethylsilyloxy)-1*H*-indole-1.2-dicarboxylic acid 1-Benzyl 2-Methyl Ester 12. Allylic alcohol 11 (1.2 g, 2.1 mmol)was dissolved in CH₂Cl₂ (20 mL). Et₃N (0.90 mL, 6.5 mmol), acetic anhydride (0.60 mL, 6.4 mmol), andDMAP (25 mg, 0.20 mmol) were added. After 4 h at room temperature, MeOH (0.5 mL) was added andstirring was continued for 10 min to consume excess Ac₂O. The solution was washed with 1N HCl, sat. NaHCO₃, and brine (20 mL each), dried (MgSO₄), and evaporated to give **12** as a colorless foam (1.23 g, 96%) which was used without further purification. ¹H NMR (CDCl₃) 7.98-7.27 (m, 10H); 6.01 + 5.92 (dd, J=14,3, + dd', 1H); 5.70 (m, 2H); 5.21 + 5.33 (d, J=12, + d', 1H); 4.99 + 5.07 (d, J=12, + d', 1H); 4.85-4.54 (2m, 3H); 3.28 + 3.55 (s + s', 3H); 2.87-2.65 (m, 2H); 2.13 + 2.11 (s + s', 3H); 0.88 + 0.84 (s + s', 9H); 0.18 + (-0.15) (s + s', 3H); (-0.06) + (-0.21) (s + s', 3H). ¹³C NMR (CDCl₃) (171.4, 170.8); (169.4, 169.3); (164.7, 164.4); 153.5; 135.6; 132.6; 129.7; 129.1; 128.2; 128.1; 127.9; 127.8; 127.6; (124.7, 124.4); (85.6, 84.5); (71.5, 71.2); (70.2, 69.0); (67.0, 66.7); (64.4, 63.5); (58.9, 58.7); (51.7, 51.6; (39.8, 39.2); 25.3, (20.7, 20.7); 17.7; (-5.1, -5.2); (-5.5, -6.0).

[2S-(2B.70.7aB)]-2.3.7.7a-Tetrahydro-7-(*tert*-butyldimethylsilyloxy)-1H-indole-1.2-dicarboxylic acid 1-Benzyl 2-Methyl Ester 13. Allylic acetate 12 (100 mg, 0.16 mmol) was dissolved in THF (4.5 mL) and MeOH (1.5 mL). Na, HPO, (160 mg, 1.1 mmol) was added and the mixture was cooled to -20°C. Na(Hg) (5%, 740 mg, 1.6 mmol Na) was added and the mixture was stirred at -20°C for 30 min.¹⁴ The reaction mixture was filtered through a small plug of silica (1 g) and the silica was washed with EtOAc (20 mL). Evaporation of the filtrate gave a crude product which was purified by chromatography on silica gel (8:1 hexane/EtOAc) to give 13 as a colorless oil (41 mg, 58%). ¹H NMR (CDCl.) 7.38-7.30 (m, 5H); 6.05 (m, 1H); 5.94-5.78 (m, 2H); 5.23 + 5.29 (d, J=12. + d', 1H); 4.94 + 5.06 (d, J=12. + d', 1H); 4.71-4.38 (m, 3H); 3.43 + 3.77 (s + s', 3H); 2.90 (m, 1H); 2.76 (m, 1H); 0.78 + 0.79 (s + s', 9H); (-0.01) + (-0.10) (s + s', 3H); (-0.01) + (-0.12) (s + s', 3H). ¹H NMR (DMSO-d₆ at 145°C) 7.40-7.30 (m, 5H); 6.12 (dd,J=10,5, 1H); 5.95 (dd, J=10,6, 1H); 5.87 (m, 1H); 5.17 (bs, 2H); 4.58 (m, 1H); 4.44 (dd, J=8,7, 1H); 4.27 (m, 1H); 3.57 (s, 3H); 2.95 (dd, J=17,8, 1H); 2.74 (dd, J=17,7,); 0.79 (s, 9H); -0.03 (s, 3H); -0.05 (s, 3H). ¹³C NMR (CDCl,) (172.6, 172.4); (154.5, 153.6); 137.6; 136.5; 135.7; 128.1; 127.9; 127.8; 127.7; 127.6; (126.2, 125.9); (125.2, 125.0); (115.5, 115.4); (67.0, 66.7); (63.0, 62.4); (62.1, 61.0); (61.2, 60.6); (51.9, 51.5); (33.9, 33.5); 25.2; 17.4; (-4.4, -4.5); (-5.4, -5.5). MS (CI) m/z calcd. for $C_{12}H_{12}NO_{c}Si$ (443); found 444 (M + 1), 443, 442, 428, 400, 386, 268, 91.

[2S-(2β.3aβ.6α.7α.7aβ)]-2.3.3a.6.7.7a-Hexahydro-6-acetyloxy-3a-benzoyloxy-7-(*tert*-butyldimethylsilyloxy)-1*H*-indole-2-carboxylic acid Methyl Ester 14. Allylic acetate 12(100 mg, 0.16 mmol) was dissolved in EtOH (1.5 mL). 10 % Pd/C (100 mg) was added followed by 1,4-cyclohexadiene (150 mL, 1.6 mmol).²⁴ The mixture was vigorously stirred for 4 h at room temperature. The catalyst was filtered off through a pad of Celite and the pad was washed with EtOAc (15 mL). Evaporation of the filtrate provided an off-white solid which was chromatographed on silica (7:1 hexane/EtOAc) to provide 14 as a colorless solid. A small amount was recrystallized from hexane (mp 128-131°C; softens around 113°C). Crystals suitable for X-ray analysis were obtained by allowing a hot hexane solution to cool slowly while surrounded by an initially warm (40°C) water bath. ¹H NMR (CDCl₃) 7.88 (m, 2H); 7.53 (m, 1H); 7.42 (m, 2H); 6.19 (dd, J=10,3, 1H); 5.75 (bd, J=10, 1H); 5.57 (app q, J=3, 1H); 4.23 (bs, 1H); 4.10 (d, J=3, 1H); 3.96 (dd, J=9,3, 1H); 3.57 (s, 3H); 2.86 (dd, J=14,3, 1H); 2.56 (dd, J=14,9, 1H); 0.91 (s, 9H); 0.14 (s, 3H); 0.09 (s, 3H). ¹³C NMR (CDCl₃) 175.2, 170.1, 165.2, 132.8, 130.5, 129.4, 128.9, 128.2, 127.0, 86.8, 72.9, 71.3, 63.8, 59.3, 52.0, 41.1, 25.8, 21.2, 18.2 -4.4, -5.2. MS (CI) m/z calcd. for C₂₅H₃₅NO,Si (489), found 490 (M + 1). Anal. Calcd.: C, 61.32; H, 7.21; N, 2.86. Found: C, 61.41; H, 7.23; N, 2.85.

References

- 1. Weindling, R.; Emerson, O. Phytopath. 1936, 26, 1068.
- 2. Waring, P.; Eichner, R. D.; Mullbacher A. Med. Res. Rev. 1988, 8, 499.
- Nagarajan, R. in Mycotoxins Production, Isolation, Separation and Purification, V. Bettina, Editor, Elsevier, 1984, 351-385.
- 4. (a) Müllbacher, A.; Eichner, R. D. Proc. Natl. Acad. Sci. USA 1984, 81, 3835; (b)
 Müllbacher, A.; Waring, P.; Eichner R. D. J. Gen. Microbiol. 1985, 131, 1251; (c)
 Müllbacher, A.; Waring, P.; Tiwari-Palni, U.; Eichner, R. D. Molec. Immunol. 1986, 23, 231; (d) St.
 Georgieu, V. Med. Res. Rev. 1990, 10, 371.
- 5. (a) Van der Ply, D.; Inokosh, J.; Shiomi, K.; Yang, M.; Takeshima, H.; Omara, S. J. Antibiotics 1992, 45, 1802. (b) Waring, P.; Mamchak, A.; Khan, T.; Sjaarda, A.; Sutton, P. Death and Differentiation 1995, 2, 201.
- 6. Fukuyama, T.; Nakatsuka, S.; Kishi, Y. Tetrahedron 1981, 37, 2045.
- Kishi, Y.; Fukuyama, T.; Havel, M. J. Am. Chem. Soc. 1973, 95, 6493; Nakatsuka, S.;
 Fukuyama, T.; Kishi, Y. Tetrahedron Lett. 1974, 1549.

- Wipf, P.; Kim, Y. Tetrahedron Lett. 1992, 33, 5477; Wipf, P.; Kim, Y. J. Org. Chem. 1993, 58, 1649.
- 9. Adam, W.; Prein, M. J. Am. Chem. Soc. 1993, 115, 3766.
- (a) Trost, B. M.; Verhoeven, T. R.; Fortunak, J. M. Tetrahedron Lett. 1979, 2301; (b) Tsuji, J.;
 Yamanaka, T.; Kaito, M.; Mandai, T. Tetrahedron Lett. 1978, 2075.
- 11. Garlaschelli, L.; Mellerio, G.; Vidari, G. Tetrahedron Lett. 1989, 30, 597.
- 12. Corey, E. J.; Hopkins, P. B. Tetrahedron Lett. 1982, 23, 1979.
- (a) Adam, W.; Hadjiarapoglou, L.; Jäger, V.; Klicic, J.; Seidel, B.; Wang, X. Chem. Ber. 1991, 124, 2361; b) Chenault, H. K.; Danishefsky, S. J. J. Org. Chem. 1989, 54, 4249; Guertin, K. R.; Chan, T.-H. Tetrahedron Lett. 1991, 32, 715.
- 14. Solladie, G.; Stone, G. B.; Andres, J.-M.; Urbano, A. Tetrahedron Lett. 1993, 34, 2835.
- Rubottom, G. M.; Gruber, J. M.; Boeckman, R. K., Jr.; Ramaiah, M.; Medwid, J. B. Tetrahedron Lett. 1978, 4603.
- 16. CAChe WorkSystem, Release 3.5, CAChe Scientific Inc., Beaverton, OR, 1993.
- MacroModel V 4.5: F. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, C. Caufield, G. Cheng, T. Hendrickson, and W. C. Still, J. Comput. Chem., 1990, 11, 440.
- Schultz, A. G.; Harrington, R. E.; Tham, F. S. *Tetrahedron Lett.* **1992**, *33*, 6097; Adam, W.; Müller, M.; Prechtl, F. J. Org. Chem. **1994**, *59*, 2358.
- 19. Adam, W.; Hadjiarapoglou, L. Topics Curr. Chem. 1993, 164, 45.
- (a) Cambie, R. C.; Grimsdale, A. C.; Rutledge, P. S.; Walker, M. F.; Woodgate, P. D. Australian J. Chem. 1991, 44, 1553; Bovicelli, P.; Lupattelli, P. J. Org. Chem. 1994, 59, 4304; Curci, R.; Detomaso, A.; Prencipe, T.; Carpenter, G. B. J. Am. Chem. Soc. 1994, 116, 8112.
- 21. Gemal, A. L.; Luche, J. L. J. Am. Chem. Soc. 1981, 103, 5454.
- 22. Evans, D. A.; Polniaszek, R. P. Tetrahedron Lett. 1986, 27, 5683.
- 23. Mander, L. N.; Sethi, S. P. Tetrahedron Lett. 1984, 25, 5953.
- 24. Felix, A. M.; Heimer, E. P.; Lambros, T. J.; Tzougraki, C.; Meienhofer, J. J. Org. Chem. 1978, 43, 4194.

(Received in USA 28 May 1996; revised 8 July 1996; accepted 16 September 1996)