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ABSTRACT The acetylcholinesterase inhibition by enantiomers of exo- and endo-2-
norbornyl-N-n-butylcarbamates shows high stereoselelectivity. For the acetylcholines-
terase inhibitions by (R)-(1)- and (S)-(2)-exo-2-norbornyl-N-n-butylcarbamates, the
R-enantiomer is more potent than the S-enantiomer. But, for the acetylcholinesterase
inhibitions by (R)-(1)- and (S)-(2)-endo-2-norbornyl-N-n-butylcarbamates, the S-enan-
tiomer is more potent than the R-enantiomer. Optically pure (R)-(1)-exo-, (S)-(2)-exo-,
(R)-(1)-endo-, and (S)-(2)-endo-2-norbornyl-N-n-butylcarbamates are synthesized from
condensations of optically pure (R)-(1)-exo-, (S)-(2)-exo-, (R)-(1)-endo-, and (S)-(2)-
endo-2-norborneols with n-butyl isocyanate, respectively. Optically pure norborneols are
obtained from kinetic resolutions of their racemic esters by lipase catalysis in organic
solvent. Chirality 22:267–274, 2010. VVC 2009 Wiley-Liss, Inc.
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INTRODUCTION

Acetylcholinesterase (AChE, EC 3.1.1.7) plays a vital
role in the central and peripheral nervous systems, where
it catalyzes the hydrolysis of the neurotransmitter acetyl-
choline (ACh).1 The first X-ray structure of AChE from
Torpedo californica electric organ has been reported in
1991.2 Recently, the X-ray structure of AChE with an Alz-
heimer’s disease (AD) drug rivastigmine has also been
reported.3 The active site of AChE consists of at least five
major binding sites (see Fig. 1): (a) an oxyanion hole
(OAH), Gly118, Gly119, and Ala201, that stabilizes the tet-
rahedral intermediate; (b) an esteratic site (ES) or cata-
lytic triad Ser200-His440-Glu327; (c) an anionic substrate
binding site (AS), Trp84, Glu199, and Phe330, that con-
tains a small number of negative charge but many aro-
matic residues, where the quaternary ammonium pole of
ACh and of various active site ligands binds through a
preferential interaction of quaternary nitrogens with the p
electrons of aromatic groups; (d) an active site-selective ar-
omatic binding site (AACS) that is contiguous with or near
the esteratic and anionic loci and that is important in bind-
ing aryl substrates and active site ligands; and (e) an acyl
binding site (ABS), Phe288 and Phe299, that binds the
acetyl group of ACh.2–5 Besides five major binding sites,
AChE also has a peripheral anionic binding site (PAS),
Trp279, Tyr70, Tyr121, Asp72, Glu199, and Phe290 that
may bind to 9-aminoacridine, 9-amino-1,2,3,4-tetrashydro-
acridine (tacrine) and is >20 Å from the active site.6–9

In Alzheimer’s disease (AD), a neurological disorder,
cholinergic deficiency in the brain has been reported.10,11

Four drugs for the treatment of AD, tacrine (Cognex),
donepezil (Aricept), rivastigmine (Exelon) (see Fig. 2),
and galantamine (Reminyl) are inhibitors of AChE.11–14

The derivatives of physostigmine (see Fig. 2) are also
potential drugs for the treatment of AD.15 Since rivastig-
mine16 and physostigmine are carbamates, the inhibition
mechanism of AChE by carbamates17–23 plays important
roles for treatment of AD.

Carbaryl (1-naphthyl N-methylcarbamate, Sevin) (see
Fig. 2), carbofuran (Furadan), propoxur (Baygon), and
aldicarb (Temik) are carbamate pesticides that have activ-
ities against a broad range of insects and low mammalian
toxicity.24 These carbamate pesticides are potent inhibitors
of AChE. Therefore, the inhibition mechanism of AChE by
carbamates also plays important roles in understanding
the mechanism of pesticide toxicology. Bicyclic monoter-
penoids are contained in many kinds of essential oils and
are reported as reversible inhibitors of AChE.25,26 More-
over, AChE does not show significant stereoselectivity for
enantiomers of many bicyclic monoterpenoids.

Lipases (EC 3.1.1.3) have been widely used in organic
synthesis especially in resolution of many chiral secondary
alcohols as the enantiomerically pure starting materials in
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asymmetric synthesis.27,28 Therefore, optically pure (R)-
(1)-exo-, (S)-(2)-exo-, (R)-(1)-endo-, and (S)-(2)-endo-2-
norborneols are obtained from kinetic resolution of their
racemic esters by lipase in organic solvent.

The aim of this work is to study the stereoselectivity for
inhibition of AChE by chiral norbornyl-derived carba-
mates. We have reported that racemic (6)-exo- and (6)-
endo-2-norbornyl-N-n-butylcarbamates are potent pseudo
substrate inhibitors of butyrylcholinesterase (BChE).29 In
this article, we further synthesize optically pure (R)-(1)-
exo-, (S)-(2)-exo-, (R)-(1)-endo-, and (S)-(2)-endo-2-nor-
bornyl-N-n-butylcarbamates (see Fig. 2) and study the ste-
reoselectivity for inhibition of AChE by these carbamate
inhibitors.

MATERIALS AND METHODS
Materials

Electric eel AChE (Sigma C2888), porcine pancreatic
lipase (Sigma L3126), acetylthiocholine (ATCh), and 5,50-
dithio-bis(22-nitrobenzoic acid) (DTNB) were obtained
from Sigma (USA). (6)-exo- and (6)-endo-2-Norborneol,
n-butyl isocyanate, triethylamine, CDCl3, tetramethylsi-
lane, t-butyl methyl ether, butyryl chloride, pyridine, and
(S)-(1)-a-methoxy-a-trifluoromethylphenylacetyl chloride

were purchased from Aldrich (USA). Silica gel and
TLC plate were obtained from Merck (Germany). Hexane,
CH2Cl2, ethyl acetate, and tetrahydrofuran were
obtained from TEDIA (USA). Sodium dihydrogen phos-
phate (NaH2PO4�2H2O), disodium hydrogen phosphate
(Na2HPO4�12H2O), hydrogen chloride (HCl), sodium
hydroxide (NaOH), potassium hydroxide (KOH), calcium
chloride (CaCl2), and sodium chloride (NaCl) were pur-
chased from UCW (Taiwan). Ethanol (95%) was obtained
from Taiwan Tobacco & Liquid Corporation (Taiwan).

Instrumental Methods

All steady-state kinetic data were obtained from an UV-
visible spectrophotometer (Agilent 8453) with a cell holder
circulated with a water bath. 1H, 13C, 19F NMR spectra
were recorded in CDCl3 at 400, 100, and 377 MHz, respec-
tively, with an internal reference tetramethylsilane (TMS)
at 258C on a Varian Gemini 400 spectrometer. Mass spec-
tra were recorded at 71 eV in a mass spectrometer (Joel
JMS-SX/SX 102A). Elemental analyses were preformed on
a Heraeus instrument. Optical rotation was recorded on a
polarimeter (Perkin-Elmer 241).

Kinetic Resolution of exo- and endo-2-Norborneols by
Lipase ( S)-(2)- exo- and (R)-(1)- exo-2-Norborneol

To a t-butyl methyl ether (100 ml) solution of racemic
(6)-exo-2-norbornyl butyrate (1 mmol) (synthesis from
condensation of (6)-exo-2-norborneol with 1.2 equiv of bu-
tyryl chloride in the presence of pyridine in CH2Cl2, 90–
95% yield), porcine pancreatic lipase (4 g) was added
(Schemes 1 and 2). The reaction mixture was shaken at
368C at 200 rpm for 72 h. This reaction yielded (S)-(2)-
exo-2-norborneol (49% yield) (mp 5 125–1268C and [a]25D
5 22.708; [a]25D 5 23.078 and mp 5 126–1278C from liter-
ature)30–34 and recovered unreactive (R)-exo-2-norbornyl
butyrate (51% yield). (R)-(1)-exo-2-Norborneol (mp 5 125–
1268C and [a]25D 5 12.708) ([a]25D 5 13.068 and mp 5
126–1278C from literature)30–34 was obtained from basic
hydrolysis (0.1 M KOH) of (R)-exo-norbornyl butyrate in
ethanol (95% v/v) in 99% yield.

The enantiomeric excess (ee) values of (R)-(1)-exo-
and (S)-(2)-exo-2-norborneols from the resolutions were
calculated to be 80 and 84%, respectively, from the 19F
NMR spectra of their Mosher’s esters as the followings
(Fig. 3 and Table 1).35–37 In a NMR tube, (R)-(1)-exo-2-
norborneol (5 mM) was condensed with the Mosher’s
chiral derivatizing agent (S)-(1)-a-methoxy-a-trifluoro-
methyl- phenylacetyl chloride35 (5 mM) in CDCl3 in
the presence of pyridine (5 mM) at 258C for 24 h
(Scheme 3). The fluorine chemical shifts at 273.948
and 274.113 ppm with the integration ratio of 9/1
were assigned to be the fluorine atoms of (2R)- and
(2S)-exo-norbornyl-(S)-a-methoxy-a-trifluoromethylphenyl
acetates, respectively (Scheme 3) (Fig. 3A). Therefore,
the enantiomeric excess of (R)-(1)-exo-2-norborneol
from the kinetic resolution by lipase catalysis
(Scheme 1) was calculated to be 80% from integration
of these two peaks (Table 1).

(S)-(2)-exo-2-Norborneol (5 mM) was also condensed
with the Mosher’s chiral derivatizing agent (S)-(1)-a-

Fig. 1. Binding sites of Torpedo californica AChE.2 The enzyme bind-
ing sites consist of at least five major binding sites: (a) an oxyanion hole
(OAH), (b) an esteratic site (ES) or catalytic triad; (c) an anionic substrate
binding site (AS), (d) an acyl binding site (ABS), and (e) a peripheral ani-
onic binding site (PAS). [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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methoxy-a-trifluoromethylphenylacetyl chloride35 (5 mM)
in CDCl3 in the presence of pyridine (5 mM) at 258C for
24 h (Scheme 3). After reaction, the peaks at 273.965 and
274.130 ppm with the integration ratio of 92/8 were
assigned to be the fluorine atoms of (2R)- and (2S)-exo-nor-

bornyl-(S)-a-methoxy-a-trifluoromethylphenyl acetates, re-
spectively (Scheme 3 and Fig. 3B). Therefore, the enantio-
meric excess of (R)-(1)-exo-2-norborneol from the
kinetic resolution by lipase catalysis was calculated to be
84% (Scheme 1 and Table 1).

Scheme 1. Kinetic resolution of (R)-(1)- and (S)-(2)-exo-2-norborneols from lipase-catalyzed hydrolysis of racemic (6)-exo-2-norbornyl butyrate.

Fig. 2. Structures of (R)-(1)-exo-, (S)-(2)-exo-, (R)-(1)-endo-, (S)-(2)-endo-2-norbornyl-N-n-butylcarbamates, rivastigmine, physostigmine,
and carbaryl.
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(S)-(2)- endo- and ( R)-(1)- endo-2-Norborneol

To a t-butyl methyl ether (50 ml) solution of racemic
(6)-endo-2-norborneol (44.6 m mol) and vinyl acetate (10
ml), porcine pancreatic lipase (30 g) was added
(Scheme 2). The reaction mixture was shaken at 378C
at 200 rpm for 72 h. This reaction yielded (R)-(1)-endo-
2-norbornyl acetate (49%) and recovered unreactive (S)-
(2)-endo-norborneol (51%) (mp 5 148–1508C and [a]25D
5 21.818; mp 5 151–1528C and [a]25D 5 21.898 from

literature).30–34 (R)-(1)-endo-2-Norborneol (mp 5 148–
1508C and [a]25D 5 11.81; [a]25D 5 11.898 and mp 5
151–1528C from literature)30–34 was obtained from basic
hydrolysis (0.1 M KOH) of (R)-endo-norbornyl butyrate
in ethanol (95%) in 99% yield. The enantiomeric excess
(ee) values of (S)-(2)-endo- and (R)-(1)-endo-2-norbor-
neols from the resolutions were calculated to be 90 and
92%, respectively, from the 19F NMR spectra of their
Mosher’s esters (Table 1).

Scheme 2. Kinetic resolution of (R)-(1)- and (S)-(2)-endo-2-norborneols from lipase-catalyzed acetylation of racemic (6)-exo-2-norborneol with vinyl
acetate.

Fig. 3. 19F NMR spectra after the reaction of (A) (R)-(2)-exo-2-norborneol with S-(1)-a-methoxy-a-trifluoromethylphenylacetyl chloride in the
presence of pyridine in CDCl3 and (B) (S)-(2)-exo-2-norborneol with (S)-(1)-a-methoxy-a-trifluoromethylphenylacetyl chloride in the presence of
pyridine in CDCl3. For (A), 272.069 ppm was the fluorine chemical shift of unreactive (S)-(1)-a-methoxy-a-trifluoromethylphenylacetyl chloride.
The peaks at 273.948 and 274.113 ppm were assigned to be the fluorine chemical shifts of (2R)- and (2S)-exo-norbornyl-(S)-a-methoxy-a-trifluoro-
methylphenylacetates, respectively (Scheme 3). For (B), 272.089 ppm was the fluorine chemical shift of unreactive S-(1)-a-methoxy-a-trifluoro-
methylphenylacetyl chloride. The peaks at 273.965 and 274.130 ppm were assigned to be the fluorine chemical shifts of (2R)- and (2S)-exo-nor-
bornyl-(S)-a-methoxy-a-trifluoromethylphenylacetates, respectively (Scheme 3).
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In a NMR tube, (R)-(1)-endo-2-norborneol (5 mM) was
condensed with the Mosher’s chiral derivatizing agent
(S)-(1)-a-methoxy-a-trifluoromethylphenylacetyl chloride35

(5 mM) in CDCl3 in the presence of pyridine (5 mM) at
258C for 24 h. The fluorine chemical shifts at 273.975 and
274.152 ppm with the integration ratio of 95/5 were
assigned to be the fluorine atoms of (2R)- and (2S)-endo-
norbornyl-(S)-a-methoxy-a-trifluoromethylphenyl acetates,
respectively. Therefore, the enantiomeric excess of (R)-
(1)-endo-2-norborneol from the kinetic resolution by lipase
catalysis (Scheme 2) was calculated to be 90% from inte-
gration of these two peaks (Table 1).

(S)-(2)-endo-2-Norborneol (5 mM) was condensed with
the Mosher’s chiral derivatizing agent (S)-(1)-a-methoxy-
a-trifluoromethylphenylacetyl chloride35 (5 mM) in CDCl3
in the presence of pyridine (5 mM) at 258C for 24 h. The
fluorine chemical shifts at 274.026 and 274.185 ppm with
the integration ratio of 96/4 were assigned to be the fluo-
rine atoms of (2R)- and (2S)-endo-norbornyl-(S)-a-methoxy-

a- trifluoromethylphenyl acetates, respectively. Therefore,
the enantiomeric excess of (S)-(2)-endo-2-norborneol from
the kinetic resolution by lipase catalysis (Scheme 2) was
calculated to be 92% from integration of these two peaks
(Table 1).

Synthesis of (R)-(1)- exo-, ( S)-(2)- exo-, ( R)-(1)-endo-,
and ( S)-(2)- endo-2-Norbornyl-N-n-butylcarbamates

(R)-(1)-exo-, (S)-(2)-exo-, (R)-(1)-endo-, and (S)-(2)-
endo-2-norbornyl-N-n-butylcarbamates were synthesized
from condensation of optically pure (R)-(1)-exo-, (S)-(2)-
exo-, (R)-(1)-endo-, and (S)-(2)-endo-2-norborneols, respec-
tively, with 1.2 equiv of n-butyl isocyanate in the presence
of 1.2 equiv of triethylamine in tetrahydrofuran at 258C for
1 day (85–92% yield). All products were purified by liquid
chromatography (silica gel, hexane-ethyl acetate) and
were characterized by 1H and 13C NMR spectra, mass
spectra, and elemental analysis as the followings.

(R )-(1)-exo- and (S )-(2)-exo-2-Norbornyl-N-n-buty-
carbamates. 1H NMR (CDCl3) d 0.92 (t, J 5 7 Hz, 3H,
carbamate x-CH3), 1.40 (sextet, J 5 7 Hz, 2H, carbamate
g-CH2), 1.0–1.6 (m, 7H, 4,5,6,7-norbornyl Hs), 1.56 (quin-
tet, J 5 7 Hz, 2H, carbamate b-CH2), 1.70 (m, 1H, nor-
bornyl C(1)H), 2.24 (m, 2H, norbornyl C(3)H2), 3.15 (t, J
5 7 Hz, 2H, carbamate a-CH2), 4.53 (m, 1H, norbornyl-
C(2)H). 13C NMR (CDCl3) d 13.7 (carbamate x-CH3), 19.9
(carbamate b-CH2), 24.2 (norbornyl C-6), 28.1 (norbornyl
C-5), 32.1 (carbamate g-CH2), 35.2 (norbornyl C-7), 35.3
(norbornyl C-4), 39.6 (norbornyl C-3), 40.6 (norbornyl C-
1), 41.6 (carbamate a-CH2), 77.7 (norbornyl C-2), 156.4
(carbamate C¼¼O). Mass spectra, exact mass: 211.157; ele-
mental analysis: calculated for C12H21NO2: C, 68.21; H,
10.02; N, 6.63, found C, 68.15; H, 10.32; N, 6.56. mp 178–
1808C) (decomp.).

TABLE 1. Enantiomeric excess (%) and optical purity (%)
for the kinetic resolution of racemic exo-2-norborneol

(Scheme 1) and endo-2-norborneol (Scheme 2) by lipase in
organic solvent

Compound
Enantiomeric
excess (%)a

Optical
purity (%)b

(R)-(1)-exo-2-norborneol 80 88
(S)-(2)-exo-2-norboneol 84 90
(R)-(1)-endo-2-norborneol 90 96
(S)-(2)-endo-2-norborneol 92 96

aEnantiomeric excess (%) was calculated from ratio of integration of fluo-
rine chemical shift of their Mosher’s ester (Scheme 3) of 19F NMR spectra
(Fig. 3).
bOptical purity (%) was calculated as 100 3 [a]D

25observed/[a]D
25li-

terature.

Scheme 3. Determination of enantiomeric excess and absolute configuration of (R)-(1)- and (S)-(2)-exo-2-norborneols by 19NMR spectra of their
Mosher’s ester derivatives.
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(R )-(1)-endo- and (S )-(2)-endo-2-Norbornyl-N-n-
butycarbamates. 1H NMR (CDCl3) d 0.92 (t, J 5 7 Hz,
3H, carbamate x-CH3), 1.20–1.80 (m, 11H, carbamate b-
and g-CH2 and 4,5,6,7-norbornyl Hs), 1.96 (m, 1H, nor-
bornyl C(1)H), 2.10-2.50 (m, 2H, norbornyl C(3)H2), 3.19
(t, J 5 7 Hz, 2H, carbamate a-CH2), 4.60 (br. s, 1H, carba-
mate NH), 4.89 (m, 1H, norbornyl-C(2)H). 13C NMR
(CDCl3) d 13.7 (carbamate x-CH3), 19.8 (carbamate b-
CH2), 20.9 (norbornyl C-6), 29.4 (norbornyl C-5), 32.1 (car-
bamate g-CH2), 36.4 (norbornyl C-7), 36.9 (norbornyl C-4),
37.2 (norbornyl C-3), 40.4 (carbamate a-CH2), 40.7
(norbornyl C-1), 75.7 (norbornyl C-2), 156.8 (carbamate
C¼¼O). Mass spectra, exact mass: 211.157; elemental anal-
ysis: calculated for C12H21NO2: C, 68.21; H, 10.02; N, 6.63,
found C, 68.17; H, 10.30; N, 6.58. mp 178–1808C
(decomp.).

Data Reduction and Molecular Modeling

Origin (version 6.0) was used for the linear and nonlin-
ear least-squares curve fittings. Molecular structures of
(R)-(1)- and (S)-(2)-exo-2-norbornyl-N-n-butylcarbamates

Fig. 4. Nonlinear least-squares curve fittings of kapp vs. (R)-(1)-exo-2-
norbornyl-N-n-butylcarbamate concentration ([I]) plot following eq 1 for
pseudo substrate inhibition of AChE. The parameters of the fit were k2 5
0.0038 6 0.0002 s21 and (1 1 [S]/Km) Ki 5 110 6 20 nM with R 5
0.9876. After calculation, Ki 5 56 6 10 nM and ki 5 (7 6 1) 3 104 M21

s21(Table 1). [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Scheme 4. Kinetic scheme for inhibition of AChE by 2-norbornyl-N-n-
butylcarbamate in the presence of substrate. E, enzyme; E-A, acyl enzyme;
EI, enzyme-inhibitor Michaelis complex; E-I0, carbamyl enzyme; ES,
enzyme-substrate Michaelis complex; I, pseudo substrate inhibitor; k2, car-
bamylation constant; k3, decarbamylation constant; k2S, formation rate con-
stant of E-A; k3S, deacylation constant E-A; Ki, inhibition constant; Km,
Michaelis-Menten constant; P, product, 2-norborneol; P0, product, thiocho-
line; P@, product, acetate; Q, product, butylcarbamic acid (unstable); S,
substrate, ATCh.

TABLE 2. The k2, Ki, and ki values
a of the AChE inhibitions

by stereoisomers of 2-norbornyl-N-n-butylcarbamates

Inhibitors Ki (nM) k2 (10
23 s21) ki (10

3 M21 s21)b

(R)-(1)-exo- 56 6 10 3.8 6 0.4 70 6 10
(S)-(2)-exo- No inhibitionc No inhibitionc No inhibitionc

rac-(6)-exo- 100 6 20 4.0 6 0.3 40 6 8
(R) (1)-endo- 80 6 20 8.0 6 0.4 100 6 30
(S)-(2)-endo- 20 6 5 8.0 6 0.3 400 6 50
rac-(6)-endo- 50 6 10 8.2 6 0.3 160 6 30

aThe apparent inhibition constant (11[S]/Km) Ki and carbamylation con-
stant (k2) are obtained from the nonlinear least-squares curve fitting of the
kapp vs. [I] plot following eq. 1 (Fig. 4).
bki 5 k2/Ki.
cNo inhibition was observed for the inhibition reaction at the inhibitor con-
centration of 10 lM for 30 min.

Fig. 5. Superimposition of (A) (R)-(1)- and (S)-(2)-exo-2-norbornyl-N-
n-butylcarbamates and (B) (R)-(1)- and (S)-(2)-endo-2-norbornyl-N-n-
butylcarbamates at their carbamyl moieties and fitting both enantiomers
into the active site of AChE. For (A), unfavorable repulsions between the
S-enantiomer and the active site serine and histidine of the enzyme were
observed. For (B), unfavorable repulsions between the R-enantiomer and
the active site serine and histidine of the enzyme were observed. [Color
figure can be viewed in the online issue, which is available at www.
interscience.wiley.com.]
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and (R)-(1)- and (S)-(2)-endo-2-norbornyl-N-n-butylcarba-
mates shown in Figure were depicted from the molecular
structures after MM-2 energy minimization (minimum
root mean square gradient was set to be 0.01) by CS
Chem 3D (version 6.0).

Enzyme Inhibition

The AChE inhibition by carbamate inhibitors was
assayed by the Ellman method.38 AChE-catalyzed hydroly-
sis of ATCh in the presence of carbamate inhibitors and
DTNB were followed continuously at 410 nm on a UV-visi-
ble spectrometer. The temperature was maintained at
25.08C by a refrigerated circulating water bath. All inhibi-
tion reactions were performed in sodium phosphate buffer
(1 ml, 0.1 M, pH 7.0) containing NaCl (0.1 M), acetonitrile
(2% by volume), triton X-100 (0.5% by weight), substrate
(ATCh) (50 lM), DTNB (50 lM), and varying concentra-
tions of inhibitors ([I] 5 0.10, 0.25, 1.0, and 2.5 lM). Req-
uisite volumes of stock solution of substrate and inhibitors
in acetonitrile were injected into reaction buffer via a pip-
ette. The inhibition reaction time was 30 min. AChE was
dissolved in sodium phosphate buffer (0.1 M, pH 7.0).
First-order rate constant (kapp) for inhibition was deter-
mined as described by Hosie et al.39–41 In the presence of
substrate, the kinetic schemes for inhibition of serine hy-
drolase by carbamate inhibitors had been illustrated
(Scheme 4). These reactions were going on simultane-
ously, with the inhibitor and substrate competing for the
active site of the enzyme. In addition, reactivation of the
enzyme was insignificant when compared with carbamyla-
tion of the enzyme and therefore the k3 values can be
ignored (k2 � k3). Equation 1 was the solution of differen-
tial equation that describes the set of reactions depicted in
Scheme 4. The apparent inhibition constant (11[S]/Km)
Ki and carbamylation constant (k2) are obtained from the
nonlinear least-squares curve fitting of the kapp vs. [I] plot
following eq. 1 (see Fig. 4). The Km value for ATCh was
obtained as 50 6 10 lM. The bimolecular rate constant, ki,
was defined as k2/Ki. Duplicate sets of data were collected
for each inhibitor concentration.

kapp ¼ k2½I�=ðKið1þ ½S�=KmÞ þ ½I�Þ ð1Þ

RESULTS AND DISCUSSION
Kinetic Resolutions of Norborneols by Lipase Catalysis

We first report that optically pure (R)-(1)-exo-, (S)-(2)-
exo-, (R)-(1)-endo-, and (S)-(2)-endo-2-norborneols are
kinetically resolved by lipase catalysis in organic solvent
(Schemes 1 and 2). The absolute configurations of (S)-
(2)-exo-, (R)-(1)-exo-, (S)-(2)-endo-, and (R)-(1)-endo-2-
norborneols are determined on the basis of their optical
rotation values30–34 and the 19F NMR spectra of their
Mosher’s esters (Table 1 and Scheme 3).

2-Norbonyl-N-n-butylcarbamates Act as Pseudo
Substrate Inhibitors of AchE

The mechanism for AChE-catalyzed hydrolysis of sub-
strate is formation of the first tetrahedral intermediate via
nucleophilic attack of the active site serine (see Fig. 1) to

substrate then formation of the acyl enzyme intermediate
from the intermediate (Scheme 4). In the presence of sub-
strate, carbamates serve as the pseudo39–43 or alter-
nate44,45 substrates inhibitors of AChE. Presumably, the
carbamate carbons of the n-butylcarbamyl moieties of
inhibitors are nucleophilically attacked by the active site
serine of the enzyme to form the n-butylcarbamyl enzyme
(carbamylation).

Selectivity for the AChE Inhibitions by (R)-(1)- and
( S)-(2)-exo-2-Norbornyl-N-n-butylcarbamates

For the AChE inhibitions by (R)-(1)- and (S)-(2)-exo-2-
norbornyl-N-n-butylcarbamates, R-enantiomer is a potent
inhibitor but S-enantiomer is not an inhibitor (Table 2).
Therefore, AChE shows very high stereoselectivity for
(R)-(1)-exo-2-norbornyl-N-n-butylcarbamates over (S)-(2)-
exo-2-norbornyl-N-n-butylcarbamate. Modeling both (R)-
(1)-exo- and (S)-(2)-exo-2-norbornyl-N-n-butylcarbamates
in the active site of AChE2–5 (see Fig. 1) indicates that the
bicyclic norbornyl ring of (R)-(1)-exo-2-norbornyl-N-n-
butylcarbamate is fitting well into the AS of the enzyme
(Fig. 5A). But the bicyclic norbornyl ring of (S)-(2)-exo-2-
norbornyl-N-n-butylcarbamate is strongly repulsive to the
active site serine and histidine (Fig. 5A).

AChE Inhibitions by (R)-(1)- and (S)-(2)-endo-2-
Norbornyl-N-n-butylcarbamates

For the AChE inhibitions by (R)-(1)- and (S)-(2)-endo-2-
norbornyl-N-n-butylcarbamates, the S-enantiomer is four
times more potent than the R-enantiomer (Table 2). There-
fore, AChE shows high stereoselectivity for (S)-(2)-endo-2-
norbornyl-N-n-butylcarbamates over (R)-(1)-endo-2-nor-
bornyl-N-n-butylcarbamate. Modeling both (R)-(1)-endo-
and (S)-(2)-endo-2-norbornyl-N-n-butylcarbamates in the
active site of X-ray structure of AChE (see Fig. 1)2–5 indi-
cates that the bicyclic norbornyl ring of (S)-(2)-endo-2-nor-
bornyl-N-n-butylcarbamate is fitting well into the AS of the
enzyme (Fig. 5B). On the other hand, the bicyclic nor-
bornyl ring of (R)-(1)-endo-2-norbornyl-N-n-butylcarbamate
is repulsive to the active site serine and histidine (Fig. 5B).

In conclusion, the stereoselectivity of AChE with respect
to norbornyl-derived carbamates can be demonstrated for
the first time. Among the four stereoisomers of the 2-nor-
bornyl-N-n-butylcarbamates, (S)-(2)-endo-stereoisomer is
the best inhibitor. It can therefore be concluded that unfav-
orable repulsions diminish the affinity when the endo-sub-
stituted inhibitor is (R)-configurated at the norbornyl moi-
ety. For the exo-derivatives, an opposite conclusion can be
drawn.
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