

Stereoselective Synthesis of 1'-C-Branched Arabinofuranosyl Nucleosides via **Anomeric Radicals Generated by 1,2-Acyloxy Migration**

Kazuhiro Haraguchi,* Yoshiharu Itoh, Kouichiro Matsumoto, Kyoko Hashimoto, Kazuo T. Nakamura, and Hiromichi Tanaka School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan

> harakazu@pharm.showa-u.ac.jp Received September 24, 2002

Abstract: Stereoselective C-C bond formation at the anomeric position of uracil and adenine nucleoside has been accomplished through reaction of the anomeric radical, generated by 1,2-acyloxy migration, with a radical acceptor. The present method consists of the following steps: (1) electrophilic addition (bromo-pivaloyloxylation) to 3',5'-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)-protected 1',2'unsaturated nucleoside, (2) tin radical-mediated reaction of the resulting adduct with a radical acceptor. The use of allyl-(tributyl)tin gave the 1'-C-allylated uracil nucleoside 14 in 66% yield together with the unrearranged 2'-C-allylated product 15 (6%). Radical acceptors such as styryl(tributyl)tin and 3-bromo-2-methylacrylonitrile can also be used in the reaction of 5, giving 16 (70%) and 17 (76%) without the formation of unrearranged product. The radical-mediated C-C bond formation of the adenine counterpart 12 was also investigated.

Free radical reaction processes are recognized as being increasingly important as a synthetic method in organic chemistry,¹ due to the mild and neutral reaction conditions that permit stereoselective entry to highly functionalized molecules such as natural products.² Glycosyl anomeric radicals have been used extensively for the synthesis of *C*-glycosides through reaction with acceptors such as alkenes and alkynes.³ In the field of nucleoside chemistry, however, much effort regarding anomeric radicals has been devoted to the studies of DNA damage.⁴ In this paper, we describe the stereoselective synthesis of arabinofuranosyl nucleosides branched at the anomeric position by way of reaction of the nucleoside anomeric radical, generated by 1,2-acyloxy migration,5-7 with a radical acceptor.⁸

2006 J. Org. Chem. 2003, 68, 2006-2009

Substrates for 1,2-acyloxy migration were synthesized through bromo-pivaloyloxylation of 3',5'-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl) (TIPDS)-protected 3 and 3',5'-O-(di-tert-butylsilylene) (DTBS)-protected 1',2'-unsaturated uracil nucleosides 4, which were prepared by selenoxide syn-elimination of the corresponding 2'phenylseleno derivatives 1 and 2.9 The bromo-pivaloyloxylation of **3** gave the α -anti-adduct **5** (52%) as the major product along with the isomeric 6 (26%). It was found that the α -anti-adduct 7 (67%) was the sole product in the reaction of 4. The stereochemical assignments of 5 and **6** can be deduced from their $J_{2',3'}$ values (**5**, J = 4.8Hz; **6**, J = 0.7 Hz), since the smaller *J* value corresponds to the dihedral angle close to 90° that is possible only for 6. The stereochemistry of 7 was determined on the basis of X-ray crystallography.⁶

⁽⁷⁾ Kinetic studies of the 1,2-acyloxy migaration have been reported: (a) Gimisis, T.; Ialongo, G.; Zamboni, M.; Chatgilialoglu, C. Tetrahedron Lett. **1995**, *36*, 6781–6784. (b) Gimisis, T.; Ialongo; Chatgilialoglu, C. Tetrahedron 1998, 54, 573–592. (c) Chatogilialoglu, C. Nucleosides Nucleotides 1999. 18. 547-553.

^{(1) (}a) Giese, B. Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds; Pergamon: Oxford, 1986. (b) Motherwell, W. B.; Crich, D. Free Radical Chain Reactions in Organic Synthesis; Academic Press: London, 1992. (c) Renaud, P.; Sibi, M. P. Radicals in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2001.

⁽²⁾ Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev. 1991, 91, 1237-1286.

^{(3) (}a) Collins, P. M.; Ferrier, R. J. *Monosaccharides; Their Chemistry and Their Roles in Natural Products*; John Wiley & Sons: Chichester, U.K., 1995. (b) Postema, M. H. D. C-GlycosideSynthesis; CRC Press: Boca Raton, FL, 1995.

^{(4) 1&#}x27;-C-Acylated derivatives of 2'-deoxyuridine were synthesized as anomeric radical precursors. (a) Greenberg, M. M.; Yoo, D. J.; Goodman, B. K. *Nucleosides Nucleotides* **1997**, *16*, 33–40. (b) Chat-gilialoglu, C.; Gimisis, T. *Chem. Commun.* **1998**, 1249–1250. (c) Chatglialoglu, C.; Ferreri, C.; Gimisis, T. *Tetrahedron Lett.* **1999**, *40*, 2837–2840.

⁽⁵⁾ For a review, see: Beckwith, A. L.; Crich, D.; Duggan, P. J.; Yao, (6) For a review, see. Deckwint, A. E., erten, E., 2005, 1997, 97, 3273–3312. (6) Haraguchi, K.; Tanaka, H.; Matsumoto, K.; Nakamura, K. T.;

Miyasaka, T. Tetrahedron Lett. 1995, 36, 3867-3870.

⁽⁸⁾ Recently, intra- and intermolecular C–C bond formation of nucleoside-1-yl has been reported: (a) (Intramolecular reaction) Kodama, T.; Shuto, S.; Nomura, M.; Matsuda, A. *Chem. Eur. J.* **2001**, *7*, 2332–2340. (b) (Intermolecular reaction) Kumamoto, H.; Murasaki, M.; Haraguchi, K.; Anamura, A.; Tanaka, H. J. Org. Chem. 2002, 67, 6124-6130.

Although the 3',5'-O-TIPDS-protected 1',2'-unsaturated adenosine **8**, prepared according to a reported procedure,^{10,11} showed a stereochemical trend similar to that of **3** in its bromo-pivaloyloxylation, the yield of the adducts was rather low (**10**, 39%; **11**, 3%) and their chromatographic separation from succinimide was difficult. The best results were obtained by employing the N^6 -pivaloyl derivative **9** as a substrate and 1,3-dibromo-5,5-dimethylhydantoin (dibromatin) as a brominating agent. Thus, when **9** was reacted with dibromatin (4 equiv) in the presence of *t*-BuCO₂H (10 equiv) and Et₃N (10 equiv) in CH₂Cl₂, the α -anti-adduct **13** (12%).¹²

We first investigated the synthesis of 1'-C-branched uracil nucleosides. When 5 was treated with allyl-(tributyl)tin (3.4 equiv)/AIBN (0.7 equiv) in refluxing benzene for 2 h, initially formed C-2' radical A was transformed into nucleoside anomeric radical **B**¹³ via 1,2acyloxy migration, and subsequent reaction of **B** with allyltributyltin gave the β -anomer of 1'-C-allylarabinofuranosyl derivative 14¹⁴ in 52% yield stereoselectively, along with eliminated product 3 (11%) (Scheme 1). Under photochemically initiated conditions using $(Bu_3Sn)_2$ at room temperature in benzene, 14 was formed with an improved yield of 66% as well as the 2'-C-allylated byproduct 15 (6%, an isomeric mixture at C-2') derived from A. The fact that 15 was isolated instead of 3 in this latter reaction indicates that the higher temperature employed in the former reaction caused the elimination pathway. Radical acceptors that react through an ad-

dition–elimination mechanism, such as styryl(tributyl)tin and 3-bromo-2-methylacrylonitrile, worked more efficiently in the reaction of **5** under the photochemical conditions to give the respective products uniformly in higher yields: **16**, 76%; **17**, 70%.¹⁵

The 3',5'-O-DTBS derivative 7 was not a suitable substrate for 1,2-acyloxy migration due to its rigid conformation.⁶ However, its ready accessibility from **4** as well as the right stereochemistry led us to replace the 3',5'-O-protecting group of 7 with acetyl groups to make the molecule much more flexible. Compound 7 was treated with Bu₄NF in THF containing Ac₂O at room temperature for 2 h to give the 3',5'-di-O-acetyl derivative 18 in 78% yield. When a benzene solution of 18 was irradiated in the presence of allyl(tributyl)tin/(Bu₃Sn)₂, the 1'-C-allylated product **19** was obtained in 62% yield along with 20 (10%) (Scheme 2). From the observed yield of 19, which is comparable to that of 14, it would be reasonable to say that the 3',5'-O-TIPDS protection provides enough flexibility for the present 1,2-acyloxy migration. As was seen for 5, styryl(tributyl)tin reacted with 18 more efficiently than allyl(tributyl)tin, giving 21 (a diastereomeric mixture, E/Z = 10/1) in 71% yield without forming the 2'-C-styrylated byproduct. This result may be a reflection of the difference in reactivity of these two radical acceptors. Namely, allyl(tributyl)tin

⁽⁹⁾ Haraguchi, K.; Tanaka, H.; Maeda, H.; Itoh, Y.; Miyasaka, T. *J. Org. Chem.* **1991**, *56*, 5401–5408.

⁽¹⁰⁾ Fukukawa, K.; Ueda, T.; Hirao, T. *Chem. Pharm. Bull.* **1983**, *31*, 1582–1592.

⁽¹¹⁾ Robins, M. J.; Jones, R. A. J. Org. Chem. **1974**, 39, 113–115. (12) The stereochemistry of these adducts was determined on the basis of NOE experiments: **12**, H-2'/H-3' and H-4'/H-8; **13**, H-2'/H-4'.

⁽¹³⁾ Although **B** is depicted as an sp²-hybridized radical, an alternative possibility is that **B** exists in equilibrium of two sp³-hybridized species with opposite configurations. For examples of 2'-deoxyuridin-1-yl radical, see: Chatgilialoglu, C.; Ferreri, C.; Bazzanini, R.; Buerra, M.; Choi, S.-Y.; Emanuel, C. J.; Horner, J. H.; Newcomb, M. *J. Am. Chem. Soc.* **2000**, *122*, 9525–9533.

⁽¹⁴⁾ The stereochemistry of **14** was confirmed on the basis of the observation of NOEs between H-3'/H-6 and H-2'/H-4'.

⁽¹⁵⁾ Although styryl(tributyl)stannane and 3-bromo-2-methylacrylonitrile used were a mixture of geometric isomers, the respective products **16** and **17** appeared to consist of only the depicted isomer. The configurations about the 1'- and 2'-positions of these products were confirmed on the basis of the observation of NOE correlations between H-3' and H-6 and H-2' and H-4', respectively.

JOC Note

SCHEME 2

could be more reactive than styryl(tributyl)tin, and therefore, allylation takes place before migration of the 1'-*C*-pivaloyloxy group.

We next extended the radical-based C–C bond formation to the synthesis of 1'-C-branched arabinofuranosyl adenines by using the 3',5'-O-TIPDS derivative **12**. When **12** was reacted with 5.0 equiv of allyl(tributyl)tin in benzene for 4 h under photochemical conditions as for the allylation reaction of TIPDS-protected uracil nucleoside **5**, unrearranged 2'-C-allylated byproduct **23** was formed in 24% yield and the yield of the desired product **22** was only 42%. This is a likely consequence of

the highly reactive nature of the allylating agent, as mentioned above. A simple solution would be, therefore, to reduce the amount of the reagent. In fact, by using 2.5 equiv of allyl(tributyl)tin, the yield of **22** was improved to 52% at the expense of **23** (11%). The best result was obtained by reducing the amount to 1.5 equiv: **22**, 60%; **23**, 5%.

On the basis of the results in the synthesis of **16** and **17**, one would anticipate that styryl(tributyl)tin and 3-bromo-2-methylacrylonitrile might react with the adenine nucleoside anomeric radical more efficiently. In fact, by using 5 equiv of these radical acceptors, the desired 1'-*C*-styryl(arabinofuranosyl)adenine **24** and 1'-*C*-acrylyl(arabinofuranosyl)adenine **25** compounds were obtained as a mixture of geometric isomers in 65% and 73% yield, respectively, without the formation of unrearranged product.

In conclusion, we have developed a novel method for the stereoselective synthesis of 1'-C-carbon-substituted

trans-24: $R^1 = H$, $R^2 = Ph$ *cis*-24: $R^1 = Ph$, $R^2 = H$ *trans*-25: $R^1 = Me$, $R^2 = CN$ *cis*-25: $R^1 = CN$, $R^2 = Me$

(arabinofuranosyl)uracil and -adenine nucleosides based on a combination of bromo-pivaloyloxylation to 1',2'unsaturated nucleoside and C-C bond formation of the nucleoside anomeric radical resulting from 1,2-acyloxy migration. The present radical migration (from C-2' to the anomeric position) is unique in that it is the reverse pathway to that observed in carbohydrate systems (from the anomeric position to C-2). Reaction of the nucleoside anomeric radical with radical acceptors proceeded stereoselectively, due to the steric repulsion exerted by the 2'-"up"-pivaloyloxy group (the anti-rule).16 It is noteworthy that a radical acceptor, which reacts through an addition-elimination mechanism such as styryl(tributyl)tin and 3-bromo-2-methylacrylonitrile, is a suitable choice of reagent for this tandem 1,2-acyloxy migration/intermolecular C-C bond formation methodology. Since the compounds synthesized in this study are medicinally interesting arabinofuranosyl nucleosides, we are currently evaluating their biological activities.

Experimental Section

Melting points are uncorrected. ¹H NMR was measured at 400 or 500 MHz. Chemical shifts are reported relative to that of Me₄Si for ¹H NMR. Mass spectroscopy (MS) was done in FAB mode (*m*-nitrobenzyl alcohol as a matrix). Column chromatography was carried out on silica gel (silica gel 60). Thin-layer chromatography (TLC) was performed on silica gel (precoated silica gel plate F_{254}). HPLC was carried out on a Shimadzu LC-6AD with a shim-pack PREP-SIL(H)·KIT column (2 × 25 cm).

1-[2-O-Pivaloyl-1-C-(E)-styryl-3,5-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)- β -D-arabinofuranosyl]uracil (16). A benzene solution (15 mL) of 5 (117.7 mg, 0.18 mmol), Bu₃-SnCH=CHPh (0.36 mL, 0.90 mmol), and $(Bu_3Sn)_2$ (98 μ L, 0.18 mmol) was irradiated with a high-pressure mercury lamp under an Ar atmosphere at rt for 4 h. Column chromatography of the reaction mixture (hexane/AcOEt = 5/1) gave **16** (85.3 mg, 70%) as a syrup: UV (MeOH) λ_{max} 255 (ϵ 23700), λ_{min} 225 (ϵ 6800); ¹H NMR (CDCl₃) δ 1.05-1.06 (28H, m), 1.12 (9H, s), 3.90 (1H, dd, J = 8.4 and 11.4 Hz), 4.19 (1H, dd, J = 3.7 and 11.4 Hz) δ 4.04-4.08 (1H, m), 4.38-4.41 (1H, m), 5.68 (1H, d, J = 8.4 Hz), 5.74 (1H, d, J = 2.6 Hz), 6.79 and 6.88 (2H, each as d, J = 16.1Hz), 7.27-7.34 and 7.42-7.53 (6H, each as m), 7.84 (1H, d, J= 8.4 Hz), 8.51 (1H, br); FAB-MS m/z 695 (M⁺ + Na), 673 (M⁺ + H). Anal. Calcd for $C_{34}H_{52}N_2O_8Si_2$: C, 60.68; H, 7.79; N, 4.16. Found: C, 60.58; H, 7.94; N, 4.13.

1-[1-*C***-Methacrylyl-2-***O***-pivaloyl-3,5-***O***-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)-β-D-arabinofuranosyl]uracil (17). A benzene solution (10 mL) of 5** (69.8 mg, 0.11 mmol), BrCH=C(CH₃)CN (53.0 μL, 0.55 mmol), and (Bu₃Sn)₂ (0.30 mL, 0.55 mmol) was irradiated with a high-pressure mercury lamp under an Ar atmosphere at rt for 4 h. Purification of the reaction mixture by preparative TCL (hexane/AcOEt = 4/1) gave **17** (52.9 mg, 76%) as a syrup: UV (MeOH) λ_{max} 261 (ϵ 10400), λ_{min} 236 (ϵ

⁽¹⁶⁾ Renaud, P. Stereoselectivity of Radical Reactions: Cyclic Systems. In *Radicals in Organic Synthesis*; Renaud, P., Sibi, M. P., Eds.; Wiley-VCH: Weinheim, Germany, 2001; Vol. 1, pp 400–415.

4500); ¹H NMR (CDCl₃) δ 0.97–1.10 (28 H, m), 1.11 (9H, s), 2.03 (3H, d, J = 1.8 Hz), 3.88 (1H, dd, J = 7.0 and 11.7 Hz), 4.17 (1H, dd, J = 3.7 and 11.7 Hz), 4.05–4.08 (1H, m), 4.31 (1H, dd, J = 3.7 and 4.9 Hz), 5.63 (1H, d, J = 3.7 Hz), 5.74 (1H, d, J = 8.4 Hz), 6.94 (1H, d, J = 1.8 Hz), 7.99 (1H, d, J = 8.4 Hz), 8.37 (1H, br); FAB-MS m/z 658 (M⁺ + Na), 636 (M⁺ + H). Anal. Calcd for C₃₀H₄₉N₃O₈Si₂: C, 56.66; H, 7.77; N, 6.61. Found: C, 56.82; H, 7.90; N, 6.43.

1-[3,5-Di-O-acetyl-1-C-(E and Z)-styryl-2-O-pivaloyl-β-Darabinofuranosyl]uracil (21). A benzene (15 mL)/THF (0.2 mL) solution of 18 (155.8 mg, 0.32 mmol), Bu₃SnCH=CHPh (623.2 mg, 1.59 mmol), and $(Bu_3Sn)_2$ (31 μ L, 0.06 mmol) was irradiated with a high-pressure mercury lamp under an argon atmosphere at rt for 4 h. Column chromatography of the reaction mixture (hexane/AcOEt = 2/1) gave **21** (115.8 mg, E/Z = 10/1, 71%) as a syrup: UV (MeOH) λ_{max} 255 (ϵ 20100) and 225 (ϵ 11200), λ_{\min} 226 (ϵ 5600); ¹H NMR (CDCl₃) δ (*E*-isomer) 1.13 (9 H, s), 1.99 and 2.14 (6H, each as s), 4.32-4.36 (2H, m), 4.47 (1H, dd, J = 7.4 and 14.2 Hz), 4.90 (1H, d, J = 2.1 Hz), 5.73 (1H, dd, J = 1.9 and 8.2 Hz), 5.84 (1H, s), 6.71 and 6.87 (2H, s)each as d, J = 16.2 Hz), 7.31-7.36, 7.41-7.44 (5H, each as m), 7.84 (1H, d, J = 8.2 Hz); (Z-isomer/selected data) 1.06 (1H, s), 2.04 and 2.19 (6H, each as s), 5.71 (1H, s), 6.21 (1H, d, $J\!=\!12.2$ Hz); FAB-MS m/z 515 (M⁺ + H). Anal. Calcd for C₂₆H₃₀N₂O₉· 1/4H2O: C, 60.17; H, 5.92; N, 5.44. Found: C, 60.07; H, 5.98; N, 5.21

1-[1-C-Allyl-2-O-pivaloyl-3,5-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)- β -D-arabinofuranosyl]- N^6 -pivaloyladenine (22) and 1-[2-C-Allyl-2-deoxy-1-pivaloyloxy-3,5-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)- α -D-ribofuranosyl]- N^6 -pivaloyladenine (23). A benzene solution (7 mL) of 12 (88.0 mg, 0.12 mmol), Bu₃SnCH₂CH=CH₂ (57 μ L, 0.18 mmol), and (Bu₃Sn)₂ (60 μ L, 0.12 mmol) was irradiated with a high-pressure mercury lamp under an Ar atmosphere at rt for 4 h. Purification of the reaction mixture by preparative TCL (hexane/AcOEt = 2/1) gave 22 (51.1 mg, 60%, syrup) and 23 (4.3 mg, 5%, syrup, a mixture of diastereomers).

Physical data for **22:** UV (MeOH) λ_{max} 264 (ϵ 14000), λ_{min} 230 (ϵ 2900); ¹H NMR (CDCl₃) δ 0.73 and 1.41 (18 H, each as s), 0.98–1.34 (28H, m), 3.37 (1H, dd, J = 7.0 and 14.8 Hz), 3.52 (1H, dd, J = 7.3 and 14.8 Hz), 3.98–4.02 (1H, m), 4.14–4.18 (2H, m), 4.57 (1H, t, J = 7.3 Hz)), 5.09 (1H, dd, J = 1.4 and 10.3 Hz), 5.16 (1H, J = 1.4 and 17.2 Hz), 5.69 (1H, d, J = 7.3 Hz), 5.64–5.75 (1H, m), 8.41 and 8.71 (2H, each as s), 8.64 (1H, br); FAB-MS m/z 718 (M⁺ + H). Anal. Calcd for C₃₅H₅₉N₃O₇Si₂: C, 58.54; H, 8.28; N, 9.75. Found: C, 58.81; H, 8.25; N, 9.92.

Physical data for **23:** UV (MeOH) λ_{max} 259 (ϵ 13900), λ_{min} 227 (ϵ 2800); ¹H NMR (CDCl₃) δ (major isomer) 1.02–1.16 (28H, m), 1.08 (9H, s), 1.41 (9H, s), 1.81–1.94 (1H, m), 3.12–3.15 (1H, m), 3.42–3.46 (1H, m), 4.14 (1H, dd, J= 3.3 and 11.9 Hz), 4.18 (1H, dd, J= 3.7 and 11.9 Hz), 4.29–4.33 (1H, m), 4.44 (1H, dd, J= 1.5 and 15.9 Hz), 4.51–4.57 (2H, m), 5.43–5.54 (1H, m), 8.30 (1H, s), 8.60 (1H, br), 8.75 (1H, s); (minor isomer/selected data) 1.21 (9H, s), 1.40 (9H, s), 2.17–2.24 (1H, m), 2.48–2.53 (1H, m), 2.87–2.92 (1H, m), 3.88 (1H, dd, J= 8.1 and 12.0 Hz), 3.98 (1H, dd, J= 1.5 and 17.2 Hz), 5.63–5.70 (1H, m), 8.17 (1H, s), 8.54 (1H, br), 8.71 (1H, s); FAB-MS m/z 718 (M⁺ + H), 616 (M^{+ –} *t*-BuCOO). Anal. Calcd for C₃₅H₅₉N₅O₇Si₂: C,58.54; H, 8.28; N, 9.75. Found: C, 58.69; H, 8.11; N, 10.09.

1-[2-*O*-Pivaloyl-1-*C*-(*E*)-styryl-3,5-*O*-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)-β-D-arabinofuranosyl]-*N*⁶-pivaloyladenine (*trans*-24) and 1-[2-*O*-Pivaloyl-1-*C*-(*Z*)-styryl-3,5-*O*-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)-β-D-arabinofuranosyl]-*N*⁶-pivaloyladenine (*cis*-24). A benzene solution (7 mL) of **12** (50.9 mg, 0.07 mmol), Bu₃SnCH=CHPh (131.7 mg, 0.34 mmol), and (Bu₃Sn)₂ (84.6 μ L, 0.17 mmol) was irradiated with a high-pressure mercury lamp under an argon atmosphere at rt for 4 h. Purification of the reaction mixture by preparative TCL (hexane/AcOEt = 2/1) gave *trans*-**24** (23.8 mg, 46%, syrup) and *cis*-**24** (10.4 mg, 19%, syrup).

Physical data for *trans*-**24**: UV (MeOH) λ_{max} 273 (ϵ 19000), λ_{min} 233 (ϵ 9600); ¹H NMR (CDCl₃) δ 0.70 and 1.39 (18H, each as s), 0.91–1.26 (28H, m), 3.99–4.03 (1H, m), 4.18 (1H, dd, J = 1.5 and 12.5 Hz), 4.32 (1H, dd, J = 5.2 and 12.5 Hz), 5.29 (1H, dd, J = 6.4 and 7.6 Hz), 5.57 (1H, d, J = 6.4 Hz), 7.09 (1H, d, J = 15.9 Hz), 7.31 (1H, d, J = 15.9 Hz), 7.36–7.39 and 7.52–7.54 (5H, each as m); FAB-MS m/z 561 (M⁺ + H). Anal. Calcd for C₄₀H₆₁N₅O₇Si₂·³/₄CH₃CO₂C₂H₅: C, 61.03; H, 7.98; N, 8.28. Found: C, 60.66; H, 8.15; N, 8.14.

Physical data for *cis*-**24**: UV (MeOH) λ_{max} 263 (ϵ 17200), λ_{min} 232 (ϵ 7800); ¹H NMR (CDCl₃) δ 0.71 and 1.40 (18H, each as s), 0.91–1.15 (28H, m), 3.72–3.75 (1H, m), 3.88–3.89 (2H, m), 4.86 (1H, t, J = 6.5 Hz), 5.66 (1H, d, J = 6.5 Hz), 6.66 (1H, d, J = 12.5 Hz), 6.90 (1H, d, J = 12.5 Hz), 7.02–7.04, 7.09–7.10 (5H, each as m), 8.22 (1H, s), 8.71 (1H, s), 8.44 (1H, br); FAB-MS *m*/*z* 561 (M⁺ + H). Anal. Calcd for C₄₀H₆₁N₅O₇Si₂·²/₃H₂O: C, 59.52; H, 7.99; N, 8.68. Found: C, 59.49; H, 8.04; N, 8.42.

1-[1-C (E)-Methacrylyl-2-O-pivaloyl-3,5-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)-β-D-arabinofuranosyl]-N⁶pivaloyladenine (*trans*-25) and 1-[1-C-(Z)-Methacrylyl-2-O-pivaloyl-3,5-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)β-D-arabinofuranosyl]-N⁶-pivaloyladenine (*cis*-25). A benzene solution (7 mL) of 12 (53.2 mg, 0.07 mmol), BrCH= CH(CH₃)CN (34.0 μ L, 0.35 mmol), and (Bu₃SN)₂ (0.19 mL, 0.35 mmol) was irradiated with a high-pressure mercury lamp under an argon atmosphere at rt for 4 h. Purification of the reaction mixture by preparative TCL (hexane/AcOEt = 2/1) gave a mixture of *trans*-25 (14.1 mg, 28%, syrup) and *cis*-25 (23.1 mg, 45%, syrup).

Physical data for *trans*-**25**: UV (MeOH) λ_{max} 271 (ϵ 16800), λ_{min} 236 (ϵ 5500); ¹H NMR (CDCl₃) δ 0.73 and 1.40 (18H, each as s), 0.91–1.11 (28H, m), 1.89 (3H, d, J = 1.8 Hz), 3.96–3.99 (1H, J = 3.4 and 12.7 Hz), 4.14 (1H, dd, J = 3.4 and 12.7 Hz), 4.22 (1H, dd, J = 4.3 and 12.7 Hz), 4.92 (1H, t), 5.58 (1H, d, J = 7.0 Hz), 7.36 (1H, q, J = 1.8 Hz), 8.23 (1H, s), 8.50 (1H, br), 8.70 (1H, s); FAB-MS *m*/*z* 781 (M⁺ + K). Anal. Calcd for C₃₆H₅₈N₆O₇Sl₂-¹/₂AcOEt: C, 57.98; H, 7.94; N, 10.67. Found: C, 58.02; H, 8.00; N, 10.88.

Physical data for *cis*-**25**: UV (MeOH) λ_{max} 271 (ϵ 15900) λ_{min} 261 (ϵ 10000); ¹H NMR (CDCl₃) δ 0.77 and 1.41 (18H, each as s), 0.91–1.16 (28H, m), 2.13 (3H, d, J = 1.5 Hz), 4.18 (1H, dd, J = 3.1 and 13.1 Hz), 4.21–4.23 (1H, m), 4.31 (1H, dd, J = 2.8 and 13.1 Hz), 4.74 (1H, t, J = 7.8 Hz), 5.57 (1H, d, J = 7.8 Hz), 7.65 (1H, d, J = 1.5 Hz), 8.45 (1H, s), 8.58 (1H, br), 8.70 (1H, s); FAB-MS *m*/*z* 781 (M⁺ + K). Anal. Calcd for C₃₆H₅₈N₆O₇Si₂· ¹/₂AcOEt: C, 57.98; H, 7.94; N, 10.67. Found: C, 57.68; H, 8.08; N, 10.81.

Acknowledgment. Financial support from the Ministry of Education, Culture, Sports, Science and Technology (Grant-in-Aid No. 11771391 to K.H.) is gratefully acknowledged.

Supporting Information Available: Detailed description of the experimental procedures and compound characterization of **1–15** and **18–20**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO020620D