

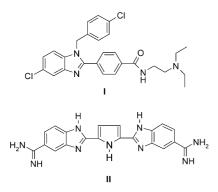
Bioorganic & Medicinal Chemistry 10 (2002) 2589-2596

BIOORGANIC & MEDICINAL CHEMISTRY

# Synthesis of Some New 2-Substituted-phenyl-1H-benzimidazole-5-carbonitriles and Their Potent Activity Against *Candida* Species

Hakan Göker,<sup>a,b,\*</sup> Canan Kuş,<sup>a</sup> David W. Boykin,<sup>b</sup> Sulhiye Yildiz<sup>c</sup> and Nurten Altanlar<sup>c</sup>

<sup>a</sup>Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Tandogan, Ankara, Turkey <sup>b</sup>Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA


<sup>c</sup>Department of Microbiology, Faculty of Pharmacy, Ankara University, 06100, Tandogan, Ankara, Turkey

Received 11 February 2002; revised 4 March 2002; accepted 20 March 2002

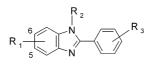
Abstract—New 2-substituted-phenyl-1H-benzimidazole-5-carboxylic acids (**35**, **38**), ethyl-5-carboxylate (**36**), -5-carboxamides (**37**, **39**),-5-carboxaldehyde (**42**), -5-chloro (**40**), -5-trifluoromethyl (**41**), and -5-carbonitriles (**44–53**, **55–67**), -6-carbonitrile (**54**) were prepared and evaluated in vitro against *Candida* species. The cyano substituted compounds **53**, **57**, **58** and **61** exhibited the greatest activity with MIC values of  $3.12 \mu g/mL$ , values similar to that of fluconazole. © 2002 Elsevier Science Ltd. All rights reserved.

### Introduction

The synthesis of benzimidazoles has received much attention owing to the varied biological activity exhibited by a number of these compounds. As contributions to this field, in the last decade we reported the preparation, antifungal and anti-histaminic activity<sup>1</sup> of a large series of benzimidazoles. Among them, 4-[5-chloro-1-(4-chlorobenzyl)-1H-benzimidazol-2-yl]-N-(2-diethyl-amino-ethyl)-benzamide I and 2,5-bis-[2-(5-amidino)-benzimidazoyl]pyrrole II, exhibited potent antifungal activity.<sup>2,3</sup> In connection with these studies, this report describes the preparation and antifungal evaluation of 2-substituted-phenyl-1H-benzimidazole-5-carbonitriles.



<sup>\*</sup>Corresponding author. Tel.: +90-312-222-0471; fax: +90-312-213-1081; e-mail: goker@pharmacy.ankara.edu.tr


#### **Results and Discussion**

# Chemistry

The synthetic pathways for preparation of the benzimidazoles listed in Tables 1 and 2 are shown in Schemes 1 and 2. Compounds 32 and 33 were obtained by the  $N^{1}$ -alkylation of 2 which was prepared in good yield by condensation of o-phenylenediamine with the Na<sub>2</sub>S<sub>2</sub>O<sub>5</sub> adduct of 4-fluorobenzaldehyde in DMF.<sup>4</sup> Compounds 34, 35 and 38 were also prepared in a similar manner 2. The carboxyl group of 35 was converted to ethyl ester 36 and the N-isopropyl-carboxamide 37, first by acid chloride formation using SOCl<sub>2</sub> then reaction with EtOH and isopropylamine, respectively. 39 was also obtained in the analogous way, starting from 38. Nucleophilic displacement of the chloro group of 4-(CF<sub>3</sub> and/or Cl)-nitrobenzenes by reaction with butylamine in DMF gave 5 and 6, respectively. Their reduction with H<sub>2</sub>, Pd/C produced 7, 8. Condensation of the aromatic o-diamines with the Na<sub>2</sub>S<sub>2</sub>O<sub>5</sub> adduct of appropriate benzaldehydes gave 40, 41 and 43. The nitrile group of 57 was converted to carboxyaldehyde 42, by using DIBAL, in a 33% yield. Compounds 44-67 were obtained by the same route as 40, 41, 43 (Schemes 2 and 4). Related intermediates 9-17 and 18-27 are given in Table 3. Compound 63 was prepared by etherification of 62. Since compound 53 exhibited significant antifungal activity, it was planned to relocate the CN group from C-5 to C-6. For this purpose, firstly we have attempted alkylation of compound 44, with *n*-propyl bromide under strong basic conditions (NaH 95%,

0968-0896/02/\$ - see front matter  $\odot$  2002 Elsevier Science Ltd. All rights reserved. P11: \$0968-0896(02)00103-7

#### Table 1. In vitro antifungal activities and formulas of 32-67



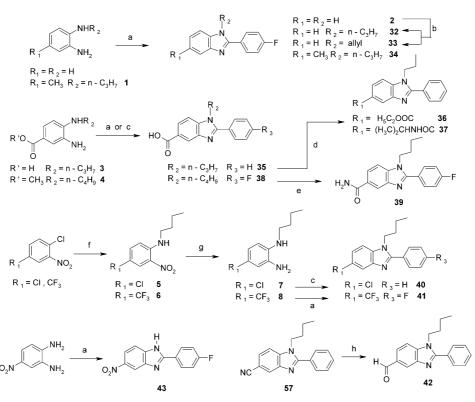
| Compd          | $R_1$                                   | $R_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>R</b> <sub>3</sub>                 | Fungi    |               |      |          |            |      |          |               |      |          |             |       |
|----------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------|---------------|------|----------|------------|------|----------|---------------|------|----------|-------------|-------|
|                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | (        | C. albica     | ins  | (        | C. glabra  | ata  |          | C. krus       | ei   | С.       | parapsi     | losis |
|                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | GIZ      | MIC           | MFC  | GIZ      | MIC        | MFC  | GIZ      | MIC           | MFC  | GIZ      | MIC         | MFC   |
| 32             | 5,6-H                                   | $(CH_2)_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4-F                                   | NI       | NT            |      | NI       | NT         |      | NI       | NT            |      | NI       | NT          |       |
| 33             | 5,6-H                                   | $CH_2 - CH_2 = CH_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4-F                                   | NI       | NT            |      | NI       | NT         |      | NI       | NT            |      | NI       | NT          |       |
| 34             | 5-CH <sub>3</sub>                       | $(CH_2)_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4-F                                   | NI       | NT            |      | NI       | NT         |      | NI       | NT            |      | NI       | NT          |       |
| 35             | 5-COOH                                  | $(CH_2)_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Н                                     | NI       | NT            |      | NI       | NT         |      | NI       | NT            |      | NI       | NT          |       |
| 36             | 5-COOEt                                 | $(CH_2)_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Н                                     | NI       | NT            |      | NI       | NT         |      | NI       | NT            |      | NI       | NT          |       |
| 37             | 5-CONHCH(CH <sub>3</sub> ) <sub>2</sub> | $(CH_2)_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Н                                     | NI       | NT            |      | NI       | NT         |      | NI       | NT            |      | NI       | NT          |       |
| 38             | 5-COOH                                  | $(CH_2)_3CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4-F                                   | NI       | NT            |      | NI       | NT         |      | NI       | NT            |      | NI       | NT          |       |
| 39             | 5-CONH <sub>2</sub>                     | $(CH_2)_3CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4-F                                   | NI       | NT            |      | NI       | NT         |      | NI       | NT            |      | NI       | NT          |       |
| 40             | 5-C1                                    | $(CH_2)_3CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Н                                     | 14       | 6.25          | 12.5 | NI       | >25        |      | 16       | 6.25          | 12.5 | 14       | 12.5        | 25    |
| 41             | 5-CF <sub>3</sub>                       | $(CH_2)_3CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4-F                                   | NI       | NT            |      | NI       | NT         |      | NI       | NT            |      | NI       | NT          |       |
| 42             | 5-COH                                   | $(CH_2)_3CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Н                                     | 11       | 12.5          | 12.5 | NI       | >25        |      | 13       | 12.5          | 25   | 15       | 12.5        | 25    |
| 43             | 5-NO <sub>2</sub>                       | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4-F                                   | NI       | NT            |      | NI       | NT         |      | NI       | NT            |      | NI       | NT          |       |
| 44             | 5-CN                                    | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4-F                                   | 9        | NT            |      | NI       | NT         |      | NI       | NT            |      | NI       | NT          |       |
| 45             | 5-CN                                    | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4-C1                                  | NI       | NT            |      | NI       | NT         |      | NI       | NT            |      | NI       | NT          |       |
| 46             | 5-CN                                    | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-C1                                  | NI       | NT            |      | NI       | NT         |      | NI       | NT            |      | NI       | NT          |       |
| 47             | 5-CN                                    | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4-OCH <sub>3</sub>                    | NI       | NT            |      | NI       | NT         |      | NI       | NT            |      | NI       | NT          |       |
| 48             | 5-CN                                    | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,4- <i>di</i> -Cl                    | NI       | NT            |      | NI       | NT         |      | NI       | NT            |      | NI       | NT          |       |
| <b>49</b>      | 5-CN                                    | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4-OH                                  | NI       | NT            |      | NI       | NT         |      | NI       | NT            |      | NI       | NT          |       |
| 50             | 5-CN                                    | $CH_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4-F                                   | NI       | NT            |      | NI       | NT         |      | NI       | NT            |      | NI       | NT          |       |
| 51             | 5-CN                                    | $(CH_2)_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3-NO <sub>2</sub>                     | NI       | NT            | 50   | NI       | NT         | 50   | NI       | NT            | 50   | NI       | NT          | 25    |
| 52             | 5-CN                                    | $(CH_2)_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H                                     | 22       | 12.5          | 50   | NI       | 25         | 50   | 13       | 50            | 50   | 11       | 25          | 25    |
| 53             | 5-CN                                    | $(CH_2)_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4-F                                   | 20       | 6.25          | 25   | NI       | 25         | 50   | 10       | 12.5          | 25   | 12       | 12.5        | 25    |
| 54             | 6-CN                                    | $(CH_2)_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4-F                                   | NI       | 25<br>NT      | 50   | 18       | 6.25       | 6.25 | 15       | 12.5          | 12.5 | 12       | 6.25        | 12.5  |
| 55<br>5(       | 5-CN                                    | $(CH_2)_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3-F                                   | NI<br>NI | NT<br>NT      |      | NI<br>NI | NT<br>NT   |      | NI<br>NI | NT            |      | NI<br>NI | NT<br>NT    |       |
| 56<br>57       | 5-CN                                    | $(CH_2)_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-F                                   | 23       | NT*           |      |          | NT*        |      |          | NT<br>NT*     |      |          |             |       |
| 57<br>58       | 5-CN<br>5-CN                            | (CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub><br>(CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Н<br>4-F                              | 23<br>24 | N I *<br>3.12 | 6.25 | 13<br>15 | 12.5       | 25   | 20<br>24 | N I *<br>3.12 | 6.25 | 18<br>19 | NT*<br>3.12 | 3.12  |
| 58<br>59       | 5-CN                                    | $(CH_2)_3CH_3$<br>$(CH_2)_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4-F<br>2,5- <i>di</i> -F              | Z4<br>NI | 5.12<br>NT    | 0.23 | NI       | 12.5<br>NT | 23   | 24<br>NI | 5.12<br>NT    | 0.23 | NI       | 5.12<br>NT  | 5.12  |
| 59<br>60       | 5-CN<br>5-CN                            | $(CH_2)_2CH_3$<br>$(CH_2)_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2, <i>3-ai-F</i><br>3,4- <i>di</i> -F | NI       | NT            |      | NI       | NT         |      | NI       | NT            |      | NI       | NT          |       |
| 60<br>61       | 5-CN                                    | $(CH_2)_2CH_3$<br>$(CH_2)_2CH_2$ Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,4- <i>a</i> -1<br>4-F               | 17       | 3.12          | 25   | NI       | 12.5       | 25   | 18       | 6.25          | 12.5 | 13       | 6.25        | 12.5  |
| 61<br>62       | 5-CN                                    | CH <sub>2</sub> ) <sub>2</sub> CH <sub>2</sub> CH<br>CH <sub>2</sub> CH <sub>2</sub> OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4-F                                   | NI       | 5.12<br>NT    | 25   | NI       | 12.5<br>NT | 23   | NI       | 0.23<br>NT    | 12.5 | NI       | 0.23<br>NT  | 12.5  |
| 62<br>63       | 5-CN                                    | CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4-F                                   | 21       | 6.25          | 25   | NI       | 25         | 50   | NI       | 25            | 25   | NI       | 12.5        | 25    |
| 63<br>64       | 5-CN                                    | $CH_2CH_2OCH_3$<br>$CH(CH_3)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-F                                   | NI       | 0.23<br>NT    | 25   | NI       | NT         | 50   | NI       | NT            | 23   | NI       | 12.5<br>NT  | 25    |
| 6 <del>5</del> | 5-CN                                    | $CH_{2}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{3}CH_{$ | 4-F                                   | NI       | NT            |      | NI       | NT         |      | NI       | NT            |      | NI       | NT          |       |
| 65<br>66       | 5-CN                                    | cyclohexyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4-F                                   | NI       | NT            |      | NI       | NT         |      | NI       | NT            |      | NI       | NT          |       |
| 67             | 5-CN                                    | CH <sub>2</sub> Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4-F                                   | NI       | NT            |      | NI       | NT         |      | NI       | NT            |      | NI       | NT          |       |
| Mic            | 5 011                                   | 01121 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - <b>1</b>                            | 35       | 0.19          | 0.56 | 34       | 0.19       | 0.39 | 35       | 0.19          | 0.39 | 46       | 0.39        | 0.78  |
| Flu            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 15       | 3.12          | 6.25 | 16       | 12.5       | 25   | 16       | 6.25          | 12.5 | 13       | 6.25        | 12.5  |
| 1 14           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 15       | 5.12          | 0.23 | 10       | 14.0       | 20   | 10       | 0.23          | 12.5 | 15       | 0.20        | 12.5  |

GIZ, growth inhibition zone (mm); MIC 100, minimum inhibitory concentrations ( $\mu$ g/mL); MFC, minimum fungicidal concentrations ( $\mu$ g/mL); NI, no inhibition; NT, not tested; NT\*, since the compound **57** has no good solubility, it has not been tested by the tube dilution method; Mic, miconazole; Flu, fluconazole.

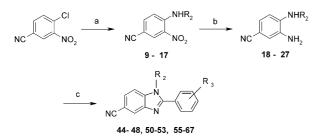
DMF, at rt) (Scheme 3). As expected, due to the tautomerism of the imidazole moiety alkylation occurred at both the 1 and 3 positions;<sup>5</sup> two regioisomers, **53** and **54**, were formed as a solid mixture which has no sharp mp. Generally, alkylations of benzimidazoles give similar yields of both regioisomers, rarely giving a different ratio,<sup>5</sup> it has been reported that,<sup>6</sup> when 5(6)- or 4(7)-substituted benzimidazoles are alkylated, the product ratios depends on the resonance electronic effects as well as position of the substituent. Here, propylation of **44** (Scheme 3), gave a 2:1 ratio of 1,6- (**54**) and the 1,5-isomers (**53**), according to the NMR data of the mixture. Since the compound **53** was synthesised as described in Scheme 2 by an unambiguous method and therefore readily allows for isomeric identification in the NMR spectra of the mixture. The partial regioselectivity of alkylation of **44** may be attributed to the electron withdrawing effect of the cyano group, since a similar result was noted on alkylation of 4-nitrobenzimidazole.<sup>6</sup> Further studies are necessary to fully understand the influence of electron-withdrawing groups on *N*-alkylation of benzimidazoles.

We were unable to separate the regiosiomers from each other by crystallisation or chromatography. Therefore, it was necessary to develop a selective synthesis for the

# Table 2. Physical and spectral data for compounds 32–67


| Comp.                  | Mp (°C)                | Yield (%) | Formulas<br>Calculated<br>Found                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 'H NMR                                                                                                                                                                                                                                                            | Mass (62 or 70 eV, EI)                                                                                                                                         | Isolation<br>EtOAc/n-hexane (1:3) cc |  |
|------------------------|------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| 32                     | 82–83                  | 81        | C <sub>16</sub> H <sub>15</sub> FN <sub>2</sub><br>C: 75.59H: 5.94 N: 11.02<br>C: 75.59H: 6.05 N: 11.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (DMSO- <i>d</i> <sub>6</sub> ) 0.5–0.8 (t, 3H), 1.4–1.9 (m, 2H),<br>4.1–4.4 (t, 2H), 7.1–7.9 (8H)                                                                                                                                                                 | 254 (M <sup>+</sup> , 100), 239 (23), 224 (66),<br>211 (22.6), 129 (16.2), 77 (44.5)                                                                           |                                      |  |
| 33                     | 98–99                  | 79        | C <sub>16</sub> H <sub>13</sub> FN <sub>2</sub><br>C: 76.19H: 5.19 N: 11.10<br>C: 76.38H: 5.18 N: 11.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (DMSO- $d_6$ ) 4.8 (3H), 5.2 (d, 1H), 6.0 (m, 1H),<br>7.2 (2H), 7.4 (m, 2H), 7.5 (m, 1H), 7.7 (d, 1H, $J_0$ =8.3),<br>7.8 (2H)                                                                                                                                    | 251 (M-1, 76.5), 236 (7.34), 225 (4.5),<br>211 (42.2), 121 (17.8), 90 (23.9), 41 (100)                                                                         | EtOAc/n-hexane (1:3) cc              |  |
| 34                     | 95                     | 41        | C <sub>17</sub> H <sub>17</sub> FN <sub>2</sub><br>C: 76.11H: 6.34 N: 10.44<br>C: 75.84H: 6.37 N: 10.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (DMSO- $d_6$ ) 0.7 (t, 3H, $J$ =7.3), 1.65 (m, 2H),<br>2.4 (s, 3H), 4.2 (t, 2H, $J$ =7.2), 7.1 (dd, 1H, $J_o$ =8.6,<br>$J_m$ =1.28), 7.4 (3H), 7.5 (d, 1H, $J_o$ =8.1), 7.8 (2H)                                                                                  | 269 (M+1, 62.9), 253 (9.7), 239 (57.7),<br>225 (9.8), 121 (31.9), 77 (8.84), 41 (100)                                                                          | Crys. EtOH (60%)                     |  |
| 35                     | 217                    | 57        | $\begin{array}{c} C_{17}H_{16}N_2O_2\\ C_{17}H_{16}N_2O_2\\ C_{17}Z_{14}H_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S_{15}S$ | (DMSO- $d_6$ ) 0.715 (t, 3H), 1.67 (m, 2H), 4.29<br>(t, 2H), 7.57–7.79 (6H), 7.91 (dd, 1H, $J_0$ = 8.5, $J_m$ =1.5),<br>8.25 (s, 1H)                                                                                                                              | ESI: 281 (M + 1, 100)                                                                                                                                          | Crys. isopropanol                    |  |
| 36                     | 91–92                  | 77        | C: $72.07H$ : $5.72H$ : $9.96$<br>C: $74.00H$ : $6.54$ N: $9.08$<br>C: $73.81$ H: $6.57$ N: $9.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (DMSO- <i>d</i> <sub>6</sub> ) 0.715 (t, 3H), 1.35 (t, 3H), 1.67 (q, 2H),<br>4.313 (m, 4H), 7.58–7.9(7H), 8.27 (s, 1H)                                                                                                                                            | ESI: 309 (M + 1, 100)                                                                                                                                          | EtOAc/n-hexane (1:3) cc              |  |
| 37                     | 210–211                | 81        | C: $74.74H$ : $7.21$ N: $13.07$<br>C: $74.74H$ : $7.21$ N: $13.07$<br>C: $74.47H$ : $7.05$ N: $13.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (DMSO- $d_6$ ) 0.7 (t, 3H), 1.2 (d, 6H), 1.7 (m, 2H),<br>4.1 (m, 1H), 4.35 (t, 2H), 7.66 (3H), 7.77 (d, 1H, $J_0$ =7.9),<br>7.85 (2H), 7.91 (dd, 1H, $J_0$ =8.5, $J_m$ =1.5), 8.25 (2H)                                                                           | 320.5 (M <sup>+</sup> , 5.49), 263 (24.3), 220 (8.92),<br>102 (4.43), 77 (4), 41 (100)                                                                         | EtOAc cc                             |  |
| 38                     | 250                    | 75.4      | C: $^{14.4711}_{18}$ $^{1.05}$ N: $^{10.02}_{18}$<br>C: $^{18}$ H <sub>17</sub> FN <sub>2</sub> O <sub>2</sub><br>C: $^{69.22$ H: $^{5.49}$ N: $^{8.97}$<br>C: $^{69.39$ H: $^{5.49}$ N: $^{9.09}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} (\text{DMSO-}d_6) \ 0.74 \ (\text{t}, 3\text{H}), 1.12 \ (\text{m}, 2\text{H}), 1.63 \ (\text{m}, 2\text{H}), \\ 4.31 \ (\text{t}, 2\text{H}), 7.39 \\ -7.9 \ (6\text{H}), 8.24 \ (\text{s}, 1\text{H}) \end{array}$                            | ESI: 313 (M + 1, 100)                                                                                                                                          | Crys. isopropanol                    |  |
| 39                     | 185–186                | 91        | C: $68.60$ H: $5.89$ N: $13.34$<br>C: $68.60$ H: $5.88$ N: $13.34$<br>C: $68.63$ H: $5.83$ N: $13.27$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (DMSO- <i>d</i> <sub>6</sub> ) 0.7 (t, 3H), 1.1 (m, 2H), 1.6 (m, 2H),<br>4.3 (t, 2H), 7.2–8.05 (6H), 8.25 (s, 1H)                                                                                                                                                 | ESI: 312 (M + 1, 100)                                                                                                                                          | Crys EtOH (50%)                      |  |
| 40                     | 65–67                  | 49        | C: $06.0511$ ; $5.05$ N: $15.27$<br>$C_{17}H_{17}ClN_2$<br>C: $71.80$ H: $6.02$ N: $9.85$<br>C: $71.62$ H: $6.16$ N: $9.70$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (DMSO- $d_6$ ) 0.7 (t, 3H), 1.05 (m, 2H), 1.6 (m, 2H),<br>4.3 (t, 2H), 7.25 (d, 1H, $J_0$ = 8.6), 7.5 (3H),<br>7.7 (dd, 1H, $J_0$ = 8.6, $J_m$ = 1.6), 7.8 (3H)                                                                                                   | 284 (M <sup>+</sup> , 100), 286 (M+2, 27), 255 (77),<br>241 (99), 163 (60.7)                                                                                   | EtOAc/n-hexane (1:4) cc              |  |
| 41                     | 55–56                  | 53.5      | C: $64.28$ H: $4.80$ N: $8.33$<br>C: $64.34$ H: $4.90$ N: $8.24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (CDCl <sub>3</sub> ) $0.7(t, 3H), 1.07(m, 2H), 1.6(m, 2H), 4.05(t, 2H), 7.0(2H), 7.2(d, 1H, J_0 = 8.5), 7.4(d, 1H, J_0 = 8.5), 7.55(2H), 7.9(s, 1H)$                                                                                                              | 336 (M <sup>+</sup> , 40.2), 307 (8.6), 293 (35.9),<br>280 (23), 121 (22.1), 95 (15.9), 83 (100)                                                               | EtOAc/n-hexane (1:3) cc              |  |
| 42                     | 94–95                  | 33        | C: $64.9411$ ; $4.90$ N: $8.24$<br>C <sub>18</sub> H <sub>18</sub> N <sub>2</sub> O·0.15HOH<br>C: $76.90$ H: $6.56$ N: $9.97$<br>C: $76.98$ H: $6.71$ N: $9.39$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (CDCl <sub>3</sub> ) 0.8 (t, 3H), 1.2 (m, 2H), 1.7 (m, 2H),<br>4.3 (t, 2H), 7.4 (d, 1H, $J_0$ =8.5), 7.5 (3H), 7.7 (2H),<br>7.9 (dd, 1H $J_0$ =8.4, $J_m$ =1.3), 8.3 (s, 1H), 10 (s, 1H)                                                                          | 278 (M <sup>+</sup> , 100), 249 (15.7), 235 (42.6),<br>221 (12.4), 157 (1.8), 77 (6.5)                                                                         | EtOAc/n-hexane (2:3) cc              |  |
| 43                     | 264–265                | 67.6      | C. $70.5611$ , $0.71$ N, $9.39$<br>C <sub>13</sub> H <sub>8</sub> FN <sub>3</sub> O <sub>2</sub> $\cdot 0.7$ HOH<br>C: $57.86$ H: $3.51$ N: $15.57$<br>C: $57.87$ H: $3.54$ N: $15.52$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(DMSO-d_6)$ 7.4 (2H), 7.7 (d, 1H), 8.1 (d, 1H),<br>-8.2 (2H), 8.4 (s, 1H)                                                                                                                                                                                        | ESI: 258 (M + 1, 100)                                                                                                                                          | Crys. EtOH (70%)                     |  |
| 44                     | 238–240                | 78        | C: $57.8711$ , $5.54$ N: $15.52$<br>C <sub>14</sub> H <sub>8</sub> FN <sub>3</sub> ·1.5HOH<br>C: $63.60$ H: $4.10$ N: $15.90$<br>C: $63.29$ H: $3.92$ N: $15.91$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (DMSO- <i>d</i> <sub>6</sub> ) 7.4–8.35 (7H), 13.4 (br.s., 1H).                                                                                                                                                                                                   | 237 (M <sup>+</sup> , 100), 218 (2), 121 (18.2),<br>96 (7.6), 75 (15.7)                                                                                        | EtOAc/n-hexane (1:1) cc              |  |
| 45                     | 237–239                | 64.2      | C <sub>14</sub> H <sub>8</sub> ClN <sub>3</sub> ·1.85HOH<br>C: 58.58H: 4.11 N: 14.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (DMSO- <i>d</i> <sub>6</sub> ) 7.55–8.32 (7H), 13.5 (br.s., 1H).                                                                                                                                                                                                  | 253 (M <sup>+</sup> , 100), 255 (27.8), 217 (18.8),<br>149 (2.8), 137 (14.1), 115 (10.5),<br>100 (10, 0), 20 (15, 0), 75 (10, 4)                               | Crys. EtOAc/n-hexane (50%)           |  |
| 46                     | 125–126                | 56.9      | C: 58.52H: 4.12 N: 14.4<br>C <sub>14</sub> H <sub>8</sub> ClN <sub>3</sub> ·0.4HOH<br>C: 64.45H: 3.40 N: 16.10<br>C: 64.73H: 3.45 N: 16.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (DMSO- <i>d</i> <sub>6</sub> ) 7.5–8.3 (7H), 13.3 (s, 1H).                                                                                                                                                                                                        | 109 (16.6), 89 (15.9), 75 (19.4)<br>253 (M <sup>+</sup> , 100), 255 (30.2), 218 (26.5),<br>137 (12.4), 116 (5.9), 89 (10.7), 75 (16.95)                        | EtOAc/n-hexane (1:3) cc              |  |
| 47                     | 218-219lit.12 221      | 76.3      | C. 04.75H: 5.45 N: 10.15<br>$C_{15}H_{11}N_3O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (DMSO-d <sub>6</sub> ) 3.85 (s, 3H), 7.1–8.2 (7H), 13.3 (br.s., 1H).                                                                                                                                                                                              | 249 (M <sup>+</sup> ,100), 234 (33.9), 206 (44.8),                                                                                                             | Crys. isopropanol. (70%)             |  |
| 48                     | 248–250                | 64.8      | C <sub>14</sub> H <sub>7</sub> Cl <sub>2</sub> N <sub>3</sub><br>C: 58.33H: 2.43 N: 14.58<br>C: 58.39H: 2.70 N: 14.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (DMSO-d <sub>6</sub> ) 7.55–8.3 (6H), 13.3 (br.s., 1H).                                                                                                                                                                                                           | 133 (5.3), 90 (8.9)<br>287 (M <sup>+</sup> , 80), 289 (51.3), 291 (8.2),<br>252 (10.9), 217 (17.8), 171 (9.3), 144 (3.7),<br>126 (4.5), 115 (10.5), 100 (10.6) | Crys. EtOH                           |  |
| <b>49</b> <sup>a</sup> | Lit. <sup>13</sup> 317 | 80.2      | C: 58.39H: 2.70 N: 14.42<br>C <sub>14</sub> H <sub>9</sub> N <sub>3</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (DMSO- <i>d</i> <sub>6</sub> ) 6.9 (2H), 7.5 (1H), 7.65 (1H), 8.02 (3H).                                                                                                                                                                                          | 126 (4.5), 115 (10.5), 100 (10.6)<br>235 (M <sup>+</sup> , 9.5), 207 (7.5), 179 (4.2), 119 (36.7),<br>103 (9.5), 91 (33.5), 76 (34.2), 41 (100)                | Crys. EtOH (70%)                     |  |
| 50                     | 140                    | 64.2      | C <sub>16</sub> H <sub>12</sub> FN <sub>3</sub> ·0.5HOH<br>C: 70.06H: 4.78 N: 15.30<br>C: 70.05H: 4.72 N: 15.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{l} (\text{DMSO-}d_{6}) \ 1.3 \ (t, \ 3\text{H}), \ 4.3 \ (q, \ 2\text{H}), \ 7.4 \ (2\text{H}), \\ 7.7 \ (\text{dd}, \ 1\text{H}, \ J_{0} = 8.5, \ J_{m} = 1.57), \\ 7.8 - 7.9 \ (3\text{H}), \ 8.2 \ (d, \ 1\text{H}, \ J_{m} = 1.3) \end{array}$ | 105 (9.5), 91 (35.5), 76 (34.2), 41 (100)<br>265(M <sup>+</sup> , 100), 250 (53), 237 (55.7), 170 (16.7),<br>143 (12.9), 121 (84), 95 (22.5), 75 (30.3)        | Crys. EtOH                           |  |

(continued) 2591

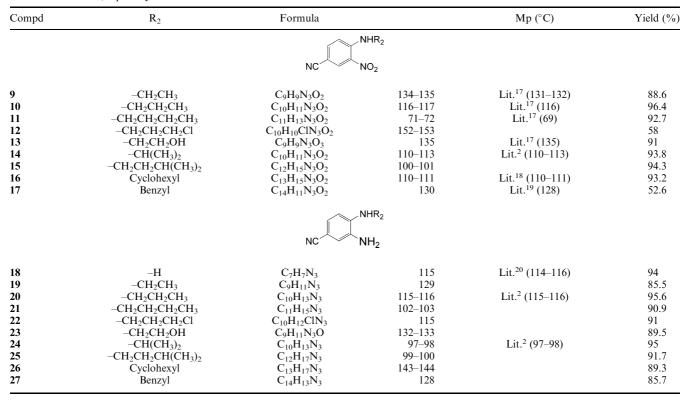

Table 2 (continued)

| Comp. | Mp (°C) | Mp (°C) Yield (%) Formulas<br>Calculated<br>Found |                                                                                                                                | <sup>1</sup> H NMR                                                                                                                                                                                                                                                                               | Mass (62 or 70 eV, EI)                                                                                                                   | Isolation               |  |
|-------|---------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|
| 51    | 130-1   | 51                                                | C <sub>17</sub> H <sub>14</sub> N <sub>4</sub> O <sub>2</sub> ·0.25HOH<br>C: 65.60H: 4.70 N: 18.02<br>C: 65.61H: 4.71 N: 18.11 | (DMSO- <i>d</i> <sub>6</sub> ) 0.7 (t, 3H), 1.7 (m, 2H), 4.3 (t, 2H), 7.7 (d, 1H), 7.9 (2H), 8.2 (2H), 8.3 (d, 1H), 8.6 (s, 1H)                                                                                                                                                                  | 307 (M+1, 1.95), 231 (2.78), 218 (1.5), 149 (3.2),<br>115 (2.7), 102 (8.4), 76 (19.4), 41 (100)                                          | Crys. EtOH (70%)        |  |
| 52    | 178     | 68.7                                              | C: 78.16H: 5.74 N: 16.09<br>C: 77.87H: 5.72 N: 16.16                                                                           | (DMSO- $d_6$ ) 0.7 (t, 3H), 1.6 (m, 2H), 4.3 (t, 2H),<br>7.6 (3H), 7.7 (d, 1H, $J_0$ =8.3), 7.8 (2H),<br>7.9 (d, 1H, $J_0$ =8.4), 8.2 (s, 1H)                                                                                                                                                    | 261(M <sup>+</sup> , 4.9), 232 (5.9), 154 (3.9),<br>103 (7.7), 77 (18.6), 41 (100)                                                       | Crys. EtOH (60%)        |  |
| 53    | 142–144 | 77. 8                                             | C <sub>17</sub> H <sub>14</sub> FN <sub>3</sub><br>C: 73.11H: 5.05 N: 15.04<br>C: 73.08H: 5.11 N: 14.88                        | (DMSO- $d_6$ ) 0.72 (t, 3H), 1.66 (m, 2H), 4.32 (t, 2H),<br>7.44 (2H), 7.7 (d, 1H, $J_0=9$ ), 7.84–7.88 (m, 2H),<br>7.90 (dd, 1H, $J_0=8.5 J_m=1.2$ , H-6), 8.23 (s, 1H, H-4)                                                                                                                    | 279 (M <sup>+</sup> , 56.9), 264 (13.7), 250 (73.5),<br>237 (24.8), 154 (19.7), 121 (37.7), 102 (33),<br>75 (40.6), 41 (100)             | Crys. EtOH (60%)        |  |
| 54    | 160–162 | 81                                                | C: 73.11H: 5.05 N: 15.04<br>C: 73.13H: 5.01 N: 14.98                                                                           | (DMSO- $d_6$ ) 0.73 (t, 3H), 1.68 (m, 2H), 4.31 (t, 2H),<br>7.43 (2H), 7.61 (d, 1H, $J_0$ =8.3), 7.82–7.88 (m, 3H),<br>8.36 (s, 1H, H-7)                                                                                                                                                         | 279(M <sup>+</sup> , 17.1), 264 (5), 250 (34.4),<br>237 (7.2), 154 (7), 121 (8.6), 102 (5.4),<br>75 (12.7), 41 (100)                     | Crys. EtOH (60%)        |  |
| 55    | 152–153 | 60.9                                              | C <sub>17</sub> H <sub>14</sub> FN <sub>3</sub><br>C: 73.11H: 5.05 N: 15.04<br>C: 73.25H: 5.11 N: 15.04                        | (DMSO- $d_6$ ) 0.7 (t, 3H), 1.6 (m, 2H), 4.3 (t, 2H),<br>7.4 (2H), 7.6 (2H), 7.7 (d, 1H, $J_0$ =8.4),<br>7.9 (dd, 1H, $J_0$ =8.4, $J_m$ =1.6), 8.2 (s, 1H)                                                                                                                                       | 279 (M <sup>+</sup> , 5.2), 264 (1.4), 250 (7.5),<br>237 (1.5), 154 (2), 121 (8.3), 101 (3.2),<br>95 (7.5), 75 (14), 41 (100)            | Crys. EtOH (60%)        |  |
| 56    | 133–134 | 53.2                                              | C <sub>17</sub> H <sub>14</sub> FN <sub>3</sub><br>C: 73.11H: 5.05 N: 15.04<br>C: 73.20H: 5.13 N: 15.02                        | (DMSO- $d_0$ ) 0.7 (t, 3H), 1.6 (m, 2H), 4.3 (t, 2H), 7.5 (2H), 7.8 (3H), 8.0 (d, 1H, $J_0$ = 8.4), 8.3 (s, 1H)                                                                                                                                                                                  | ESI: 280 (M + 1, 100)                                                                                                                    | EtOAc/n-hexane (1:3) cc |  |
| 57    | 158–160 | 57.5                                              | C <sub>18</sub> H <sub>17</sub> N <sub>3</sub><br>C: 78.52H: 6.22 N: 15.27<br>C: 77.95H: 6.21 N: 15.17                         | (DMSO- $d_6$ ) 0.7 (t, 3H), 1.1 (m, 2H), 1.6 (m, 2H),<br>4.3 (t, 2H), 7.5 (3H), 7.6 (d, 1H, $J_0$ =8.4), 7.7 (2H),<br>7.9 (d, 1H, $J_0$ =8.4), 8.2 (s, 1H)                                                                                                                                       | ESI: 276 (M+1, 100)                                                                                                                      | EtOAc/n-hexane (1:3) cc |  |
| 58    | 103–104 | 64.5                                              | C <sub>18</sub> H <sub>16</sub> FN <sub>3</sub> ·0.35HOH<br>C: 72.15H: 5.61 N: 14.02<br>C: 72.03H: 5.47 N: 13.96               | (DMSO- $d_6$ ) 0.7 (t, 3H), 1.1 (m, 2H), 1.6 (m, 2H),<br>4.3 (t, 2H), 7.4 (2H), 7.7 (d, 1H, $J_0$ = 8.4), 7.8–7.9 (3H),<br>8.2 (s, 1H)                                                                                                                                                           | 294 (M + 1, 6), 264(2), 250 (13), 237 (3.6),<br>154 (1.6), 121 (9), 95 (3.2), 41 (100)                                                   | Crys. EtOH (60%)        |  |
| 59    | 115–116 | 58                                                | C <sub>17</sub> H <sub>13</sub> F <sub>2</sub> N <sub>3</sub><br>C: 68.68H: 4.40 N: 14.14<br>C: 68.48H: 4.34 N: 14.05          | (DMSO- $d_6$ ) 0.7 (t, 3H), 1.6 (m, 2H), 4.2 (t, 2H),<br>7.55 (2H), 7.65 (1H), 7.72 (dd, 1H, $J_0$ =8.4, $J_m$ =1.6),<br>7.95 (d, 1H, $J_0$ =8.4), 8.2 (s, 1H)                                                                                                                                   | ESI: 298 (M+1, 100)                                                                                                                      | EtOAc/n-hexane (1:3) cc |  |
| 60    | 110     | 59                                                | C <sub>17</sub> H <sub>13</sub> F <sub>2</sub> N <sub>3</sub><br>C: 68.68H: 4.40 N: 14.14<br>C: 68.95H: 4.66 N: 14.07          | (DMSO- <i>d</i> <sub>6</sub> ) 0.7 (t, 3H), 1.6 (m, 2H), 4.3 (t, 2H), 7.6–7.7 (3H), 7.9 (2H), 8.2 (s, 1H)                                                                                                                                                                                        | ESI: 298 (M+1, 100)                                                                                                                      | EtOAc/n-hexane (1:3) cc |  |
| 61    | 111-112 | 53.7                                              | C <sub>17</sub> H <sub>13</sub> ClFN <sub>3</sub> ·0.1HOH<br>C: 64.70H: 4.21 N: 13.30<br>C: 64.57H: 4.20 N: 13.22              | (DMSO- $d_6$ ) 2.1 (m, 2H), 3.5 (t, 2H), 4.4 (t, 2H), 7.4 (2H), 7.7 (d, 1H, $J_0$ =8.4), 7.8–7.9 (3H), 8.2 (s, 1H)                                                                                                                                                                               | 313 (M <sup>+</sup> , 26.6), 315 (11.5), 279 (9.9),<br>264 (26.2), 250 (83.9), 154 (18.9), 121 (36.7),<br>95 (10.3), 75 (12.1), 41 (100) | Crys. EtOH (50%)        |  |
| 62    | 155–157 | 67                                                | C <sub>16</sub> H <sub>12</sub> FN <sub>3</sub> O·0.75HOH<br>C: 65.18H: 4.61 N: 14.25<br>C: 65.46H: 4.57 N: 14.14              | (DMSO- $d_6$ ) 3.75 (t, 2H), 4.3 (t, 2H), 7.4 (2H), 7.65 (dd, 1H, $J_0$ = 8.4, $J_m$ = 1.48), 7.8 (d, 1H, $J_0$ = 9), 7.95 (2H), 8.2 (d, 1H, $J_m$ = 1.23)                                                                                                                                       | 281 (M <sup>+</sup> , 12.4), 250 (100), 236 (6.2),<br>154 (14.7), 121 (6.6), 94 (2.5), 75 (2.9)                                          | Crys. EtOH (60%)        |  |
| 63    | 127–128 | 77                                                | C <sub>17</sub> H <sub>14</sub> FN <sub>3</sub> O·0.1HOH<br>C: 68.70H: 4.82 N: 14.14<br>C: 68.69H: 4.91 N: 14.03               | $(CDCl_3)$ 3.3 (s, 3H), 3.8 (t, 2H, $J=5.25$ ), 4.4<br>(t, 2H, $J=5.27$ ), 7.25 (2H), 7.59 (2H),<br>7.8 (2H), 8.15 (s, 1H)                                                                                                                                                                       | 295 (M <sup>+</sup> , 74), 263 (15), 249 (100), 236 (13),<br>222 (21), 154 (21), 121 (6), 94 (4)                                         | Crys. EtOH (85%)        |  |
| 64    | 190–191 | 79.4                                              | C <sub>17</sub> H <sub>14</sub> FN <sub>3</sub> ·0.5HOH<br>C: 70.80H: 5.24 N: 14.57<br>C: 70.76H: 5.01 N: 14.65                | $\begin{array}{c} (\text{DMSO-}d_6) \ 1.6 \ (d, 6H), \ 4.65 \ (m, 1H), \ 7.4 \ (2H), \ 7.6 \\ (dd, 1H, \ J_0 = 8.4, \ J_m = 1.46), \ 7.8 \ (2H), \\ 8.0 \ (d, 1H, \ J_0 = 8.4), \ 8.2(s, 1H) \end{array}$                                                                                        | 280 (M + 1, 9.7), 264 (3.14), 237 (21.5),<br>121 (13.36), 95 (4.4), 75 (4.68), 43 (100)                                                  | Crys. EtOH              |  |
| 65    | 132     | 72.5                                              | C <sub>19</sub> H <sub>18</sub> FN <sub>3</sub><br>C: 74.25H: 5.90 N: 13.67<br>C: 74.34H: 6.01 N: 13.67                        | (DMSO- $d_6$ ) 0.75 (d, 6H), 1.4 (m, 1H), 1.5 (m, 2H),<br>4.3 (t, 2H), 7.4 (2H), 7.7 (dd, 1H, $J_0$ =8.5, $J_m$ =1.5),<br>7.85 (3H), 8.2 (s, 1H)                                                                                                                                                 | 307 (M <sup>+</sup> , 100), 264 (15.7), 250 (85.6),<br>237 (18.6), 154 (12.7), 121 (12.2),<br>102 (17.8), 95 (8.2)                       | Crys. EtOH              |  |
| 66    | 211–212 | 72                                                | C <sub>20</sub> H <sub>18</sub> FN <sub>3</sub> ·0.4HOH<br>C: 73.56H: 5.80 N: 12.86<br>C: 73.72H: 5.69 N: 12.89                | $\begin{array}{l} \text{(DMSO-}d_{6}) \ 1.2-1.4 \ (m, 3H), \ 1.6 \ (1H), \ 1.8-1.9 \ (4H), \\ \text{2.2 } (m, 2H), \ 4.2 \ (m, 1H), \ 7.4 \ (2H), \ 7.6 \ (dd, 1H, \ J_{0} = 8.6, \\ J_{m} = 1.65), \ 7.73 \ (2H), \ 8.1 \ (d, 1H, \ J_{0} = 8.6), \ 8.2 \\ (d, 1H, \ J_{m} = 1.47) \end{array}$ | 319 (M <sup>+</sup> , 14), 237 (37.8), 121 (16.1),<br>115 (14.6), 83 (35.5), 55 (100)                                                    | Crys. EtOH              |  |
| 67    | 153     | 80.6                                              | C <sub>21</sub> H <sub>14</sub> FN <sub>3</sub><br>C: 77.05H: 4.31 N: 12.84<br>C: 76.88H: 4.51 N: 12.79                        | (DMSO- <i>d</i> <sub>6</sub> ) 5.6 (s, 2H), 6.9–7.7 (11H), 8.27 (s, 1H)                                                                                                                                                                                                                          | 327 (M <sup>+</sup> , 17.6), 237 (2.9), 121 (6.5),<br>91 (100), 75 (7.2)                                                                 | Crys. EtOH (50%)        |  |

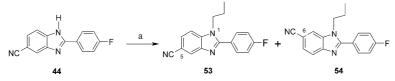
cc, column chromatography; ESI, Elektrospray ionization. <sup>a</sup>Compound **49**<sup>13</sup> was prepared according to the literature method.



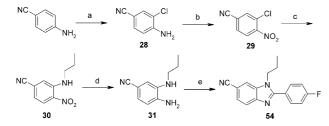
Scheme 1. Reagents: (a)  $Na_2S_2O_5$  adduct of 4-fluorobenzaldehyde; (b) *n*-propyl or allyl bromide/NaH/DMF; (c)  $Na_2S_2O_5$  adduct of benzaldehyde; (d) for **36**; SOCl<sub>2</sub>/EtOH for **37**; SOCl<sub>2</sub>/isopropylamine; (e) SOCl<sub>2</sub>/NH<sub>3</sub>; (f) butylamine/DMF; (g) H<sub>2</sub>, Pd/C; (h) DIBAL.




Scheme 2. Reagents: (a) corresponding amines; (b)  $H_2$ , Pd/C; (c) corresponding  $Na_2S_2O_5$  adduct of the benzaldehydes/DMF.


other isomer **54** and the approach is outlined in Scheme 4. Compound  $28^7$  was prepared by chlorination of 4-aminobenzonitrile with *N*-chlorosuccinimide. The amino group of compound **28** was converted to nitro **29**,<sup>8</sup> by diazotation followed by nitritation. Compound **54** was prepared in similar manner with **53** starting from **29** (Scheme 4).

### **Biological Results**


All described benzimidazoles, **32–67**, were tested in vitro for antibacterial activity against Gram positive *Bacillus subtilis* (ATCC 6633) and *Staphylococcus aureus* (ATCC 25923), Gram negative *Escherichia coli* (ATCC 25922) bacteria and antifungal activity against *Candida albicans*  (ATTC 10231), Candida glabrata (Clinical isolate), Candida krusei (ATCC 6258), Candida parapsilosis (ATCC 22019) by agar diffusion method, which was already reported by us.<sup>2</sup> All the synthesised compounds were solved in 1,2-propylene glycol ( $1500 \,\mu g/mL$ ), 0.02 mL (one drop) of these solutions was dropped to paper disk (6mm in diameter) and placed on an agar plate containing bacteria or fungi cells. Propylene glycol as a control has no inhibition zone. The diameter of the growth inhibition zone around the paper disc was measured after incubation. The results obtained indicate that most of these compounds were only poorly active or completely in active against bacteria. However, compounds 40, 42, 52, 53, 57, 58, 61 and 63 showed good activity against *Candida* species with > 20 mm growth inhibition zone, which was better than fluconazole, in the control experiments (Table 1). In addition, the tube dilution method<sup>9</sup> was also employed for the active compounds in agar diffusion method. Related compounds were dissolved in propylene glycol (15.6%) at 100 µg/mL concentration as starting dose. The most active compound 58 exhibits an MIC value of  $3.12 \,\mu g/$ mL against C. albicans, C krusei and C. parapsilosis. The data (Table 1) show that, introduction of electronwithdrawing groups such as, aldehyde, chlorine and cyano at C-5 gives a good profile of antifungal activity. In contrast, no significant activity was found for trifluoromethyl, carboxyl, ester and amide. Consequently, there is not a clear correlation between electron attracting effects of substituents and antifungal activity. Since







Scheme 3. Reagents: (a) n-propyl bromide/NaH/DMF.



Scheme 4. Reagents: (a) *N*-chlorosuccinimide; (b)  $NaNO_2/HCl-Cu_2O/NaNO_2$ ; (c) propylamine; (d) H<sub>2</sub>, Pd/C; (e)  $Na_2S_2O_5$  adduct of the *p*-fluorobenzaldehydes/DMF.

the cyano substituted compounds exhibited the greatest antifungal activity, a number of analogues, **44–67** were made with this substituent at C-5 or C-6. Compounds with *n*-butyl, *n*-propyl and 3-chloropropyl at the N<sup>1</sup> position exhibited the best results. Little or no activity was found for the non N<sup>1</sup>-substituted derivatives **44– 49**. Substitution on the 2-phenyl group of this system plays a role in the antifungal activity. Many of the substitutions on the phenyl ring result in lowering of the antifungal activity. However, fluoro substituents are tolerated (cf., **53** to **52**), although, they do not significantly enhance the activity. Multiple fluoro substitutions result in lowering of the activity (cf., **59** and **60** to **53**). There are striking differences in antifungal activity with the location of the cyano group at position C-5 or C-6. The 1,5-isomer, compound **53**, has potent antifungal activity against *C. albicans*, whereas the 1,6-isomeric analogue **54** shows little antifungal activity. In contrast, compound **54** has better activity against *C. glabrata* than **53**.

#### Conclusion

This work demonstrates that compounds **52–54**, **57**, **58** and **61** having butyl or propyl at N-1, phenyl or *p*-fluorophenyl rings at C-2 and cyano at C-5 or C-6 show similiar activity with fluconazole against *Candida* species in vitro. In vivo studies of compound **58** and its mechanism of action are in progress.

#### Experimental

Melting points were measured with a capillary melting point apparatus (Buchi SMP and Buchi 9100) and are uncorrected. <sup>1</sup>H NMR were recorded on a Varian GX400 spectrometer (Atlanta) in DMSO- $d_6$ , chemical shifts ( $\delta$ ) are in ppm relative to TMS, and coupling constants (*J*) are reported in Hertz. Mass spectra were taken on Micromass UK. Platform II LC-Ms spectrometers by using EI (62 or 70 eV) were performed by TUBITAK (Instrumental Analyse Lab., Ankara, Turkey) and Georgia Institute of Technology (Atlanta, GA, USA) by using ESI. Microanalyses were performed by Atlantic Microlab Inc, (Norcross, Atlanta, GA, USA). Column chromatography was accomplished on silica gel 60 (40–63 µm particle size) (Merck). Compound 5,<sup>10</sup> 6,<sup>2</sup> 7,<sup>10</sup> 8<sup>2</sup> were prepared according to the literature methods.

*N*-Propyl-2-amino-4-methylaniline (1). Mixture of propylamine 4-chloro-3-nitrotoluene  $(5 \,\mathrm{mL})$ and (30 mL) were heated in sealed tube at 100 °C, for 10 h. Excess of propylamine was removed and 4-methyl-2-nitro-N-propylaniline was obtained as red-coloured oily residue. The spectral data were consistent with literature.11 The oily residue was dissolved in EtOH (40 mL), and the solution hydrogenated using 10% Pd/ C as a catalyst at room temperature at 35 psi. The reaction was stopped after cessation of H<sub>2</sub> uptake. The catalyst was filtered through a bed of Celite, washed with EtOH, and concentrated to provide 1 as a dark browncoloured oil, which was used in subsequent steps without purification.

#### Synthesis of (2, 34, 35, 40, 41, 43–48, 50–62, 64–67)

Appropriate benzaldehydes (15 mmol) were dissolved in 50 mL EtOH and sodium metabisulfite (1.6 g) in 10 mL water was added in portions. The reaction mixture was stirred vigorously and more EtOH was added. The mixture was kept in a refrigerator for a several hours. The precipitate was filtered and dried (yield over 90%). The mixture of these salts (2 mmol) and appropriate 1,2-phenylenediamines in DMF (5 mL) were heated at 130 °C for 4 h. The reaction mixture was cooled, poured into the water, and the solid was filtered. Purification procedure and some spectral findings of the synthesized compounds are given in Table 1. Mp of **2** 255–256 °C. Lit.<sup>14</sup> 258 °C.

**3-Amino-4-propylaminobenzoic acid (3).** 3-Nitro-4-propylaminobenzoic acid<sup>15</sup> (8.91 mmol) was dissolved in EtOH (40 mL), and the solution hydrogenated at room temperature at 35 psi catalytic amount of 10% Pd/C. The reaction was stopped after cessation of H<sub>2</sub> uptake. The reaction mixture was filtered through a bed of Celite, washed with EtOH, and the product concentrated to provide dark violet-coloured powder, which was used in subsequent steps without purification, mp 140 °C.

Methyl 3-amino-4-butylaminobenzoic acid (4). Mixture of methyl 4-chloro-3-nitrobenzoic acid<sup>16</sup> (2 g, 9 mmol)

and butylamine (3 g, 41 mmol) in DMF (5 mL) were heated on the water bath for 3 h. The mixture was allowed to cool, the resultant yellow precipitate was filtered and washed with water. Crystallisation of the crude product from EtOH–H<sub>2</sub>O gave methyl 4-butylamino-3-nitrobenzoic acid,<sup>21</sup> mp 50–51 °C, yield 55%,  $C_{12}H_{16}N_2O_4$ . Reduction of this ester (1.5 g, 6 mmol) in similar manner with **3** gave **4** as violet colour, mp

95–97 °C, yield 95%, C<sub>12</sub>H<sub>18</sub>N<sub>2</sub>O<sub>2</sub>.

Synthesis of (9–17). To a solution of 4-chloro-3-nitrobenzonitrile (2 g, 10.98 mmol) in DMF (3 mL), an appropriate amine (41 mmol) was added on ice bath. After being warmed to rt, the reaction mixture was heated on a water bath until the starting material was consumed (determined by TLC, 1–3 h). The mixture was cooled to ice bath (0–4 °C) and water was added. The resultant yellow precipitate was filtered, washed with water, crystallised from EtOH. For the synthesis of 12, 3-chloropropylamine HCl (1.42 g, 10.98 mmol) and anhydrous  $K_2CO_3$  (1.5 g, 10.98 mmol) was used, crude product was crystallised from CHCl<sub>3</sub>–EtOH (20:80).

The melting points and yields for these compounds are listed in Table 3.

Synthesis of (18–27). Appropriate nitro derivatives (8 mmol) in EtOH (75 mL) were reduced by hydrogenation using 40 psi of H<sub>2</sub> and 10% Pd/C (200 mg) until cessation of H<sub>2</sub> uptake. The catalyst was filtered off on a bed of Celite, washed with EtOH, and the filtrate was concentrated. The crude diamines were used directly without purification. The melting points and yields for these compounds are listed in Table 3.

**4-Nitro-3-propylaminobenzonitrile (30).** To a solution of compound **29**<sup>8</sup> (0.3 g, 1.65 mmol) in DMF (1 mL), propylamine (7 mmol) was added on ice bath. After being warmed to rt, the reaction mixture was heated on a water bath for 2 h until the starting material was consumed. The mixture was cooled to ice bath (0–4 °C) and water was added. The resultant yellow precipitate was filtered, washed with water, crystallised from EtOH, mp 105 °C, yield 85%, IR v (CN) 2235 cm<sup>-1</sup>.

**4-Amino-3-propylaminobenzonitrile (31).** Compound **30** (0.3 g, 8 mmol) in EtOH (75 mL) was reduced by hydrogenation using 40 psi of H<sub>2</sub> and 10% Pd/C (40 mg) until cessation of H<sub>2</sub> uptake. The catalyst was filtered off on a bed of Celite, washed with EtOH, and the filtrate was concentrated in vacuo. The crude amine was crystallised from EtOH–H<sub>2</sub>O as white-coloured compound, mp, 113 °C, yield 90%, IR v 2216 (CN) cm<sup>-1</sup>.

Synthesis of 32 and 33. A mixture of 2 (0.5 g, 2.36 mmol), *n*-propylbromide or allyl bromide (2.45 mmol) and NaH (90%) (0.13 g) in DMF (5 mL) was stirred at 60 °C for 5 h. The reaction mixture was poured into water and extracted with EtOAc. The extract was washed with water, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated in vacuo.

Ethyl 1-propyl-2-phenyl-1H-benzimidazol-5-carboxylate (36). Compound 35 (0.2 g, 0.71 mmol) in SOCl<sub>2</sub> (15 mL) was heated at reflux for 2 h at 80 °C. The excess of SOCl<sub>2</sub> was evaporated completely, and the residue was dissolved in EtOH (10 mL), heated for 1 h, and EtOH was evaporated.

**N-Isopropyl 1-propyl-2-phenyl-1H-benzimidazol-5-carboxamide (37).** Compound **35** (0.2 g, 0.71 mmol) in SOCl<sub>2</sub> (15 mL) was heated under reflux for 2 h at 80 °C. Excess of SOCl<sub>2</sub> was evaporated, and the residue was dissolved in  $CH_2Cl_2$  (10 mL). Isopropylamine (0.8 mL) was added, and the mixture was heated at reflux for 1 h, then EtOH was evaporated.

**1-Butyl-2-(4-fluorophenyl)-1H-benzimidazol-5-carboxylic acid (38).** Compound 4 and the  $Na_2S_2O_5$  salt of *p*-fluorobenzaldehyde were allowed to react in a similar manner as 2. After 4 h, the reaction mixture was made alkaline with 5% NaOH (10 mL) solution and heated on a water bath for 1 h, then the reaction mixture was acidified with acetic acid, and the product precipitated.

**1-Butyl-2-(4-fluorophenyl)-1H-benzimidazol-5-carboxamide** (39). 39 was prepared in similar manner as 37, from 38 (0.2 g, 0.64 mmol) and 5 mL of  $NH_4OH$  (25%) as a colourless powder.

**1-Butyl-2-(phenyl)-1H-benzimidazol-5-carboxaldehyde** (42). To solution of 57 (0.3 g, 1.02 mmol) in dry  $CH_2Cl_2$  (20 mL), 3 mL of DIBAL (1.0 M solution in  $CH_2Cl_2$ ) was added, and the mixture was heated at reflux for 3 h under nitrogen atmosphere. Cool dilute  $H_2SO_4$  acid (15 mL) was added and stirred overnight.  $CH_2Cl_2$  was removed, and the residue was neutralised with dilute  $Na_2CO_3$  solution and extracted with EtOAc.

**5-Cyano-2-(4-fluorophenyl)-1-(2-methoxyethyl)-1H-benzimidazole (63).** A mixture of **62** (0.28 g, 1 mmol), iodomethane (0.213 g, 1.5 mmol) and NaH (90%) (0.1 g) in DMF (4 mL) was stirred at rt, for 2 h. The reaction mixture was poured into water, the precipitate was filtered and washed with water.

#### Acknowledgements

This work was supported in part by NIH Grant NIAID AI 46365 and the Georgia Research Alliance provided support for acquisition of the NMR spectrometers used in this work.

### **References and Notes**

1. Göker, H.; Kilcigil, G. A.; Tuncbilek, M.; Kus, C.; Ertan, R.; Kendi, E.; Ozbey, S.; Fort, M.; Garcia, C.; Farre, A. J. *Heterocycles* **1999**, *51*, 2561.

2. Göker, H.; Tunçbilek, M.; Suzen, S.; Kus, C.; Altanlar, N. Arch. Pharm. Pharm. Med. Chem. 2001, 334, 148.

3. Poeta, M. D.; Schell, W. A.; Dykstra, C. C.; Jones, S.; Tidwell, R. R.; Czarny, A.; Bajic, M.; Bajic, M.; Kumar, A.; Boykin, D.; Perfect, J. R. *Antimicrob. Agents Chemother.* **1998**, 42, 2495.

4. Ridley, H. F.; Spickett, R. G. W.; Timmis, G. M. J. Heterocyclic Chem. 1965, 2, 453.

5. Göker, H.; Ölgen, S.; Ertan, R.; Akgün, H.; Özbey, S.; Kendi, E.; Topçu, G. J. Heterocyclic Chem. **1995**, *32*, 1767.

6. Grimmett, M. R. In *Imidazole and Benzimidazole Synthesis*; Meth-Cohn, O., Ed.; Academic: London, 1997; p 202.

7. Nickson, E. T.; Roche-Dolson, C. A. Synthesis 1985, 669.

- 8. Tsuji, K.; Nakamura, K.; Konishi, N.; Okumura, H.; Matsuo, M. Chem. Pharm. Bull. **1992**, *40*, 2399.
- 9. Shadomy, S.; Pfaller, M. A. Laboratory Studies with Antifungal Agents: Susceptibility Tests and Quantitation in Body Fluids. In *Manual of Clinical Microbiology*, 5th ed.; Balows, A., Hausler, W. J., Hermann, K. L., Isenberg, H. D., Shadomy, H. J., Eds.; ASM, Washington, DC, 1991; Chapter 117, p 1173.

10. Ĥori, M.; Suzuki, K.; Yamamoto, T.; Nakajima, F.; Ozaki, A.; Ohtaka, H. *Chem. Pharm. Bull.* **1993**, *41*, 1832.

11. Gardiner, J. M.; Loyns, C. R.; Schwalbe, C. H.; Barrett, G. C.; Lowe, P. R. *Tetrahedron* **1995**, *51*, 4101.

12. Sun, Q.; Gatto, B.; Yu, C.; Liu, A.; Liu, L. F.; LaVoie,

E. J. J. Med. Chem. 1995, 38, 3638.

13. Tidwell, R. R.; Geratz, J. D.; Dann, O.; Volz, G.; Zeh, D.; Loewe, H. J. Med. Chem. 1978, 21, 613.

14. Latif, N.; Mishriky, N.; Assad, F. M.; Meguid, S. A. Indian J. Chem. 1982, 21, 872.

- 15. Edwards, T. R. G.; Gani, D. Tetrahedron 1990, 46, 935.
- 16. Miller, W. J. Amer. Chem. Soc. 1954, 76, 448.
- 17. Blanksma, W. Recl. Trav. Chim. Pays-Bas 1941, 60, 811.
- 18. Inerney, M.; Proc, R. Ir. Acad. Sect. B 1970, 69, 21.
- 19. Ciba-Geigy; DD Patent 137939, 1979; GE; DE Patent 2807008, 1978; Chem. Abstr. 1979, 90, 7597.
- 20. Fairley, T. A.; Tidwell, R. R.; Donkor, I.; Naiman, N. A.; Ohemeng, K. A.; Lombardy, R. J.; Bentley, J. A.; Cory, M. *J. Med. Chem.* **1993**, *36*, 1746.
- 21. Pan, P. C.; Sun, C. M. Bioorg. Med. Chem. Lett. 1999, 9, 1537.