Acetolysis of 2,4-O-benzylidene-D-xylo-hex-5-enitol derivatives *

János Kuszmann^a, Benjámin Podányi^b and László Párkányi^c

^a Institute for Drug Research, P.O.B. 82, 1325 Budapest (Hungary)

^b Chinoin Pharmaceutical Works, P.O.B. 110, 1325 Budapest (Hungary)

^c Central Research Institute for Chemistry, Hungarian Academy of Sciences, P.O.B. 17, 1525 Budapest, (Hungary)

(Received May 30th, 1992; accepted July 14th, 1992)

ABSTRACT

Acetolysis of (Z)-1-O-acetyl-2,4-O-benzylidene-5,6-dideoxy-6-C-(2,4-dichlorophenyl)-3-O-methanesulfonyl-D-xylo-hex-5-enitol afforded (E)-1,2,4-tri-O-acetyl-5,6-dideoxy-6-C-(2,4-dichlorophenyl)-3-O-methanesulfonyl-D-xylo- and -L-arabino-hex-5-enitol, 2-C-[(R)-acetoxy(2,4-dichlorophenyl)methyl]-3,6-di-O-acetyl-2-deoxy-4-O-methanesulfonyl- β -L-galacto-hexopyranosylbenzene and 6-O-acetyl-2-deoxy-2-C-[(R)-(2,4-dichlorophenyl)hydroxymethyl]-4-O-methanesulfonyl- β -L-galacto-hexopyranosylbenzene 3,7-(cyclic sulfate). The scope of this rearrangement was studied further on compounds with a 4-methoxybenzylidene instead of a benzylidene group, and a phenyl instead of a 2,4-dichlorophenyl group. In the latter reaction, in addition to 2-C-[(R)-acetoxy(phenyl)methyl]-3,4,5-tri-O-acetyl-2-deoxy- β -L-galacto-hexopyranosylbenzene, 1(S)-2-C-[(R)-acetoxy(phenyl)methyl]-1,3,4,5,6-penta-O-acetyl-2-deoxy-1-phenyl-L-gulitol was formed, the structure of which was established by X-ray analysis.

INTRODUCTION

We have described¹ the rearrangement of 2,4-O-benzylidene-D-xylo-hex-5-enitols into C-glycosylbenzene derivatives on acetolysis and suggested a mechanism for this new reaction. Further derivatives have now been synthesised and submitted to acetolysis in order to prove the validity of this mechanism and to investigate the scope and limitations of this rearrangement.

RESULTS AND DISCUSSION

In the mechanism suggested¹ for the rearrangement of 2,4-O-benzylidene-Dxylo-hex-5-enitol derivatives, an allylic ion was the key intermediate. Since an

Correspondence to: Dr. J. Kuszmann, Institute for Drug Research, P.O.B. 82, 1325 Budapest, Hungary. * Rearrangement of Unsaturated 2,4-O-Benzylidenehexitol Derivatives into C-Glycosylbenzene Derivatives, Part II. For Part I, see ref. 1.

Ar = 2,4-dichlorophenyl

electron-withdrawing group in the α -position in this allylic system should strongly influence its reactivity *. Thus, acetolysis of the 1-O-acetyl-4-O-mesyl derivative² 1, using sulfuric acid in acetic anhydride^{1,3}, gave (TLC) a complex mixture of products, from which the acyclic D-xylo- (3) and L-arabino (4) isomers and the branched-chain C-L-(galacto-hexopyranosyl)benzene derivative (7) and its 3,7-cyclic sulfate (8) were isolated in yields of 8.4, 4.4, 5.8, and 14.0%, respectively. Compounds 3 and 4 can result from the attach of acetic anhydride on C-4 of the allylic ion 2, whereas 7 and 8 can be formed via the rearranged cyclic carbonium ion 5. The 14.0% yield of the cyclic sulfate 8 contrasts with that (2%) of the cyclic sulfate formed when there was a 4-O-methyl substituent¹. The J_{56} value of 15.9 Hz proves the E configuration of the double bond in 3 and 4. There are only small differences between the chemical shifts of the 1 H and 13 C resonances and the J values of these compounds, which suggests that they are C-4 epimers. The D-xylo and *L-arabino* configurations for 3 and 4, respectively, were assumed on the basis of their $[\alpha]_{\rm D}$ values (+29° and -30°, respectively) in comparison with data for acyclic analogues⁴. Despite the fact that the cyclic *L-gulo* derivative 6 could not be isolated, NMR spectroscopy suggested that it might be present in several fractions, which could not be resolved by column chromatography.

In further experiments, we sought to establish that C-glycosyl derivatives which contained a substituted phenyl group as the aglycon can be obtained via this rearrangement. Therefore, 2,4-O-(4-methoxybenzylidene)-D-glucitol (9) was prepared by the reaction of D-glucitol with 4-methoxybenzaldehyde dimethyl acetal in N,N-dimethylformamide in the presence of p-toluenesulfonic acid. D-Glucitol preferentially forms 2,4-O-benzylidene acetals⁵ and the NMR data of 9 as well as

^{*} In the original paper¹, only the corresponding 1,4-ditosylate was investigated, but the tosyloxy group at C-1 triggered other reactions that interfered with the rearrangement process.

those of its tetra-acetate 10 were in agreement with the proposed structure. Oxidation of 9 with sodium periodate gave the L-xylose derivative 11, which could be isolated as a mixture of its ethyl hemiacetals 12 and characterised as the 4-nitrophenylhydrazone 13.

Crude 11 was coupled in tetrahydrofuran-N,N-dimethylformamide with the ylid prepared from 2,4-dichlorophenyltriphenylphosphonium chloride and potassium *tert*-butoxide to yield, after acetylation, the corresponding Z (14) and E (15) isomers in the ratio 15:1.

Acetolysis of 14, as for 1, gave (TLC) only two compounds, namely the acyclic tetra-acetates 16 and 17. Since 17 was identical with the D-xylo isomer¹, and the NMR data indicated that the two isomers differed only in the chirality at C-4, 16 must possess the L-arabino configuration. In order to confirm these assignments of structures, 16 and 17 were each submitted to ozonolysis, followed by reduction with NaBH₄ and acetylation, to afford the expected penta-O-acetyl-L-arabinitol and -xylitol, respectively. The $[\alpha]_D$ values of 16 (-75°) and 17 (-35°) as well as that (-14°) of the deacetylated derivative 18 compared to that (+18°) of the corresponding D-xylo isomer¹ were in accord with the trend established⁴ for acyclic L-arabino and D-xylo isomers. The fact that no rearrangement products (C-glycosyl derivatives) were formed might reflect the greater acid sensitivity of the 4-methoxyenzylidene group (Ar¹) compared to the benzylidene group and its rapid cleavage from the allyl intermediate 19, yielding the two diastereomers 16 and 17 via 20. Thus, the relative stability of the intermediate benzyl cation is crucial for the rearrangement reaction.

As a further model, the 5-Z isomer of the 6-C-phenyl derivative 22 was investigated, which was obtained together with the corresponding 5-E isomer 23 (Z,E-ratio 2:1) when 2,4-O-benzylidene-L-xylose² (21) was coupled with the ylid prepared from benzyltriphenylphosphonium chloride and potassium *tert*-butoxide. On hydrogenation over Pd/C, 22 and 23 each gave the phenethyl derivative 24 without reductive cleavage of the benzylidene group. This finding contrasts with that for the corresponding 6-C-(2,4-dichlorophenyl) analogue, from which the benzylidene group was split off under identical conditions². This cleavage was probably catalysed by hydrochloric acid formed in traces from the 2,4-dichlorophenyl group during hydrogenation.

Acetolysis of 22 afforded (TLC) a complex mixture of products from which the rearranged C-glycosylphenyl derivative 28 and the branched-chain diphenyl derivative 25 could be isolated after 24 h in yields of 10 and 16.5%, respectively. The *L-galacto* configuration of 28 was evident from its ¹H NMR spectrum, which was almost identical with that¹ of the analogue having a 2,4-dichlorophenyl group at C-6. Further proof of the structure of 28 was obtained after deacetylation and treatment of the resulting tetraol with 2-methoxypropene in acetone in the presence of *p*-toluenesulfonic acid⁶, when the 3,4-*O*-isopropylidene derivative 29 was formed. The NMR data of 29 as well those of its diacetate 30 were in full agreement⁷ with the proposed structures.

The NMR spectra of the acyclic derivative 25 were in agreement with its proposed structure, but did not indicate the configurations of the newly formed chiral centres at C-1 and C-7. Therefore, 25 was deacetylated and the product (26)

Fig. 1. PLUTO plot and numbering scheme for 25.

was oxidised with sodium periodate to give an aldehyde (31) that was reduced without isolation, using borohydride, and then acetylated to give a symmetrical triacetate, which could be either 32 or 33. Since 25 can be formed only by cleavege of the intermediate 27, the configuration of C-1 and C-7 should correspond to 32. Since cleavage of the ether in 27 could proceed with retention, or with inversion, of configuration at C-5, the structure of 25 was determined by crystallography which proved the configuration of all the chiral centres (see Fig. 1 and Tables I-III).

In solution and in the solid state, the carbon skeleton of 25 adopts essentially the same "sickle" conformation in which C-2 and C-5 as well as O-2 and O-4 are synclinal, whereas H-3 and H-4 are antiperiplanar ($J_{3,4}$ 9.1 Hz). Furthermore, AcO-3 and AcO-7 are in a 1,3-parallel arrangement which is tolerated in acetylated alditols⁸. The coupling constants, calculated⁹ from the torsion angles determined in the X-ray study, are given together with the measured values in Table IV.

The fact that acetolysis of 22 gave neither the acyclic 5(E)-ene derivatives (the analogues of 16 and 17), nor the C-(L-gulo-hexopyranosyl) derivative 27, but only the product (25) of acetolysis, prompted an investigation of the course of this reaction. Thus, the products of the reaction after 0.5, 1, 2, 4, 8, 24, 48, and 78 h were analysed by GLC and the ratios are given in Table V; a representative chromatogram (4 h) is depicted in Fig. 2. The data obtained indicate that 22 is

0-1-C-1	1.455(3)	O-10-C-12	1.179(5)	C-12-C-13	1.495(6)
O-1-C-8	1.341(4)	O-11-C-14	1.197(4)	C-14-C-15	1.478(5)
O-3-C-3	1.452(3)	O-12-C-16	1.184(5)	C-16-C-17	1.462(6)
O-3-C-10	1.346(4)	O-13-C-18	1.170(5)	C-18C-19	1.489(6)
O-4-C-4	1.452(3)	C-1-C-2	1.544(4)	C-20-C-21	1.372(5)
O-4-C-12	1.345(4)	C-1-C-20	1.523(4)	C-20-C-25	1.369(5)
O-5-C-5	1.439(3)	C-2-C-3	1.551(4)	C-21-C-22	1.406(6)
O-5-C-14	1.344(4)	C-2-C-7	1.535(4)	C-22-C-23	1.349(7)
O-6C-6	1.426(4)	C-3-C-4	1.534(4)	C-23C-24	1.387(7)
O-6-C-16	1.326(4)	C-4-C-5	1.520(4)	C-24-C-25	1.397(6)
O-7-C-7	1.448(3)	C-5-C-6	1.511(4)	C-26C-27	1.377(5)
O-7-C-18	1.365(4)	C-7C-26	1.515(4)	C-26-C-31	1.359(5)
O-8-C-8	1.202(4)	C-8C-9	1.490(5)	C-27-C-28	1.409(5)
O-9-C-10	1.201(5)	C-10-C-11	1.480(6)	C-28-C-29	1.370(6)
				C-29-C-30	1.401(7)
				C-30-C-31	1.372(6)

Bond	lengths	(Å)	with	esds	for	25
------	---------	-----	------	------	-----	----

TABLE II

Bond angles (°) with esds for 25

C-1-O-1-C-8	117.6(4)	O-3C-10C-11	111.3(6)
C-3-O-3-C-10	118.9(4)	O-9-C-10-C-11	124.3(6)
C-4-O-4-C-12	116.4(4)	O-4C-12O-10	125.1(6)
C-5-O-5-C-14	117.8(4)	O-4-C-12-C-13	110.5(6)
C-6-O-6-C-16	115.8(4)	O-14-C-12-C-13	124.3(7)
C-7-O-7-C-18	116.2(4)	O-5-C-14-O-11	122.9(5)
O-1C-2	106.4(3)	O-5C-14C-15	111.5(5)
O-1-C-1-C-20	108.3(4)	O-11-C-14C-15	125.6(6)
C-2-C-1-C-20	112.5(4)	O-6-C-16-O-12	123.9(6)
C-1-C-2-C-3	113.8(4)	O-6-C-16-C-17	111.3(6)
C-1-C-2-C-7	109.2(4)	O-12-C-16-C-17	124.7(6)
C-3-C-2-C-7	112.8(4)	O-7-C-18-O-13	123.6(6)
O-3-C-3-C-2	109.2(3)	O-7C-18C-19	110.0(5)
O-3-C-3-C-4	104.9(4)	O-13-C-18-C-19	126.4(6)
C-2-C-3-C-4	116.1(4)	C-1-C-20-C-21	120.3(5)
O-4-C-4-C-3	105.2(4)	C-1C-20C-25	119.7(5)
O-4-C-4-C-5	109.2(4)	C-21-C-20-C-25	120.1(5)
C-3-C-4-C-5	115.8(4)	C-20-C-21-C-22	119.4(6)
O-5-C-5-C-4	108.7(4)	C-21-C-22-C-23	120.8(7)
O-5-C-5-C-6	109.3(4)	C-22-C-23-C-24	120.0(8)
C-4-C-5-C-6	110.9(4)	C-23-C-24-C-25	119.4(8)
O-6-C-6-C-5	106.9(4)	C-20-C-25-C-24	120.3(6)
O-7-C-7-c-2	107.1(4)	C-7-C-26-C-27	117.1(5)
O-7-C-7-C-26	112.0(4)	C-7-C-26-C-31	122.7(5)
C-2-C-7-C-26	115.3(4)	C-27-C-26-C-31	120.2(6)
O-1-C-8-O-8	123.4(5)	C-26C-27C-28	119.9(6)
O-1-C-8-C-9	110.0(5)	C-27-C-28-C-29	119.1(7)
O-8-C-8-C-9	126.6(6)	C-28C-29C-30	120.3(8)
O-3-C-10-O-9	124.3(6)	C-29-C-30-C-31	119.3(7)
		C-26-C-31-C-30	121.2(7)

TABLE I

TA	BLE	ш

Exocyclic torsion angles (°) with esds for 25

0-4-C-4-C-3-O-3	- 63.0(3)	C-11-C-10-O-3-C-3	- 177.0(7)	
O-5-C-5-C-4-O-4	- 64.1(4)	C-12-O-4-C-4-C-3	123.3(5)	
O-6-C-6-C-5-O-5	- 66.7(4)	C-14-O-5-C-5-C-4	- 139.1(5)	
C-1-O-1-C-8-O-8	2.0(5)	C-14-O-5-C-5-C-6	99.8(5)	
C-1-C-2C-3-O-3	- 43.2(4)	C-15-C-14-O-5C-5	- 167.7(6)	
C-1-C-2-C-7-O-7	62.9(4)	C-16-O-6-C-6-C-5	177.6(5)	
C-2-C-3-C-4-O-4	176.5(4)	C-17-C-16-O-6C-6	179.3(7)	
C-3-O-3-C-10-O-9	5.1(5)	C-18-O-7-C-7-C-2	- 149.3(5)	
C-3-C-2-C-1-O-1	- 54.5(4)	C-19-C-18-O-7-C-7	176.4(6)	
C-3-C-2-C-7-O-7	- 64.6(4)	C-20-C-1-O-1-C-8	- 100.0(4)	
C-3-C-4-C-5-O-5	54.4(4)	C-20-C-1-C-2-C-3	- 172.9(5)	
C-4-O-4-C-12-O-10	2.6(5)	C-20-C-1-C-2-C-7	60.1(4)	
C-4-C-3-C-2-C-1	75.1(4)	C-21-C-20-C-1-O-1	- 57.6(5)	
C-4-C-5-C-6-O-6	173.6(5)	C-21-C-20-C-1-C-2	59.6(5)	
C-5-O-5-C-14-O-11	10.8(5)	C-22-C-21-C-20-C-1	- 179.7(8)	
C-5-C-4-C-3-O-3	176.3(5)	C-24-C-25-C-20-C-1	- 179.6(8)	
C-5-C-4-C-3-C-2	55.8(4)	C-25C-20C-1O-1	122.4(6)	
C-6-O-6-C-16-O-12	-2.2(5)	C-25-C-20-C-1-C-2	- 120.4(6)	
C-6-C-5-C-4-O-4	55.9(4)	C-26-C-7-O-7-C-18	83.5(5)	
C-6-C-5-C-4-C-3	174.4(5)	C-26-C-7-C-2-C-1	- 171.8(5)	
C-7-O-7-C-18-O-13	- 3.6(5)	C-26-C-7-C-2-C-3	60.7(4)	
C-7-C-2-C-1-O-1	178.5(4)	C-27-C-26-C-7-O-7	- 163.2(6)	
C-7-C-2-C-3-O-3	81.9(4)	C-27-C-26-C-7-C-2	74.0(5)	
C-7C-2C-3C-4	- 159.9(4)	C-28-C-27-C-26-C-7	177.8(7)	
C-8-O-1-C-1-C-2	138.8(4)	C-30-C-31-C-26-C-7	- 176.6(9)	
C-9C-8O-1C-1	- 177.1(6)	C-31-C-26-C-7-O-7	15.0(5)	
C-10-O-3-C-3-C-2	- 125.7(5)	C-31-C-26-C-7C-2	- 107,7(6)	
C-10-O-3-C-3-C-4	109.2(5)			

converted first into the two cyclic ethers 27 and 28. After 30 min, < 2% of 22 remained and only one further product (peak A; 10%) was present. However, 27 is unstable and reacted further to yield the more-stable hexa-acetate 25 which, after 24 h, became the main product of the reaction.

TABLE IV

M	easured	and	calcu	lated	vicinal	coupling	constants	for	25	,
---	---------	-----	-------	-------	---------	----------	-----------	-----	----	---

	Measured	Calculated	Torsion angle (°)	
$\overline{J_{1,2}}$	10.0	11.5	- 177.2	
$J_{2.3}^{-,-}$	0.7	0.4	76.3	
J _{2.7}	2.8	1.9	60.0	
J _{3.4}	9.1	9.7	- 176.5	
J_{45}	2.1	1.5	52.3	
$J_{5.6a}$	5.6	2.5	- 65.8	
J _{5,6b}	7.0	10.0	173.3	

TABLE V

Relative intensities (%) of GLC peaks of the reaction mixture obtained on acetolysis (Ac_2O/H_2SO_4) of 22

Reaction time (h)	Peaks a						<u></u>
	$\frac{1}{27}$ $t_{\rm R}^b$ 1.09	28 1.10	A 1.14	B 1.37	25 1.42	C 1.43	D 1.46
0.5	35	50	10		+ °	+	_
1	50	30	15		+	+	_
2	35	20	20	+	10	+	+
4	20	20	20	$+ + {}^{d}$	15	10	10
8	+	20	20	5	30	15	10
24	-	20	15	5	40	15	5
48		15	5	5	50	15	5
72	—	10	+ +	+ +	70	15	+ +

^a Compounds lettered as in Fig. 2. ^b Retention times relative to that of 22 (24.57 min). ^c Traces. ^d Less than 2%.

Fig. 2. GLC of the reaction mixture obtained on acetolysis (Ac_2O/H_2SO_4) of 22 after 4 h. Retention times (min): diacetoxy(phenyl)methane (8.34), 27 (27.00), 28 (27.11), A (27.95), B (33.75), 25 (34.86), C (35.28), and D (35.92).

EXPERIMENTAL

General methods.-Organic solutions were dried with Na₂SO₄ and concentrated under diminished pressure. Reactions were carried out at room temperature (20°C) and optical rotations were determined at 20°C on 1% solutions in $CHCl_3$ unless stated otherwise. TLC was performed on Kieselgel G with A, EtOAc; EtOAc-hexane mixtures (B, 1:1; C, 1:2); and D, 9:1 EtOAc-EtOH; with detection using 1:1 0.1 M KMNO₄-M H₂SO₄ at 200°C. For column chromatography, Kieselgel 60 was used. NMR spectra were recorded with a Bruker 250 spectrometer at 250 (¹H) and 62.9 MHz (¹³C) on solutions in CDCl₃ (internal Me₄Si) unless stated otherwise. Signal multiplicities of the ¹³C NMR spectra were obtained from DEPT experiments. Full assignment of the ¹³C NMR spectrum of 25 was gained from a ${}^{13}C^{-1}H$ heteronuclear chemical shift correlation 2D measurement performed using the standard microprogram of the Bruker DISNMR software. H-3',5',6' refer to the protons of the 2,4-dichlorophenyl group and double-primed numbers to the phenyl group. GLC was conducted with a Hewlett-Packard 5720A gas chromatograph, using an Ultra 1 capillary column coated with cross-linked methyl silicon gum (50×0.2 nm $\times 0.33$ nm film thickness); temperature $3^{\circ}C \cdot min^{-1}$ from 200 to 260°C; carrier gas, N₂ at a flow rate of 20 mL \cdot min⁻¹.

X-ray data collection, structure solution, and refinement.-Intensity data were collected from a transparent crystal of approximate size $0.35 \times 0.50 \times 0.50$ mm on an Enraf-Nonius CAD-4 diffractometer, using graphite-monochromated CuK_{α} radiation, $\omega/2\theta$ scans (1.5 < θ < 75.0). The intensities of three check reflections, recorded every 60 min, remained constant throughout data collection. A total of 3726 unique reflections was measured. The intensity data were corrected for Lorentz and polarisation effects. No absorption corrections were applied. The structure was solved by direct methods and refined by anisotropic full-matrix least-squares for the non-H atoms. The positional parameters for the H atoms were generated from assumed geometries. H Atomic parameters were included in structure factor calculations, but they were not refined. Their isotropic temperature factors were derived from those of the attached carbon atoms [B(H) = B(C) +1, Å²]. 388 parameters were refined in the final cycle, and the number of observations $[F^2 > 3\sigma(F^2)]$ and the maximum shift/esd were 3291 and 0.12, respectively. The final R factors were $R_0 = 0.045$, $R_w = 0.064$, $w = 1/[(\sigma F_0)^2 +$ $(0.002 F_o)^2$] (σF from counting statistics); $R_{tot} = 0.054$ for all (3726) reflections. The highest peak and lowest minimum in the final difference map were 0.065 and $-0.43 \text{ e}/\text{Å}^3$, respectively. Atomic scattering factors for neutral atoms and anomalous dispersion coefficients were taken from International Tables¹⁰. All calculations were performed on a PDP-11/34 minicomputer, using the E.N. SDP-plus program package¹¹ and local programs *.

Acetolysis of (Z)-1-O-acetyl-2,4-O-benzylidene-5,6-dideoxy-6-C-(2,4-dichlorophenyl)-3-O-methanesulfonyl-D-xylo-hex-5-enitol (1).—Sulfuric acid (2.5 mL) was added to a solution of 1^2 (2.5 g) in acetic anhydride (2.5 mL) at 0°C. The solution was kept at room temperature for 20 h, then poured onto ice, and, after 20 min, extracted with CHCl₃, to give, after the usual processing, a syrup that was submitted to column chromatography (solvent C).

The fractions having R_f 0.40 gave, on concentration, 6-O-acetyl-2-deoxy-2-C-[(R)-(2,4-dichlorophenyl)hydroxymethyl]-4-O-methanesulfonyl- β -L-galacto-hexopyranosylbenzene 3,7-(cyclic sulfate) (**8**; 420 mg, 14%); $[\alpha]_D$ +43°; ν_{max}^{KBr} 3050 w, 2960 w, 1745 s, 1591 m, 1586 w, 1481 m, 1458 w, 1410 s, 1371 s, 1252 s, 1204 s, 1178 s, 1150 m, 1105 m, 1070 m, 986 m, 922 m, 905 m, 866 m, 833 m, 787 m, 764 m, 700 w, 655 w, 588 w, 567 w, 542 w, 490 w, and 465 w cm⁻¹. ¹H NMR data: δ 7.1–6.9 (m, 8 H, aromatic), 6.26 (d, 1 H, H-7), 5.35–5.25 (m, 2 H, H-3,4), 4.39 (d, 1 H, H-1), 4.30 (dd, 1 H, H-6a), 4.21 (dd, 1 H, H-6b), 4.11 (dd, 1 H, H-5), 3.27 (s, 3 H, MsO), 3.17 (ddd, 1 H, H-2), and 2.06 (3, 3 H, AcO); $J_{1,2}$ 9.8, $J_{2,3}$ 10.5, $J_{2,7}$ 11.1, $J_{5,6a}$ 7.0, $J_{5,6b}$ 5.9, $J_{6a,6b}$ 11.3 Hz. Anal. Calcd for C₂₂H₂₂Cl₂O₁₀S₂: C, 45.44; H, 3.81; Cl, 12.19; S, 11.02. Found: C, 45.56; H, 3.95; Cl, 12.00; S, 10.86.

Eluted next was (*E*)-1,2,4-tri-*O*-acetyl-5,6-dideoxy-6-*C*-(2,4-dichlorophenyl)-3-*O*-methanesulfonyl-D-xylo-hex-5-enitol (**3**; 210 mg, 8.4%); $[\alpha]_D + 29^\circ$, R_f 0.35. NMR data: ¹H, δ 7.44 (d, 1 H, H-6'), 7.31 (d, 1 H, H-3'), 7.16 (dd, 1 H, H-5'), 7.01 (d, 1 H, H-6), 6.14 (dd, 1 H, H-5), 5.52 (dd, 1 H, H-4), 5.28 (q, 1 H, H-2), 5.06 (t, 1 H, H-3), 4.26 (dd, 1 H, H-1a), 4.10 (dd, 1 H, H-1b), 3.01 (s, 3 H, MsO), 2.04, 2.02, and 2.01 (3 s, each 3 H, 3 AcO); $J_{1a,1b}$ 11.9, $J_{1a,2} = J_{1b,2} = J_{2,3} = J_{3,4} = 5.3$, $J_{4,5}$ 8.3, $J_{5,6}$ 15.9, $J_{3',5'}$ 2.0, $J_{5',6'}$ 8.5 Hz; ¹³C, δ 170.3, 169.7, 169.2 (3 s, 3 CH₃COO), 134.8, 133.9, 132.1 (3 s, C-1',2',4'), 132.0, 129.5, 127.9, 127.4, 124,6 (5 d, C-5,6,3',5',6'), 78.5, 71.5, 68.1 (3 d, C-2,3,4), 61.6 (t, C-1), 38.9 (q, SCH₃), 20.8, 20.6, 20.5 (3 q, 3 COCH₃).

Eluted third was (*E*)-1,2,4-tri-*O*-acetyl-5,6-dideoxy-6-*C*-(2,4-dichlorophenyl)-3-*O*-methanesulfonyl-L-*arabino*-hex-5-enitol (**4**; 110 mg, 4.4%); $[\alpha]_D - 30^\circ$, $R_f 0.30$. NMR data: ¹H, δ 7.38 (d, 1 H, H-6), 7.31 (d, 1 H, H-3), 7.15 (dd, 1 H, H-5'), 6.93 (d, 1 H, H-6), 6.02 (dd, 1 H, H-5), 5.64 (dd, 1 H, H-4), 5.26 (q, 1 H, H-2), 4.99 (dd, 1 H, H-3), 4.35 (dd, 1 H, H-1a), 3.98 (dd, 1 H, H-1b), 3.01 (s, 3 H, MsO), 2.11, 2.06, and 2.00 (3 s, each 3 H, 3 AcO); $J_{1a,1b}$ 11.9, $J_{1a,2} = J_{1b,2} = J_{2,3} = 5.0$, $J_{3,4}$ 6.1, $J_{4,5}$ 6.9, $J_{5,6}$ 15.9, $J_{3',5'}$ 2.0, $J_{5',6'}$ 8.5 Hz; ¹³C, δ 170.3, 169.6, 169.5 (3 s, 3 CH₃COO), 134.8, 133.9, 132.0 (3 s, C-1',2',4'), 130.6, 129.6, 127.8, 127.4, 124.8 (5 d, C-5,6,3',5',6'),

^{*} Lists of atomic co-ordinates, structured factors, and anisotropic thermal parameters for the non-H atoms have been deposited with, and can be obtained from, Elsevier Science Publishers B.V., BBA Data Deposition, P.O. Box 1527, Amsterdam, Netherlands. Reference should be made to No. BBA/DD/514/Carbohydr. Res., 239 (1993) 117-132.

78.8, 71.8, 68.7 (3 d, C-2,3,4), 61.4 (t, C-1), 38.9 (q, SCH₃), 21.0, 20.7, and 20.6 (3 q, 3 COCH₃). Anal. Calcd for $C_{19}H_{22}Cl_2O_9S$: C, 45.88; H, 4.45; Cl, 14.25; S, 6.44. Found for 3: C, 45.92; H, 4.55; Cl, 14.19; S, 6.38. Found for 4: C, 46.03; H, 4.60; Cl, 14.18; S, 6.27.

Eluted last was 2-*C*-[(*R*)-acetoxy(2,4-dichlorophenyl)methyl]-3,6-di-*O*-acetyl-2deoxy-4-*O*-methanesulfonyl- β -L-galacto-hexopyranosylbenzene (7; 175 mg, 5.8%); mp 194–196°C (from hexane); $[\alpha_D] - 26^\circ$; R_f 0.2. ¹H NMR data: δ 7.39 (m, 5 H, Ph), 7.27 (d, 1 H, H-3'), 7.14 (dd, 1 H, H-5'), 7.01 (d, 1 H, H-6'), 5.61 (d, 1 H, H-7), 5.52 (dd, 1 H, H-3), 5.05 (d, 1 H, H-4), 4.47 (d, 1 H, H-1), 4.27 (dd, 1 H, H-6a), 4.14 (dd, 1 H, H-6b), 4.01 (dd, 1 H, H-5), 3.08 (s, 3 H, MsO), 3.07 (ddd, 1 H, H-2), 2.26, 2.06, and 1.56 (3 s, each 3 H, 3 AcO); $J_{1,2}$ 10.3, $J_{2,3}$ 11.3, $J_{2,7}$ 1.2, $J_{3,4}$ 3.2, $J_{5,6a}$ 6.2, $J_{5,6b}$ 7.3, $J_{6a,6b}$ 11.1, $J_{3',5'}$ 2.0, $J_{5',6'}$ 8.4 Hz. Anal. Calcd for $C_{26}H_{28}Cl_2O_{10}S$: C, 51.74; H, 4.67; Cl, 11.75; S, 5.31. Found: C, 51.71; H, 4.63; Cl, 11.69; S, 5.18.

2,4-O-(4-Methoxybenzylidene)-D-glucitol (9).—A solution of D-glucitol (9 g) in N,N-dimethylformamide (20 mL) and 4-methoxybenzaldehyde dimethyl acetal (14 mL) was stirred in the presence of p-toluenesulfonic acid (0.1 g) for 20 h. The resulting precipitate was filtered off and washed with MeOH. The combined filtrate and washings were neutralised with Et₃N, then Kieselgel 60 (20 g) was added, and the solvent was evaporated from the slurry. Column chromatography (solvent D) of the residue and recrystallisation from EtOH gave 9 (5.3 g, 35%); mp 172-174°C; $[\alpha]_D$ + 16° (Me₂SO); R_f 0.3. NMR data (Me₂SO- d_6): ¹H, δ 7.42, 6.90 (2 d, each 2 H, aromatic), 5.48 (s, 1 H, OCHO), 3.86 (s, 3 H, OMe), 3.85–3.30 (m, 8 H, H-1a-6b); ¹³C δ 159.8 (s, C-4'), 131.6 (s, C-1'), 128.2 (d, C-3'), 113.5 (d, C-2'), 100.5 (d, OCHO), 81.2, 79.8 (2 d, C-2,4), 69.6, 62.1 (2 d, C-3,5), 63.2, 61.4 (2 t, C-1,6), 55.5 (q, OCH₃). Anal. Calcd for C₁₄H₂₀O₇: C, 55.99; H, 6.71. Found: C, 55.91; H, 6.76.

1,3,5,6-Tetra-O-acetyl-2,4-O-(4-methoxybenzylidene)-D-glucitol (10).—Acetylation of 9 (1 g) with acetic anhydride (3 mL) in pyridine (5 mL) gave, after the usual processing, 10 (1.4 g, 89.7%); mp 118–120°C; $[\alpha]_D$ –11°; R_f 0.3 (solvent C). ¹H NMR data: δ 7.42, 6.90 (2 d, each 2 H, aromatic), 5.63 (s, 1 H, OCHO), 5.25–5.10 (m, 2 H, H-3,5), 4.6–4.0 (m, 6 H, H-1a,1b,2,4,6a,6b), 3.80 (s, 3 H, MeO), 2.10, 2.06, 2.05, and 2.03 (4 s, each 3 H, 4 AcO). Anal. Calcd for C₂₂H₂₈O₁₁: C, 56.40; H, 6.02. Found: C, 56.33; H, 6.06.

2,4-O-(4-Methoxybenzylidene)-L-xylose (11).—To a stirred slurry of 9 (5.35 g) and NaHCO₃ (0.2 g) in 1,4-dioxane (50 mL) was added a warm (40°C) solution of NaIO₄ (4.1 g) in water (12 mL). The mixture was stirred for 1 h at room temperature, and the inorganic salts were collected and washed with EtOH (20 mL). The combined filtrate and washings were concentrated to give crude 11 (4.09 g, 85%), which was purified by column chromatography (solvent A) to give, after treatment with EtOH-ether, 11 as a mixture of its ethyl hemiacetals (12; 2.85 g, 51%); mp 96-110°C; $[\alpha]_D - 5^\circ$; R_f 0.30 (solvent A). ¹H NMR data: δ 7.44, 6.91 (2 d, each 2 H, aromatic), 5.47 (s, 1 H, OCHO), 4.65 (d, 1 H, $J_{1,2}$ 7.4 Hz, H-1), 3.8-3.3 (m, 7 H, H-2,3,4,5a,5b and OCH₂CH₃), 3.35 (s, 3 H, MeO), and 1.12 (t, 3

H, J 7.1 Hz, OCH₂CH₃). Anal. Calcd for $C_{15}H_{22}O_7$ C, 57.31; H, 7.05. Found: C, 57.17; H, 7.11.

A slurry of crude 11 (100 mg) and 4-nitrophenylhydrazine (100 mg) in MeOH (10 mL) was boiled for 30 min under reflux. The resulting solution was concentrated and the residue purified by column chromatography (solvent A) to give 13 (110 mg, 73.3%); mp 152–154°C (from ether); R_f 0.65. ¹H NMR data (CDCl₃ + Me₂SO-d₆): δ 10.5 (s, 1 H, NH), 8.07, 7.48, 7.04, 6.87 (4 d, each 2 H, aromatic), 7.49 (d, 1 H, H-1), 5.69 (s, 1 H, OCHO), 4.58 (dd, 1 H, H-2), 4.39 (s, 1 H, HO-5), 4.19 (d, 1 H, HO-3), 4.02 (m, 1 H, H-4), 3.88–3.78 (m, 3 H, H-3,5a,5b), and 3.80 (s, 3 H, MeO); $J_{1,2}$ 6.3, $J_{2,3}$ 1.5, $J_{3,OH}$ 7.7, $J_{5,OH}$ 6.0 Hz. Anal. Calcd for C₁₉H₂₁N₃O₇ C, 56.56; H, 5.24; N, 10.41. Found: C, 56.38; H, 5.32; N, 10.59.

(Z)- (14) and (E)-1,3-Di-O-acetyl-5,6-dideoxy-6-C-(2,4-dichlorophenyl)-2,4-Omethoxybenzylidene-D-xylo-hex-5-enitol (15).—To a stirred slurry of [(2,4-dichlorophenyl)methyl]triphenylphosphonium chloride (3.4 g) in dry tetrahydrofuran (35 mL) and N,N-dimethylformamide (7 mL) was added potassium tert-butoxide (0.85 g). The orange solution was stirred for 1 h at room temperature, crude 11 (1.7 g)was added, and, after 1 h, the mixture was diluted with water and extracted with EtOAc. The combined extracts were washed with brine and dried, and the solvent was evaporated. The residue was dissolved in pyridine (7 mL) and acetic anhydride (5 mL) was added. After 20 h, the mixture was processed in the usual way. Column chromatography (solvent C) then gave 14 (1.82 g, 58.1%); mp 82-84°C (from hexane); $[\alpha]_{\rm D}$ + 108°; R_f 0.60. NMR data: ¹H, δ 7.45–7.20 (m, 5 H, aromatic), 6.89 (d, 2 H, aromatic), 6.71 (d, 1 H, H-6), 5.80 (dd, 1 H, H-5), 5.58 (s, 1 H, OCHO), 5.02 (s, 1 H, H-3), 4.60 (d, 1 H, H-4), 4.30-4.05 (m, 3 H, H-1a,1b,2), 3.79 (s, 3 H, MeO), 2.21 and 2.04 (2 s, each 3 H, AcO); $J_{4.5}$ 8.3, $J_{5.6}$ 11.6 Hz; ¹³C, δ 170.4 (CH₃COO), 160.1 (C-4'), 134.2, 134.2, 133.1, 130.9, 130.6, 129.6, 129.3, 127.6, 127.4, 126.8 (C-5,6 and aromatic), 113.5 (C-2',6'), 100.4 (OCO), 75.5, 74.7, 65.8 (C-2,3,4), 62.3 (C-1), 55.2 (OCH₃), 20.6 and 20.5 (OCOCH₃).

Eluted second was 15 (0.12 g, 3.8%); mp 98–100°C (from hexane); $[\alpha]_D$ 0°; R_f 0.50. ¹H NMR data: δ 7.55–7.15 (m, 5 H, aromatic), 7.06 (d, 1 H, H-6), 6.93 (d, 2 H, aromatic), 6.07 (dd, 1 H, H-5), 5.73 (s, 1 H, OCHO), 5.13 (t, 1 H, H-3), 4.75 (dd, 1 H, H-4), 4.45–4.10 (m, 3 H, H-1a,1b,2), 3.82 (s, 3 H, MeO), 2.09, and 2.08 (2 s, each 3 H, 2 AcO); $J_{2,3} = J_{3,4} = 1.4$, $J_{4,5}$ 4.8, $J_{5,6}$ 15.9 Hz. Anal. Calcd for $C_{24}H_{24}Cl_2O_7$: C, 58.19; H, 4.88; Cl, 14.31. Found for 14: C, 58.27; H, 5.02; Cl, 14.16. Found for 15: C, 58.35; H, 5.06; Cl, 14.22.

Acetolysis of 14.—Sulfuric acid (1.3 mL) was added to a stirred solution of 14 (1.3 g) in acetic anhydride (13 mL) at 0°C. The solution was processed as described for 1, to give a syrup, TLC (solvent C) of which revealed only two components with R_f 0.60 and 0.55, which were isolated by column chromatography.

Eluted first was (*E*)-tetra-*O*-acetyl-5,6-dideoxy-6-*C*-(2,4-dichlorophenyl)-Larabino-hex-5-enitol (16; 230 mg, 19.0%); $[\alpha]_D - 75^\circ$. ¹H NMR data: δ 7.45–7.15 (m, 3 H, aromatic), 7.01 (d, 1 H, H-6), 6.02 (dd, 1 H, H-5), 5.55–5.35 (m, 3 H, H-2,3,4), 4.27 (dd, 1 H, H-1a), 4.02 (dd, 1 H, H-1b), 2.10, 2.07, 2.06, and 2.05 (4 s, each 3 H, 4 AcO); $J_{1a,b}$ 11.6, $J_{1a,2}$ 5.2, $J_{1b,2}$ 6.9, $J_{4,5}$ 8.3, $J_{5,6}$ 15.8 Hz. Anal. Calcd for $C_{20}H_{22}Cl_2O_8$: C, 52.07; H, 4.80; Cl, 15.37. Found: C, 51.88; H, 4.93; Cl, 15.18.

Eluted second was (E)-tetra-O-acetyl-5,6-dideoxy-6-C-(2,4-dichlorophenyl)-D-xylo-hex-5-enitol (17; 110 mg, 9%), identical with the product described earlier¹.

Structural elucidation of 16 and 17.—A stream of O_3/O_2 was passed into a cooled (-70°C) solution of 16 (200 mg) in CH₂Cl₂ (20 mL) until the colour turned blue (10 min). The solution was purged with N₂ to remove the excess O_3 and then concentrated. The residue was dissolved in MeOH (20 mL), and NaBH₄ (0.1 g) was added at 0°C. After stirring at 0 °C for 1.5 h, more NaBH₄ (0.05 g) was added, and stirring was continued at room temperature. After 2 h, the pH was adjusted to 2 with methanolic 2 M HCl, then the mixture was concentrated. Methanol (3 × 10 mL) was evaporated from the residue which was then treated with acetic anhydride (1 mL) in pyridine (2 mL). After 20 h at room temperature, the solvent was evaporated and the residue purified by column chromatography (solvent *C*) to yield penta-*O*-acetyl-L-arabinitol (114 mg, 73%); $[\alpha]_D - 37^\circ$; lit.¹² $[\alpha]_D - 38^\circ$ (MeOH).

Similar treatment of 17 (100 mg) yielded penta-O-acetylxylitol (61 mg, 76%). The NMR data of both compounds were identical with those published¹³.

(E)-5,6-Dideoxy-6-C-(2,4-dichlorophenyl)-L-arabino-hex-5-enitol (18).— Methanolic M NaOMe (0.01 mL) was added to a solution of 17 (200 mg) in MeOH (5 mL). After 24 h at room temperature, Na ions were removed with Varion KS (H⁺) resin to give, after filtration, evaporation of the solvent, and treatment of the residue with ether, 18 (103 mg, 81%); mp 128–130°C; $[\alpha]_D - 14^\circ$ (MeOH); R_f 0.60 (solvent D). Anal. Calcd for $C_{12}H_{14}Cl_2O_4$: C, 49.16; H, 4.81; Cl, 24.19. Found: C, 49.09; H, 4.92; Cl, 24.08.

(Z)- (22) and (E)-1,3-Di-O-acetyl-2,4-O-benzylidene-5,6-dideoxy-6-C-phenyl-Dxylo-hex-5-enitol (23).—To a stirred slurry of benzyltriphenylphosphonium chloride (4 g) in dry tetrahydrofuran (40 mL) and N,N-dimethylformamide (10 mL) was added potassium tert-butoxide (1.2 g). The orange solution was stirred for 1 h at room temperature, then crude 2,4-O-benzylidene-L-xylose² (21; 2.4 g) was added. The mixture was processed as described for 14 and 15, to give, after column chromatography (solvent C), 22 (1.53 g, 38.6%); mp 67–69°C (from ether-hexane); $[\alpha]_D - 21^\circ$; R_f 0.55. ¹H NMR data: δ 7.70–7.15 (m, 10 H, aromatic), 6.72 (d, 1 H, H-6), 5.62 (dd, 1 H, H-5), 5.60 (s, 1 H, OCHO), 5.03 (s, 1 H, H-3), 4.77 (d, 1 H, H-4), 4.30-4.00 (m, 3 H, H-1a,1b,2), 2.15 and 2.02 (2 s, each 3 H, 2 AcO); $J_{4,5}$ 8.0, $J_{5,6}$ 11.5 Hz.

Eluted second was 23 (0.73 g, 18.2%); mp 102–104°C (from ether–hexane); $[\alpha]_D$ -21°; R_f 0.55. ¹H NMR data: δ 7.75–7.10 (m, 10 H, aromatic), 6.75 (d, 1 H, H-6), 6.06 (dd, 1 H, H-5), 5.74 (s, 1 H, OCHO), 5.10 (s, 1 H, H-3), 4.68 (d, 1 H, H-4), 4.45–4.10 (m, 3 H, H-1a,1b,2), 2.08 and 2.04 (2 s, each 3 H, 2 AcO); $J_{4,5}$ 5.0, $J_{5,6}$ 16.0 Hz. Anal. Calcd for $C_{23}H_{24}O_6$: C, 69.68; H, 6.10. Found for 22: C, 69.65; H, 6.13. Found for 23: C, 69.62; H, 6.15.

Acetolysis of 22.-A solution of 22 (940 mg) in acetic anhydride (10 mL) and

sulfuric acid (1 mL) was treated as described for 1. After 14 h, the following products were isolated by column chromatography (solvent C) from the complex mixture. Evaporation of the fractions having R_f 0.45 gave 2-C-[(R)-acetoxy(phenyl)methyl]-3,4,5-tri-O-acetyl-2-deoxy-β-L-galacto-hexopyranosylben-zene (**28**; 120 mg, 10.2%); $[\alpha]_D$ -19°. NMR data: ¹H, δ 7.70-7.05 (m, 8 H, aromatic), 6.83 (d, 2 H, aromatic), 5.65 (d, 1 H, H-7), 5.43 (dd, 1 H, H-3), 5.34 (dd, 1 H, H-4), 4.44 (d, 1 H, H-1), 4.20-3.90 (m, 3 H, H-5,6a,6b), 2.79 (ddd, 1 H, H-2), 2.15, 2.13, 2.00, and 1.56 (4 s, each 3 H, 4 AcO); $J_{1,2}$ 10.6, $J_{2,3}$ 11.3, $J_{2,7}$ 1.6, $J_{3,4}$ 3.5, $J_{4,5}$ 0.9 Hz; ¹³C, δ 170.4, 170.2, 169.7, 169.4 (each s, COO), 139.5, 138.7 (each s, C-1',1"), 128.9, 128.8, 127.9, 127.0, 124.4 (5 d, C-2',3',4',2",3",4"), 80.0, 73.9, 69.0, 66.5 (4 d, C-1,3,4,5,7), 62.0 (t, C-6), 46.9 (d, C-2), 20.7, 20.6, 20.5, and 20.4 (4 q, 4 OCOCH₃). Anal. Calcd for C₂₇H₃₀O₉; C, 65.04: H, 6.06 Found: C, 65.00; H, 6.11.

Evaporation of the fractions having R_f 0.40 gave (1S)-2-C-[(R)acetoxy(phenyl)methyl]-1,3,4,5,6-penta-O-acetyl-2-deoxy-1-C-phenyl-L-gulitol (25; 235 mg, 16.5%); mp 176–177°C (from ether–hexane); $[\alpha]_D$ –16°. NMR data (acetone- d_6): ¹H, δ 7.50–7.05 (m, 10 H, aromatic), 6.02 (d, 1 H, H-1), 5.77 (dd, 1 H, H-4), 5.65 (dd, 1 H, H-3), 5.44 (ddd, 1 H, H-5), 5.35 (d, 1 H, H-7), 4.11 (dd, 1 H, H-6a), 3.72 (dd, 1 H, H-6b), 2.71 (ddd, 1 H, H-2), 2.17, 2.13, 2.09, 2.02, 1.96, and 1.59 (6 s, each 3 H, 6 AcO); $J_{1,2}$ 10.0, $J_{2,3}$ 0.7, $J_{2,7}$ 2.8, $J_{3,4}$ 9.1, $J_{4,5}$ 2.1, $J_{5,6a}$ 5.6, $J_{5,6h}$ 7.0, $J_{6a,b}$ 11.4 Hz; ¹³C, δ 170.6, 170.5, 170.4, 169.8, 169.5, 169.3 (6 s, 6 CH₃COO), 139.7, 139.6 (2 s, C-1',1"), 129.7, 129.6, 129.5, 128.7, 128.6, 126.8 (6 d, C-2',3',4',2",3",4"), 74.9, 74.6, 73.1, 69.0, 68.6 (5 d, C-1,3,4,5,7), 62.3 (t, C-6), 49.0 (d, C-2), 21.2, 21.0, 20.8, 20.7, 20.6, and 20.5 (6 q, 6 OCOCH₃).

Crystal data: fw = 600.6; a = 9.957(1), b = 16.500(1), c = 19.603(2) Å (from the setting angles of 25 reflections $[29 < \theta < 32^{\circ}]$), V = 3220.8(9) Å³, orthorhombic space group: $P2_12_12_1$ (No. 19), Z = 4, $F_{000} = 1272$, D (calcd) = 1.238 g cm⁻³, μ (Cu K_{α} , $\lambda = 1.54184$ Å) = 7.63 cm⁻¹, $T = 23^{\circ}$ C. Anal. Calcd for $C_{31}H_{36}O_{12}$: C, 61.98; H, 6.04. Found: C, 61.95; H, 6.05.

GLC investigation of the acetolysis reaction of 22.—Sulfuric acid (0.1 mL) was added to a solution of 22 (100 mg) in acetic acid (1 mL) at 0°C, then the temperature was raised to 20°C, and samples (0.1 mL) were taken from the reaction mixture at 0.5, 1, 2, 4, 8, 24, 48, and 72 h, diluted with water (1 mL), and extracted with CHCl₃ (10 mL). The organic solution was washed with aq 5% NaHCO₃ (5 mL), dried, and subjected to GLC. The results are depicted in Fig. 2 and summarised in Table IV.

1,3-Di-O-acetyl-2,4-O-benzylidene-5,6-dideoxy-6-C-phenyl-D-xylo-hexitol (24).—A solution of 22, 23, or a mixture thereof (0.3 g) in EtOH (20 mL) was hydrogenated in the presence of 10% Pd/C (0.05 g) for 2 h. In TLC (solvent C), the spot of 22 changed only its colour. The solution was filtered, concentrated, and treated with hexane to give 24 (0.3 g, 100%); mp 146–147°C; $[\alpha]_D$ +23°. ¹H NMR data: δ 7.7–7.2 (m, 10 H, aromatic), 5.68 (s, 1 H, OCHO), 5.04 (t, 1 H, H-3), 4.4–3.9 (m, 4 H, H-1a,1b,2,4), 2.85 (m, 2 H, H-6a,b), 2.21, 2.11 (2 s, each 3 H, 2 AcO), 2.1–1.7

(m, 2 H, H-5a,b); $J_{2,3} = J_{3,4} = 1.5$ Hz. Anal. Calcd for $C_{23}H_{26}O_6$: C, 69.32; H, 6.57. Found: C, 69.19; H, 6.41.

I(S)-2-Deoxy-2-C-[(R)-hydroxy(phenyl)methyl]-1-phenyl-L-gulitol (26).—Methanolic M NaOMe (0.05 mL) was added to a solution of 25 (350 mg) in MeOH (10 mL). After 2 h at room temperature, Na ions were removed with Varion KS (H⁺) resin to give, after concentration of the filtrate, 26 (159 mg, 78%); mp 152–154°C (from ether-hexane); $[\alpha]_D$ –17° (MeOH); R_f 0.6 (solvent D). NMR data (Me₂SO-d₆): ¹H, δ 7.45–7.10 (m, 10 H, aromatic), 4.83 (d, 1 H, H-1), 4.45 (d, 1 H, H-7), 3.90 (dd, 1 H, H-3), 3.45 (ddd, 1 H, H-5), 3.37 (dd, 1 H, H-4), 3.24 (dd, 1 H, H-6a), 3.12 (dd, 1 H, H-6b), 2.18 (ddd, 1 H, H-2); $J_{1,2}$ 7.8, $J_{2,3}$ 2.3, $J_{2,7}$ 4.0, $J_{3,4}$ 3.7, $J_{4,5}$ 4.0, $J_{5,6a}$ 4.6, $J_{5,6b}$ 7.0, $J_{6a,b}$ 10.9 Hz; ¹³C, δ 145.2, 144.9 (2 s, C-1',1"), 128.2, 128.1, 127.1, 127.0, 126.7, 125.9 (6 d, C-2',3',4',2",3",4"), 73.4 (d, C-5), 72.9, 72.8 (2 d, C-4,7), 71.7 (d, C-1), 70.3 (d, C-3), 63.1 (t, C-6), and 54.2 (d, C-2). Anal. Calcd for C₁₉H₂₄O₆: C, 65.50; H, 6.94. Found: C, 65.44; H, 7.03.

2-Deoxy-2-C-[(R)-hydroxy(phenyl)methyl]-3,4-O-isopropylidene-β-L-galactohexopyranosylbenzene (29).—Methanolic M NaOMe (0.01 mL) was added to a solution of 28 (270 mg) in CHCl₃ (5 mL) and MeOH (1 mL). After 2 days at room temperature, the solution was neutralised with solid CO₂ and concentrated. The residue was dissolved in acetone (10 mL), and 2-methoxypropene (0.4 mL) and *p*-toluenesulfonic acid (20 mg) were added. After 20 h at room temperature, more 2-methoxypropene (0.2 mL) was added, followed, after 2 days, by Et₃N (0.5 mL). The mixture was concentrated and the residue purified by column chromatography (solvent *B*), to give 29 (135 mg, 67.3%); $[\alpha]_D - 51^\circ$. NMR data: ¹H, δ 7.45-7.00 (m, 10 H, aromatic), 4.68 (dd, 1 H, H-3), 4.48 (bs, 1 H, H-7), 4.37 (d, 1 H, H-1), 4.1-3.65 (m, 4 H, H-4,5,6a,6b), 2.32 (m, 1 H, H-2), 1.19 and 1.17 (2 s, each 3 H, CMe₂); $J_{1,2}$ 9.7, $J_{2,3}$ 8.0, $J_{3,4}$ 5.5 Hz; ¹³C, δ 143.5, 140.3 (2 s, C-1',1"), 128.5, 128.2, 127.8, 127.5, 126.8, 125.4 (6 d, C-2',3',4',2",3",4"), 108.8 (d, OCO), 80.5, 76.8, 72.8, 72.0, 71.8 (5 d, C-1,3,4,5,7), 63.2 (t, C-6), 51.6 (d, C-2), 27.8 and 26.5 (2 q, C(CH₃)₂). Anal. Calcd for C₂₂H₂₆O₅: C, 71.32; H, 7.07. Found: C, 71.18; H, 6.92.

2-C-[(R)-Acetoxy(phenyl)methyl]-6-O-acetyl-2-deoxy-3,4-O-isopropylidene-β-Lgalacto-hexopyranosylbenzene (**30**).—Acetylation of **29** (70 mg) with acetic anhydride (0.5 mL) in pyridine (1 mL) gave, after the usual processing and column chromatography (solvent *B*), **30** (60 mg, 69.8%) as a syrup; $[\alpha]_D -51^\circ$. NMR data: ¹H, δ 7.45–7.00 (m, 10 H, aromatic), 5.61 (d, 1 H, H-7), 4.53 (dd, 1 H, H-3), 4.37 (dd, 1 H, H-6a), 4.25 (dd, 1 H, H-6b), 4.20 (d, 1 H, H-1), 4.11 (dd, 1 H, H-4), 3.94 (ddd, 1 H, H-5), 2.53 (ddd, 1 H, H-2), 2.08, 2.03 (2 s, each 3 H, 2 AcO), 1.26 and 1.23 (2 s, each 3 H, CMe₂); $J_{1,2}$ 9.7, $J_{2,3}$ 7.9, $J_{2,7}$ 3.0, $J_{3,4}$ 5.5, $J_{4,5}$ 2.2, $J_{5,6a}$ 4.4, $J_{5,6b}$ 7.3, $J_{6a,b}$ 11.8 Hz; ¹³C, δ 171.1, 169.6 (2 s, 2 CH₃COO), 140.0, 139.0 (2 s, C-1',1"), 128.7, 128.5, 128.1, 127.6, 127.4, 125.9 (6 d, C-2',3',4',2",3",4"), 109.3 (d, OCO), 80.0, 74.4, 74.0, 72.7, 72.2 (5 d, C-1,3,4,5,7), 64.5 (t, C-6), 50.1 (d, C-5), 27.8, 26.5 (2 q, C(CH₃)₂), 21.1 and 21.0 (2 q, 2 OCOCH₃). Anal. Calcd for C₂₆H₃₀O₇: C, 68.70; H, 6.65. Found: C, 68.58; H, 6.62.

1,3-Diacetoxy-2-acetoxymethyl-1,3-diphenyl-xylo-propane (32).—A solution of

NaIO₄ (0.3 g) in water (3 mL) was added to a stirred solution of **26** (150 mg) in 1,4-dioxane (10 mL). After 1 h, the precipitate was filtered off and NaBH₄ (0.1 g) was added to the filtrate followed, after 2 h, by more NaBH₄ (0.1 g). The pH of the solution was adjusted after 20 h to 2 with 2 M aq HCl, and the solution was then concentrated. Methanol (3 × 10 mL) was evaporated from the residue which was then treated with acetic anhydride (1 mL) in pyridine (2 mL). After 20 h at room temperature, the solvent was evaporated and the residue purified by column chromatography (solvent C), to give **32** (130 mg, 79.5%) as a syrup; $[\alpha]_D 0^\circ$; R_f 0.50. ¹H NMR data: δ 7.4–7.2 (m, 10 H, aromatic), 5.84 (d, 2 H, H-1,3), 4.30 (d, 2 H, H-4a,4b), 2.70 (d, 1 H, H-2), 2.05 (s, 6 H, AcO-1,3), 1.93 (s, 3 H, AcO); $J_{1,2} = J_{2,3} = J_{2,4} = 6$ Hz. Anal. Calcd for C₂₂H₂₄O₆: C, 68.73; H, 6.29. Found: C, 68.60; H, 6.22.

ACKNOWLEDGMENTS

We thank Dr É. Tomori for the GLC analysis.

REFERENCES

- 1 J. Kuszmann, B. Podányi, and G. Jerkovich, Carbohydr. Res., 232 (1992) 17-32.
- 2 J. Kuszmann and B. Podányi, Carbohydr. Res., 225 (1992) 247-267.
- 3 A.H. Haines, Adv. Carbohydr. Chem. Biochem., 39 (1981) 13-70.
- 4 M.L. Wolfrom and J.V. Karabinos, J. Am. Chem. Soc., 67 (1945) 500-501.
- 5 L. Vargha, Ber., 68 (1935) 18-24; 1377-1384.
- 6 M.L. Wolfrom, A.B. Diwadkar, J. Gelas, and D. Horton, Carbohydr. Res., 35 (1974) 87-96.
- 7 J.G. Buchanan, A.R. Edgar, D.I. Rawson, P. Shahidi, and R.H. Wightman, *Carbohydr. Res.*, 100 (1982) 75-86.
- 8 J. Kopf, C. Topf, M. Morf, B. Zimmer, and P. Köll, Acta Crystallogr., Sect. C, 47 (1991) 2425-2428.
- 9 C.A.G. Haasnoot, F.A.A.M. de Leeuw, and C. Altona, Tetrahedron, 36 (1980) 2783-2792.
- 10 International Tables for X-ray Crystallography, Vol 4., Kynoch Press, Birmingham, 1974.
- 11 B.A. Frenz, in H. Schenk, R. Olthof-Haselkamp, H. van Koningsveld, and G.C. Bassi (Eds.), Computing in Crystallography, The Enraf – Nonius CAD-4 SDP — A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution, Delft University Press, 1978.
- 12 S.C. Williams and J.K.N. Jones, Can. J. Chem., 45 (1967) 275-290.
- 13 S.J. Angyal and R.L. Fur, Carbohydr. Res., 84 (1980) 201-209.