

Infrared Spectra of Difluoroborane and Difluoroboraned

M. Perec and L. N. Becka

Citation: The Journal of Chemical Physics 43, 721 (1965); doi: 10.1063/1.1696796

View online: http://dx.doi.org/10.1063/1.1696796

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/43/2?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Infrared emission spectra of BeH and BeD

J. Chem. Phys. 118, 1158 (2003); 10.1063/1.1528606

Vibrational—Rotational Spectrum of Difluoroborane and Difluoroboraned

J. Chem. Phys. 43, 4357 (1965); 10.1063/1.1696697

Infrared Spectra of Alkoxyboranes. I. Dimethoxyborane and Dimethoxyboraned

J. Chem. Phys. 30, 1215 (1959); 10.1063/1.1730159

Infrared Spectra

Phys. Today 5, 26 (1952); 10.1063/1.3067377

The InfraRed Absorption Spectra of PropaneD-1 and PropaneD-2

J. Chem. Phys. 17, 1012 (1949); 10.1063/1.1747105

Infrared Spectra of Difluoroborane and Difluoroborane-d

M. PEREC AND L. N. BECKA

Departamento de Química Inorgánica y Química Física, Facultad de Ciencias Exactas, Universidad de Buenos Aires, Perú 222, Buenos Aires, Argentina

(Received 31 December 1964)

Gaseous H-BF2 and D-BF2 were obtained by a new method of preparation. Analysis of high-resolution ir spectra gave approximate values for the B-F distance (1.30±0.15 Å) and the F-B-F angle (120°±5°). Five of the six fundamentals were observed and assigned unambiguously: v₂=2620 and 1962 cm⁻¹, B-H and B-D stretches; $v_1 = 1166$ and 1128 cm⁻¹, ¹¹B-F symmetric stretches in H-BF₂ and D-BF₂; $v_3 = 545$ and 540 cm⁻¹, F⁻¹¹B-F bending in H-BF₂ and D-BF₂; and ν_4 =1402, 1392, 1419 cm⁻¹, ¹¹B-F asymmetric stretches in H-BF₂ and D-11BF₂ and 10B-F stretch in D-10BF₂, respectively; ν_6 =944, 924, 810, 790 cm⁻¹, out-of-plane deformation in H-10BF2, H-11BF2, D-10BF2, and D-11BF2, respectively. The H-B-F bending appears to have a frequency $\nu_5 = 1200$ cm⁻¹ for H-11BF₂ and is estimated at 887 cm⁻¹ for D-11BF₂. A force-constant calculation was made, obtaining the following values (in millidynes per angstrom): $f_D = 3.66$, $f_d = 6.625$, $f_d'=0.725, f_{Dd}=0.37, f_\tau=0.772.$

THE complete assignment of the ir spectra of HBX₂ (X=F, Cl, Br) would allow the calculation of the force constants of these compounds, and a comparison of these with the corresponding ones of the boron trihalides might yield interesting results on the nature of the B-X bonds. Bass et al.1 have obtained the ir spectra of mixtures of HBCl2-BCl3 and HBCl2-DBCl2-BCl₃ in the gas phase and made a complete assignment utilizing Green's function. A quite different assignment was made by Mandirola and Westerkamp,2 who calculated vibrational frequencies using reasonable force constants. A straightforward assignment is difficult, owing to the unavoidable presence of BCl₃ with strong bands in regions where there are bands of HBCl₂ and of DBCl₂. Even in matrix isolation spectra,3 there is still some superposition of bands.

The ir spectrum of HBBr₂ is shown in a paper by Rietti and Lombardo,4 and the complete assignment has been made by Mandirola and Westerkamp.⁵

The ir spectrum of gaseous HBF₂ has been reported recently by Coyle et al.6 By a different method of preparation we have obtained the mixtures HBF₂-BF₃-H₂ and DBF₂-BF₃-D₂. Practically all the bands of H-BF₂ and D-BF₂ are well separated from those of BF₃ and show a well-resolved and intense rotational structure. The quality of the spectra enabled us to obtain approximate values of molecular parameters, make a complete and unambiguous assignment of the observed bands, and calculate force constants by Wilson's method.

1964, 25.

EXPERIMENTAL

The mixtures were obtained by irradiation with a high-frequency discharge (in the megacycles-per-second range) on a 1:7 mixture of B₂F₄, prepared by the method of Finch and Schlesinger,7 with H₂ or D₂. We irradiated for about 5 min in the gas cell; after this time the B₂F₄ had reacted completely. Longer irradiation times produced B₂H₆ or B₂D₆, which are also obtained after a period of weeks by decomposition of H-BF₂ and D-BF₂. The total pressure of the mixtures was of ≈ 40 mm: $(p_{\text{HBF}_2(\text{DBF}_2)} \approx 3 \text{ mm}; p_{\text{BF}_2} \approx 3 \text{mm})$. The spectra were obtained with a Beckman IR-9 spectrometer, over the range 400-4000 cm⁻¹, using 10-cm-path-length gas cells with NaCl, KBr, and CsI windows. We also ran a spectrum in the 400–200-cm⁻¹ region, but observed no bands. The resolution of the spectra scanned over the whole range was of 1.5 cm⁻¹, the absorption peaks of H-BF2 and D-BF2 were also obtained with 0.5-cm⁻¹ resolution, in order to analize the rotational structure. The calibration was done using the rotational structure of H₂O. All spectra of the HBF₂ mixture were taken with an empty cell, a cell with BF₃, and a cell containing B₂H₆ in the reference beam. Those of DBF₂ were taken with an empty cell and with BF₃ in the reference beam.

SPECTRA

The gas-phase spectra of H-BF₂ and D-BF₂ are shown in Fig. 1. We include the well-known spectra of pure B₂H₆ and of pure BF₈ in order to show clearly the peaks corresponding to the compounds under study.

The spectra of the H-BF₂ mixture show well-defined bands not attributable to either BF3 or B2H6; the positions and prominent features of those bands are the following: a medium-intensity doublet with peaks at \approx 2630 and \approx 2602 cm⁻¹ showing resolvable fine

¹ C. D. Bass, L. Lynds, T. Wolfram, and R. E. DeWames, J. Chem. Phys. 40, 3611 (1964).

² O. Brieux de Mandirola and J. F. Westerkamp, Spectrochim.

Acta 20, 1633 (1964).

³ C. D. Bass, L. Lynds, T. Wolfram, and R. E. DeWames, Inorg. Chem. 3, 1063 (1964).

⁴ S. B. de Rietti and J. Lombardo, J. Inorg. Nucl. Chem. (to be

published). ⁵ O. Brieux de Mandirola and J. F. Westerkamp, Meeting of

the Argentine Physical Association, Bariloche 1964.

⁶ T. D. Coyle, J. J. Ritter, and T. C. Farrar, Proc. Chem. Soc.

⁷ A. Finch and H. I. Schlesinger, J. Am. Chem. Soc. 80, 3573 (1958).

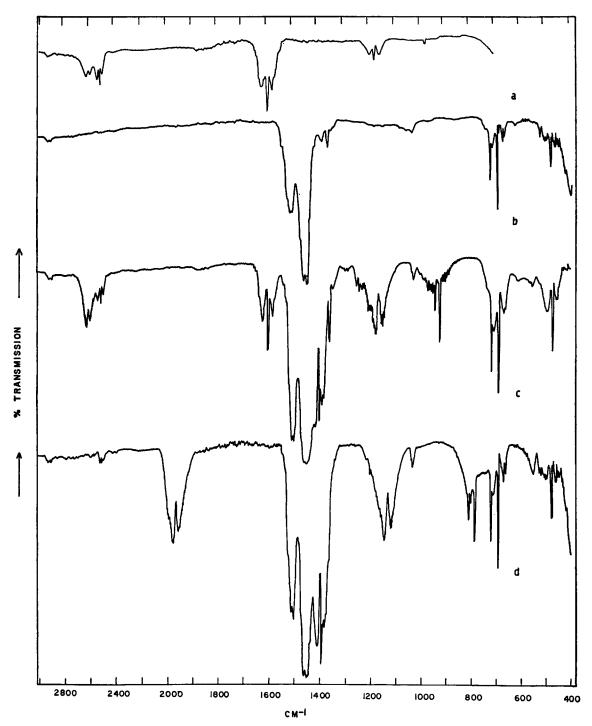
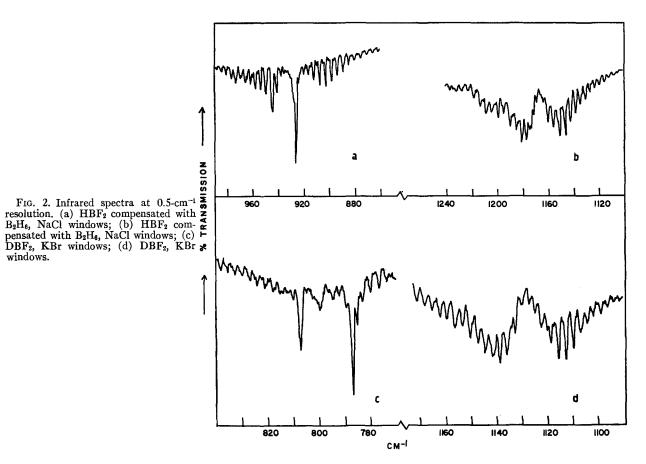



Fig. 1. Infrared spectra at 1.5-cm⁻¹ resolution. (a) B_2H_6 , $p\approx 4$ mm, taken with NaCl windows; (b) BF_3 , $p\approx 2$ mm, with KBr windows; (c) $HBF_2+BF_3+H_2+B_2H_6$, 1:1:10:1.3, $p_T\approx 40$ mm, with CsI windows; (d) $DBF_2+BF_3+D_2$, 1:1.2:11, $p_T\approx 40$ mm, with KBr windows. The peak at 1030 cm⁻¹ is due to SiF₄.

structure; a very intense triplet with peaks at 1417, 1402, and 1391 cm⁻¹; a medium-intensity doublet with resolvable fine structure and maxima at ≈1177 and 1150 cm⁻¹ and a shoulder at ≈1200 cm⁻¹; two sharp peaks at 924 and 944 cm⁻¹ superimposed on a fine-structure background; and a weak broad maximum

with fine structure at ≈ 560 cm⁻¹. Coyle *et al.*⁶ reported bands at: 2645 sh, 2631, 2607 m; 1462, 1455, 1449 sh, s; 1417, 1405, 1392 sh, vs; 1200 sh, 1176, 1145 s; 944 m, 924 s; 555, 530 w⁸; their spectrum coincides with

⁸ sh, shoulder; m, medium; s, strong; v, very; w, weak.

ours except for the bands at 1462, 1455, 1449 cm⁻¹, which we cannot observe due to the presence of a very strong BF₃ band, and the band at 530 cm⁻¹, also obscured in our spectra by a BF₃ band.

The deuterated compound has a spectrum with bands at the following frequencies: a medium intensity doublet having resolvable fine structure with maxima at \approx 1956 and \approx 1970 cm⁻¹; strong peaks at 1419, 1410, 1392, and 1380 cm⁻¹; a doublet with fine structure and maxima at \approx 1145 and \approx 1118 cm⁻¹; two sharp peaks superimposed on a background with fine structure at 810 and 790 cm⁻¹; and, finally, a broad peak with structure at \approx 552 cm⁻¹.

The high-resolution spectra of these bands are shown in Figs. 2 and 3; the lowest frequency bands of H-and D-BF₂ gave a poor spectra and are not included in the figures.

MOLECULAR PARAMETERS

The bands with center at 2620 and at 1166 cm⁻¹ in the spectra of HBF₂ and those with center at 1962 and at 1128 cm⁻¹ of DBF₂ show a regular and intense rotational structure. Since the appearance of these bands is similar to that due to the H–B stretching mode of HBCl₂,⁹ we tried to interpret the fine structure assuming that H–BF₂ and D–BF₂ are also accidental

symmetric tops. Although our data do not fit as well as those of HBCl₂ in the expression for the energy levels of a symmetric rotor, the separation of neighboring peaks was sufficiently constant to allow an estimate of the moments of inertia.

In these perpendicular-type bands, assuming that the rotational constants are the same for the excited and the fundamental vibrational levels, the energy difference between succesive ${}^{R}Q$ and ${}^{P}Q$ branches is

$$2(A-\tilde{B}) = 2[A-\frac{1}{2}(B+C)],$$

where A is the rotational constant corresponding to the unique axis, parallel to the F-F line.

The measurements made on the high-resolution spectra gave the following values:

for HBF₂,
$$4.1 < 2(A - \tilde{B}) < 4.7 \text{ cm}^{-1}$$
;

for DBF₂,
$$2.8 < 2(A - \tilde{B}) < 3.2 \text{ cm}^{-1}$$
.

Since the assignment of the bands is consistent with a symmetry C_{2v} , there are three molecular parameters to determine. In order to obtain values for two of them we fixed the H-B distance (the moment of inertia is less sensitive to its variation) and calculated the values of $(A-\tilde{B})$, varying the B-F distance between 1.10-1.50 Å in steps of 0.05 Å, and the F-B-F angle between 90°-130° in steps of 2.5°.

⁹ L. Lynds and C. D. Bass, J. Chem. Phys. 40, 1590 (1964).

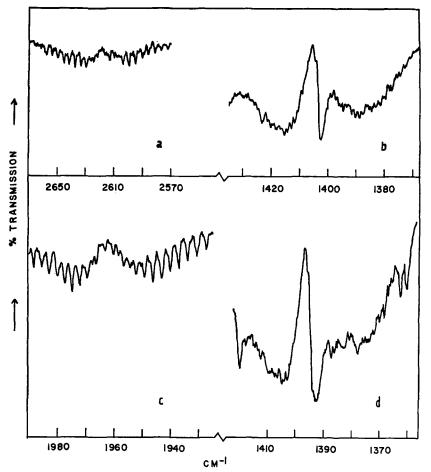


Fig. 3. Infrared spectra at 0.5-cm⁻¹ resolution. (a) HBF₂ compensated with B₂H₅, NaCl windows; (b) HBF₂, NaCl windows; (c) DBF₂, KBr windows; (d) DBF₂, KBr windows.

The values of the molecular constants agreeing best with the mean measured value of $(A-\tilde{B})$, and their range of variation compatible with the experimental results, are given in Table I.

These parameters have too much error to draw any conclusion about bond distances but indicate that there is little distortion with respect to BF₃ ($r_{\rm FB}$ =1.295 Å)¹⁰ and to CH₃BF₂ ($r_{\rm FB}$ =1.30 Å).¹¹

ASSIGNMENT

In Table II we give the symmetry, description, rotational type, and expected isotope shift for the six modes of H- and D-BF₂ molecules of symmetry C_{2v} .

These features, together with the frequencies of related modes in similar molecules allowed us to make an unambiguous assignment of the observed modes, as shown in Table III.

A₁ Modes

These modes should have bands with no central peak and resolvable fine structure (the separation of the Q branches is ≈ 4.4 cm⁻¹ in HBF₂ and ≈ 3.0 cm⁻¹ in DBF₂). The frequency of the B-H stretching mode (D) of HBF₂ is expected to be similar to that of HBCl₂ (2617 cm⁻¹); the frequency of the B-F symmetric stretching mode (d_s) should be in the neighborhood of

TABLE I. Molecular parameters.

	I _A (amu×Ų)	I_B (amu $ imes$ Å 2)	I _C (amu×Ų)	$ \rho = I_A/I_B $	$(A - \widetilde{B})$ (cm^{-1})	<fbf< th=""><th><i>†</i>_BF</th><th><i>т</i>вн</th></fbf<>	<i>†</i> _B F	<i>т</i> вн
HBF ₂	6.55	47.18	53.73	0.140	2.23	120 : 50	1 20 1 0 15 1	1.15 Å (assigned)
DBF_2	9.18	47.18	56.36	0.195	1.50	120±5°	1.30±0.13 A	1.13 A (assigned)

a See Ref. 9.

¹⁰ A. H. Nielsen, J. Chem. Phys. 22, 659 (1954).

¹¹ S. H. Bauer and J. M. Hastings, J. Am. Chem. Soc. 64, 2686 (1942).

TABLE II. Description of vibration	al modes.
------------------------------------	-----------

No.	Mode	Band type	Description	Expected isotope shift $(\nu_{ m H}/\nu_{ m D})$
1	A_1	B (±)	de; B-F symmetric stretch	1
2	A_1	$B(\perp)$	D; B-H stretch	1.40
3	A_1	$B(\perp)$	A; F-B-F bending	1
4	B_1	A()	da; B-F asymmetric stretch	1
5	B_1	A()	a; H-B-F bending	1.35
6	B_2	$C(\perp)$	τ; out-of-plane deformation	1.18

1200 cm⁻¹, by comparison with $CH_3BF_2^{12}$ (1250 cm⁻¹); and the F-B-F bending mode (A) is responsible for a band at ≈500 cm⁻¹, where it appears in CH₃BF₂ (479 cm⁻¹). Deuteration of H-BF₂ will shift the Dmode by a factor of ≈ 0.7 but will not much alter the frequencies of the other modes. We can thus assign with certainty the doublet with band center at 2620 cm⁻¹ in the spectra of HBF₂ (1962 cm⁻¹ in DBF₂) to the D mode, the doublet with center at 1166 cm⁻¹ (1128 cm⁻¹) to the d_s mode, and the band with maxima at 560 cm⁻¹ (552 cm⁻¹) to the ${}^{P}Q$ branches of the A mode. The ^RQ branches of this band are obscured by the spectrum of BF3, but the valley, corresponding to the band center, can be clearly distinguished at 545 cm⁻¹ (540 cm⁻¹). All these bands correspond to the molecules with 11B, the bands of the 10B isotope could not be distinguished in these A-type modes. We checked the Teller-Redlich product rule, which gave us a 1.0% agreement.

B₂ Modes

The appearance of a C-type band can be imagined as a composition of two extreme forms, namely a perpendicular and a parallel band, depending on the value of ρ . If ρ is not too small, there will be a central peak in addition to the peaks of the ${}^{R}Q$ and ${}^{P}Q$ branches. Since there are molecules with ¹⁰B and with ¹¹B, two sharp peaks of different intensity are expected (the smaller peak at higher frequency). The product rule predicts a ratio of 1.18 between the frequency of this mode in HBF₂ with respect to DBF₂. Hence we assigned the bands at 944 cm⁻¹ (810 cm⁻¹) and 924 cm⁻¹ (790 cm⁻¹) to the out-of-plane (τ) mode of H¹⁰BF₂ $(D^{10}BF_2)$ and of $H^{11}BF_2$ $(D^{11}BF_2)$.

B₁ Modes

The B_1 modes will have bands without resolvable fine structure and will show the envelopes of the P, Q, and R branches. The frequency of the B-F asymmetric stretching mode (d_a) is expected to be near to that of the corresponding mode in CH₃BF₂ (1363 cm⁻¹). In the spectra of H-BF₂, we can thus assign the triplet with a central peak at 1402 cm⁻¹ to the d_a mode of the molecule with ¹¹B (the triplet with central peak at 1455 cm⁻¹ observed by Coyle et al.6 can be assigned to the d_a mode of the ¹⁰B isotope). The spectrum of

TABLE III. Calculated and observed spectra and assignments.^a

	Coyle	et al.b	This work				
	H11BF2	$\mathrm{H^{10}BF_2}$	H11BF2	H10BF2	D ¹¹ BF ₂	D ¹⁰ BF	
1	1176, 1145	•••	Obs 1166	•••	1128	•••	
			Calc 1168	•••	1126	••	
2	2631, 2607	2645^{d}	Obs 2620	•••	1962	•••	
	,		Calc 2618	•••	1961	•••	
3	555, 530	•••	Obs 545	•••	540	•••	
	,		Calc 544	•••	538	• • •	
4	1417, 1405, 1392	1462, 1455, 1449	Obs 1402	•••	1392	1419	
-	1111, 1100, 107		Calc 1408	1455	1375	1426	
5	1200 ^d	•••	Obs 1200d	•••	887°	•••	
~			Calc 1186	1190	887	887	
6	924	944	Obs 924	944	790	810	
•			Calc 925	944	789	810	

a All frequencies are given in cm-1.

b Peak positions reported in Ref. 6.

e Band centers are given.

¹² H. J. Becher, Z. Anorg. Allgem. Chem. 291, 151 (1957).

d Doubtful assignments.

e Deduced by applying the product rule.

33

		$\mathrm{H^{11}BF_2}$		$\mathrm{D^{11}BF_2}$			
\boldsymbol{j}	i=2	i=1	i=3	i=2	i=1	i=3	
11	97	50	2	52	62	1	
12	316	-56	-7	206	-38	-6	
13	73	-186	50	95	-184	40	
22	258	15	7	205	6	8	
2.3	119	103	100	189	56	-106	

43

137

Table IV. Jacobian matrices.^a

	Hii	BF ₂	\mathbf{D}^{11}	$\mathrm{D^{11}BF_2}$		BF_2	$\mathrm{D^{10}BF_2}$	
\boldsymbol{j}	i=4	i=5	i=4	i=5	i=4	<i>i</i> =5	i=4	i=5
44	91	28	114	4	100	23	118	4
45 55	561 869	321 926	$-385 \\ 325$	135 1031	-560 788	306 1019	$-401 \\ 341$	136 1029

346

14

D-BF₂ shows this band shifted to 1392 cm⁻¹ and also a peak at 1419 cm⁻¹ assigned to the Q branch of the d_a mode of the 10 B isotope.

172

It is not obvious where we should expect the band of the H–B–F bending mode (a), since there are no ir studies of other molecules with modes involving a H–B–F bending. As a first try, we can deduce a likely frequency for this mode, applying the product rule between the equivalent B_1 modes of CH_3BF_2 and HBF_2 . This gave us a value of ≈ 1100 cm⁻¹ for the a mode in H–B–F, and led us to assign the shoulder at ≈ 1200 cm⁻¹ in the spectra of HBF_2 to this mode. This band should shift by a factor of ≈ 0.7 when deuterating the molecule. Unfortunately, we could not see this band in the spectra of DBF_2 , which makes this the only uncertain feature of our assignment.

FORCE CONSTANTS

We made a force-constant calculation using Lindeman and Wilson's¹³ general force field and their symmetry coordinates, modifying the angular coordinates by multiplication by $(d_0D_0)^{\frac{1}{2}}$ and changing the signs of F_{45}

and G_{45} .¹⁴ We used frequencies uncorrected for anharmonicity, since we observed only fundamentals.

347

The out-of-plane mode gave us directly four values of f_{τ} , the mean of which is given in Table V. They agree very well, considering the uncertainty in the molecular parameters and anharmonicity. The mean value of f_{τ} , 0.772 mdyn/Å, is smaller than for BF₃, 0.866 mdyn/Å, as can be expected from the likely reduction of conjugated π bonding in going from BF₃ to HBF₂.

For the other species, we started with the set of force constants deduced for CH_3BF_2 . We found a suitable set of elements of the F matrix after calculating the Jacobian matrix J $(J_{ij}=\partial \nu_i/\partial F_j)$ and adjusting the F's by inspection of the system of linear equations

$$J\Delta F = \Delta \nu$$
.

We felt that there was no justification for a least-squares refinement since: (a) the number of assigned frequncies (11) is nearly equal to the number of independent F's (9); (b) the data are not corrected for anharmonicity; (c) the frequency of the H-B-F mode is critical in determining the elements of the F elements

TABLE V. Force constants (millidynes per angstrom).

	f_d :	$f_{oldsymbol{d'}}$		$f_{ au}$	f_{D}	f_{Dd}			
HBF ₂ BF ₃ *	6.625 7.221	0.725 0.802		. 772 . 866	3.66	0.37			
	F_{11}	F_{12}	F_{13}	F_{22}	F ₂₃	F_{33}	F ₄₄	F_{45}	F_{55}
HBF_2	6.60	-1.56	0.12	4.40	0.10	0.64	5.90	0.27	0.37

a See Ref. 13.

^a The elements are defined by $J_{ij} = \partial \nu_i / \partial F_j$.

¹³ L. P. Lindeman and M. K. Wilson, J. Chem. Phys. **24**, 242 (1956).

¹⁴ We had to recalculate the elements of F and G due to the typographical errors in Lindeman and Wilson's paper.

of symmetry B_1 ; and (d) inspection of J shows that isotopic data alone are not sufficient to fix the force constants of the A_1 and B_1 species uniquely, as is also the case for a number of other molecules. It is necessary to use centrifugal stretching constants and/or Coriolis interaction constants to fix the general force field constants uniquely.

We also tried a Urey-Bradley potential with two of its eight constants fixed by the relation

$$-0.25 < F'/F < 0$$

but we could not reach a good enough agreement between $\nu_{\rm obs}$ and $\nu_{\rm calc}$.

The calculated frequencies are given in Table III, the elements of the Jacobian are given in Table IV, and the F matrix and force constants that are deter-

mined univocally from the F matrix are given in Table V. We could not compare our results with those of (CH₃)BF₂ because Becher¹² used a restricted potential to calculate the force constants. The force constants estimated for HBCl₂² are too uncertain to use them to compare the pair HBCl₂-BCl₃ and the pair HBF₂-BF₃. The comparison with BF₃ (Table V) shows clearly that the stretching force constants for B-F is smaller in HBF₂, indicating weaker bonding.

ACKNOWLEDGMENTS

Part of the equipment used in this work was obtained with a Ford Foundation Grant. The Argentine Atomic Energy Commission provided us with D₂. We are indebted to Ing. E. Silbermann for helpful discussion and assistance in the use of the spectrometer. Dr. G. Videla, Dr. S. B. de Rietti, and J. Lombardo have had a great part in enabling us to obtain the compounds.

THE JOURNAL OF CHEMICAL PHYSICS

VOLUME 43, NUMBER 2

15 JULY 1965

Infrared Absorption by Symmetrical NO₃ Free Radical in the Gas Phase*

Francesco Cramarossa† and H. S. Johnston

Department of Chemistry, University of California, Berkeley, California

(Received 8 April 1965)

A new infrared absorption band between 1325 and 1375 cm⁻¹ has been observed in the N_2O_5 – O_3 system at low pressure in an 80-m path-length cell. In such systems the presence of the symmetrical NO_3 free radical is well known in terms of its visible absorption spectrum, which varies in the unusual way of $K_{ss}[N_2O_5]^{\frac{1}{2}}[O_3]^{\frac{1}{2}}$. The new infrared band lies at a frequency just below that for the antisymmetric stretch of the symmetrical planar nitrate ion; the absorption optical density varies as $[N_2O_5]^{\frac{1}{2}}[O_3]^{\frac{1}{2}}$; and the new absorption has been assigned to the symmetrical NO_3 free radical.

INTRODUCTION

THE kinetics of the N₂O₅-catalyzed decomposition of O₃ is well understood.^{1,2} Dinitrogen pentoxide catalyzes the decomposition of ozone according to the rate equation

$$-d[O3]/dt = k[N2O5]3[O3]3, (1)$$

which is quantitatively explained by the mechanism¹⁸

$$N_2O_5 \underset{B(M)}{\overset{A(M)}{\rightleftharpoons}} NO_2 + NO_3,$$

$$NO_2 + O_3 \xrightarrow{h} NO_3 + O_2,$$

$$2NO_3 \xrightarrow{g} 2NO_2 + O_2.$$
(2)

Both nitrogen dioxide and the symmetrical NO₃ free radical are low-concentration intermediates in this system. These intermediates are related to the catalyst N_2O_5 by the equilibrium constant

$$K = A(M)/B(M) = [\text{NO}_2][\text{NO}_3]/[\text{N}_2\text{O}_5]. \quad (3)$$

In the N₂O₅-O₃ system the steady-state concentration

¹⁵ J. L. Duncan and I. M. Mills, Spectrochim. Acta 20, 523 (1964).

^{*}Supported by Division of Air Pollution, Bureau of State Services, Public Health Service, Grant AP-104 and NSF Grant G20976.

[†] Present address: Centro Chimica Generale del C.N.R., Istituto di Chimica Generale ed Inorganica Dell'Universita, Rome, Italy.

Rome, Italy.

1 (a) H. S. Johnston, J. Am. Chem. Soc. 73, 4542 (1951);
(b) H. J. Schumacher and G. Sprenger, Z. Physik. Chem. B2, 267 (1929).

² (a) G. Schott and N. Davidson, J. Am. Chem. Soc. **80**, 1841 (1958); E. J. Jones and O. R. Wulf, J. Chem. Phys. **5**, 873 (1937); C. G. Sprenger, Z. Elektrochem. **37**, 674 (1931).