Received 18 August 2011,

(wileyonlinelibrary.com) DOI: 10.1002/jlcr.1935

Biosynthesis of glucose-D-¹³C₆ from *Hansenula* polymorpha and methanol-¹³C

Zhan-feng Liu,* Zheng Ren, Da-gang Xu, and Liang-jun Li

Accepted 26 August 2011

A simple and effective method for synthesis of glucose-D- $^{13}C_6$ by fermentation using the methylotrophic yeast *Hansenula* polymorpha with 99% abundance methanol- ^{13}C is described. Using methanol- ^{13}C as a sole source of carbon, *H. polymorpha* can accumulate large amounts of α, α -trehalose- $^{13}C_{12}$ under unfavourable growth conditions; the trehalose can then be hydrolysed to give glucose-D- $^{13}C_6$ with 98.5% abundance ^{13}C .

Keywords: glucose-D- $^{13}C_6$; biosynthesis; methanol- ^{13}C ; trehalose- $^{13}C_{12}$

Introduction

Isotope-labelled D-glucose has been produced commercially by biosynthesis for many years and has especially been used for studying the in vivo metabolism of glucose.^{1,2} The first labelled forms of D-glucose to be produced by biosynthesis contained the radioactive isotopes ¹¹C and ¹⁴C. The pioneering work in this area was accomplished by Lifton and Welch, who prepared glucose-¹¹C using Swiss chard leaves and ¹¹C-labelled carbon dioxide through photosynthesis.³ Ishiwata et al. have modified the Lifton and Welch method to achieve automation of the whole procedure.⁴ The use of broad bean or algae has also been reported.^{5,6} Enzymatic synthesis is an alternative approach that has been used for preparing isotope-labelled forms of D-glucose; for example, Sturani prepared 3-14C-labelled D-glucose and 4-14C-labelled D-glucose by the action of ribulose diphosphate carboxylase on ribulose-1,5-diphosphate and ¹⁴C-labelled carbon dioxide to give 3-phosphoglyceric acid-1-14C followed by its conversion to D-glucose by reversing alvcolvtic enzyme reactions.⁷ A number of biosynthetic methods have been used to prepare ¹³C-labelled forms of D-glucose. Li et al. developed a method for preparing glucose-D- $^{13}C_6$ by growth of microalgae in a photobiological reactor with ¹³C-labelled carbon dioxide as the carbon source.⁸ Luthra et al. prepared ¹³C-labelled D-glucose (60 atom %) by photosynthesis using algae and $^{13}\text{C}\text{-labelled}$ carbonate (90 atom %) as carbon source.⁹ Baxter et al. synthesized D-glucose-3, 4^{-13}C_2 (60 atom % $^{13}\text{C}_2$) via $\alpha_{r}\alpha$ -trehalose-¹³C that was produced from sodium acetate-1-¹³C (98 atom %) by sporulating yeast.¹⁰ A drawback in many of the published methods is that the label becomes diluted and those that utilize photosynthesis require complex apparatus to avoid dilution or loss of the labelled carbon dioxide, and it is very difficult to reproduce for scaling up the process. Following work by Jones and Bellion, who investigated the major metabolic pathways of methanol utilisation in the methylotrophic yeast Hansenula polymorpha (also known as Pichia angusta) by ¹³C NMR, ¹¹ we recently reported how fermentation with this organism using ¹³C-labelled methanol as carbon source can be used to produce ¹³C- labelled α, α -trehalose.¹² In the current work, we describe the full method for preparing and isolating $\alpha_{,\alpha}$ -trehalose-¹³C₁₂ followed by its chemical hydrolysis to give glucose-D- $^{13}C_6$ with 98.5% abundance ^{13}C .

Experimental

General

Methanol-¹³C (99 atom %) was prepared at the Shanghai Engineering Research Center of Stable Isotope. *H. polymorpha* (ATCC26012) was purchased from ATCC (Manassas, USA). The labelled glucose and trehalose were analysed using a Waters Quattro Premier XE VAB430 LCMS/MS (Waters Corporation, Milford, MA, USA) with a Pinnacle II amino column and refractive index detector. The mobile phase was a 30:70 v/v mixture of water and acetonitrile at a flow rate of 1 ml/min. The ¹³C abundance was measured using MAT 271 mass spectrometer (Pacific Northwest National Laboratory, Richland, WA, USA). Fourier Transform InfraRed spectra were obtained using a Nicolet 6700 instrument (Thermo Scientific, Rochester, NY, USA). NMR spectra were recorded on a Bruker Avance 500 (Bruker BioSpin Corporation, Billerica, MA, USA) instrument operating at 500 MHz for ¹H NMR and at 125 MHz for ¹³C NMR.

Fermentation conditions for ¹³C-labelling

Hansenula polymorpha was inoculated into the seed medium containing (per litre): methanol-¹³C (10 ml), (NH₄)₂SO₄ (10 g), yeast nitrogen base without amino acids and ammonium sulphate (20 g) and biotin (0.4 mg) in 1 M K₂HPO₄-KH₂PO₄ buffer (pH 6.0). The cultures were grown at 37 °C and 150 rpm for 18 h, then 5 ml was inoculated into 50 ml of the fermentation medium containing (per litre): methanol-¹³C (10 ml), H₃PO₄ (30 ml), CaSO₄ (0.06 g), K₂SO₄ (0.96 g), MgSO₄ (3.26 g) and KOH (0.03 g) and trace elements (2 ml) in deionized water with the pH adjusted to 5.0. The fermentation was performed at 37 °C and 150 rpm for 24 h; the temperature was then raised to 42 °C and held constant for 3 h.

Shanghai Research Institute of Chemical Industry, Shanghai Engineering Research Center of Stable Isotope, No.345 Yunling East Road, 200062 Shanghai, China

*Correspondence to: Zhan-feng Liu, Shanghai Research Institute of Chemical Industry, Shanghai Engineering Research Center of Stable Isotope, No.345 Yunling East Road, 200062 Shanghai, China. E-mail: Izfyhy@163.com

Isolation of trehalose-¹³C₁₂

Cells were harvested from 100 ml broth by centrifugation $(4000 \times q, 20 \text{ min}, 0^{\circ}\text{C})$, washed twice with distilled water (20 ml) and extracted with 40% (v/v) ethanol (20 ml). After 30 min at 90 °C, the material was centrifuged (4000 \times g, 20 min, 0°C), 10% ZnSO₄ (1 ml) and saturated BaOH solution (2 ml) was added to the supernatant liquor, protein was removed by centrifugation (4000 \times g, 20 min, 0 °C), the soluble fraction being adjusted to pH 6.0 with 1 M NaOH and passed through a mixed column of D201 and D101 resin (2:1) eluted with water. The eluate was concentrated under vacuum on a rotary evaporator, and the residue was crystallised from aqueous alcohol affording the dihydrate of α , α -trehalose-¹³C₁₂ (85 mg, 0.22mmol). The conversion ratio of the ¹³C atoms from the labelled methanol into trehalose is around 11%. The ¹³C atoms in the thalli and unreacted methanol-¹³C were recycled; the recovery rate of the ¹³C atoms was 75%. Mp 95–97 °C (Lit. 97.0 °C);¹³ IR (KBr): 3416, 2933, 1637, 1458, 1355, 1241, 1149, 1100, 1030, 996, 955, 910, 811, 803, 537; MS(m/z): 353, 185, 167, 131.

Synthesis of glucose-D-¹³C₆

¹³C-enriched α,α-trehalose dihydrate (50 mg, 0.13mmol) was dissolved in aqueous 2 M H₂SO₄ (2 ml) and heated in a sealed tube at 100 °C for 6 h. The solution was neutralised with saturated aqueous BaCO₃ and filtered. The pH of the filtrate was adjusted to 6.0 with 1 M NaOH and passed through a column of SK1B resin (H⁺), and the effluent was subsequently passed through a column of WA30 resin (OH⁻) and eluted with water. The eluate was concentrated under vacuum on a rotary evaporator affording glucose-D⁻¹³C₆ (42 mg, 0.23mmol, 89%) with 98.5% abundance ¹³C. Mp 149–152 °C (Lit. 150–152 °C ¹⁴); IR (KBr): 3415, 2932, 1637, 1369, 1120, 1083, 1053, 1008, 894, 824, 627; MS (m/z): 185, 154, 123, 92; ¹H NMR (500 MHz, D₂O) δ (ppm): 5.16 (d, *J*=170 Hz, H1α), 4.55 (d, *J*=152 Hz, H1β), 4.0–3.0 (6H, m,

H2α, β; H3α, β; H4α, β; H5α, β; H6α, β). ¹³C NMR (125 MHz, D₂O) δ (ppm): 95.4 (d, J = 46 Hz, C1β), 91.6 (d, J = 40 Hz, C1α), 75.4 (m, C5β), 75.3 (m, C3β), 73.6 (ddd, J = 45 Hz, 39 Hz and 2.5 Hz, C2β), 72.3 (dd, J = 38 Hz and 38 Hz, C3α), 70.9 (m, C2α, C5α), 69.1 (m, C4α, C4β), 60.3 (d, J = 43 Hz, C6β), 60.0 (d, J = 43 Hz, C6α).

Results and discussion

The methylotrophic yeast H. polymorpha uses methanol as a sole source of carbon and energy; $\alpha_{,\alpha}$ -trehalose can be accumulated at high levels when the cells are exposed to unfavourable growth conditions such as high temperature, high osmolarity and nutrient limitations.¹⁵ The work by Jones and Bellion¹¹ showed that dilution of ¹³C-labelled $\alpha_{\mu}\alpha$ -trehalose is obtained when the cells are cultivated in fermentation medium with methanol-¹³C as the source of carbon, and our recent work has shown how this can be used to synthesize and isolate almost no dilution of ¹³Clabelled α, α -trehalose on a hundreds of milligrammes scale when the cells are cultivated in the seed and fermentation medium with methanol-¹³C as the sole source of carbon. ¹² In natural substrates, $\alpha_{\mu}\alpha_{\mu}$ -trehalose is hydrolysed by the enzyme trehalase to give equimolar quantities of α -D-glucose and β -D-glucose;¹⁶ we therefore developed a method for producing ¹³C-labelled D-glucose by combining the biosynthesis of $\alpha_r \alpha$ -trehalose-¹³C₁₂ from H. polymorpha and methanol-¹³C followed by its hydrolysis.

Scheme 1 shows the biosynthetic pathway to ¹³C-labelled α, α -trehalose from methanol-¹³C in *H. polymorpha* and its subsequent hydrolysis to glucose-D-¹³C₆, which we chose to perform using a chemical method. From the cultures of *H. polymorpha* grown with methanol-¹³C as the sole carbon source, we isolated 85 mg of the dihydrate of α, α -trehalose-¹³C₁₂ from a cell volume of 100 ml. Eighty-five milligrammes of the dihydrate of α, α -trehalose-¹³C₁₂ needed 86 mg of the labelled methanol in theory. The conversion ratio of the ¹³C atoms from the labelled methanol into trehalose is around 11%. We also recycled ¹³C atoms from the thalli and unreacted methanol-¹³C with a recovery rate of 75%. Chemical

Scheme 1. Biosynthetic route to $\alpha_{1}\alpha_{-}$ -trehalose- $^{13}C_{12}$ from methanol- ^{13}C in *Hansenula polymorpha* and its chemical hydrolysis to glucose-D- $^{13}C_{6}$. Bold asterisks indicate 13 C-labelling sites. Key to enzymes: 1, alcohol oxidase; 2, dihydroxyacetone synthase; 3, dihydroxyacetone kinase; 4, triose-phosphate isomerase; 5, aldolase; 6, formaldehyde dehydrogenase; 7, formylglutathione hydrolase; 8, formate dehydrogenase. Major metabolic routes depicted are: (A) re-arrangements via transaldolase and transketolase; (B) pentose phosphate pathway; (C) $\alpha_{1}\alpha_{-}$ -trehalose- $^{13}C_{12}$ synthesis; (D) chemical hydrolysis.

Figure 1. ¹H NMR spectrum of glucose-¹³C₆.

hydrolysis of 50 mg α, α -trehalose-¹³C₁₂ led to isolation of 42 mg glucose-D-¹³C₆ with a yield of 89% and 98.5% abundance ¹³C. The yield for conversion of ¹³C atoms from methanol-¹³C into glucose-D-¹³C₆ is therefore 10%. ¹H and ¹³C NMR spectra for the isolated glucose-D-¹³C₆ are shown in Figures 1 and 2, respectively; both

have the expected splitting patterns for the uniformly ¹³C-labelled compound. Figure 3 shows HPLC spectra of glucose-D-¹³C₆. By combining the biosynthesis of α, α -trehalose-¹³C₁₂ by *H. polymorpha* with methanol-¹³C followed by its chemical hydrolysis using the methods described here, approximately 0.7 g of highly pure

Figure 3. HPLC spectrum of glucose-D-¹³C₆.

glucose-D- $^{13}C_6$ with high abundance ^{13}C is obtainable per litre of cell culture.

Acknowledgements

Thanks to the Ministry of Science and Technology of China (No. 2010EG116090) and the Shanghai Municipal Science and Technology Commission (No. 08DZ2200200) for financial support.

References

- [1] C. Yang, Q. Hua, K. Shimizu, Metab. Eng. 2002, 4, 202–216.
- [2] J. Zhao, K. Shimizu, J. Biotechnol. 2003, 101, 101–117.
- [3] J. F. Lifton, M. J. Welch, Radiat. Res. 1971, 45, 35-40.
- [4] K. Ishiwata, M. Monma, R. Iwata, T. Ido, J. Lab. Compd. Rad. 1982, 19, 1347–1350.

- [5] R. W. Goulding, A. J. Palmer, Int. J. Appl. Radiat. Isot. 1973, 24, 7-12.
- [6] H. Denutte, G. Slegers, P. Goethals, C. Van De Casteele, A. De Leenheer, Int. J. Appl. Radiat. Isot. 1985, 36, 82–84.
- [7] E. Sturani, J. Label. Compd. 1969, 5, 47–53.
- [8] J. Li, Y. F. Mao, X. L. Liu, CN200510006694.0. 2005.
- [9] S. K. Luthra, V. W. Pike, F. Brady, D. R. Turton, B. Wood, R. W. Matthews, G. E. Hawkes, J. Lab. Compd. Rad. 1986, 23, 1070–1072.
- [10] R. L. Baxter, H. C. Baxter, C. J. McGregor, J. Lab. Compd. Rad. 1992, 31, 981–985.
- [11] J. G. Jones, E. Bellion, Biochem. J. 1991, 280, 475-481.
- [12] Z. Liu, Z. Ren, D. Xu, L. Li, Isotopes. 2010, 23, 202-205.
- [13] Y. Peng, Y. Zhou, Q. Li, F. Xue, J. Feng, *China Food Additives*. **2009**, *1*, 65–69.
- [14] Handbook of Fine Chemicals. Sigma-Aldrich Company. **2009–2010**, 1477.
- [15] S. Turkel, Microbiology. 2006, 75, 639–643.
- [16] H. Mori, J. H. Lee, M. Okuyama, M. Nishimoto, M. Ohguchi, D. Kim, A. Kimura, S. Chiba, *Biosci. Biotechnol. Biochem.* 2009, 73, 2466–2473.