

Figure 1. Plots of $[CH_3^{\bullet}]$ versus probe distance and $[CH_3^{\bullet}]^{-1}$ versus time (time for gas flow from catalyst bed to the probe).

Table I. Comparison of Gas-Phase Methyl Radicals and Ethane Production^a

1.4×10^{18}
8.0×10^{17}
3.2×10^{17}
0.23
0.40

^aReaction conditions: catalyst = 0.03 g of 7 wt% Li/MgO mixed with inert powdered quartz and supported in a thin layer of quartz wool. Temperature = 670 °C; atmospheric pressure; total flow = 880 cm³ min⁻¹ (STP); Ar/CH₄/O₂ = 219/9.3/1. ^bRadicals min⁻¹ were detected, the collection efficiency in the sensitive region of the sapphire rod was 10%, and the percentage of molecules entering the leak was 0.28%.

low-pressure region where they are frozen on a sapphire rod maintained at 14 K. The sapphire rod with the matrix is then lowered into an ESR cavity where the spectrum is recorded. The original apparatus was converted into an atmospheric flow system through the construction of pressure leaks which allowed for the collection of $\sim 2 \text{ cm}^3 \text{ min}^{-1}$ (STP) from the atmospheric stream. Moreover, the distance from the catalyst bed to the leak was adjustable. With this modification the gas-phase CH₃ • radical concentration at varying distances from the exit of the catalyst bed could be measured under atmospheric conditions. The radical collection efficiency was determined by carrying out a MIESR experiment with the stable NO₂ free radical.

Plots of $[CH_3^{\bullet}]$ versus distance and $[CH_3^{\bullet}]^{-1}$ versus time (time for gas flow from the catalyst bed to the probe) are shown in Figure 1. The slope of the $[CH_3^{\bullet}]^{-1}$ versus time plot should be the second-order rate constant for gas-phase CH_3^{\bullet} radical coupling, and the intercept gives the gas-phase CH_3^{\bullet} concentration at the exit of the catalyst bed. Analysis of the product stream was carried out with the use of standard GC techniques. From these results a direct comparison between the amounts of CH_3^{\bullet} radicals and C_2 products was possible.

In establishing the slope of Figure 1 more weight was given to the greater concentrations obtained at short distances from the catalyst bed as these data were obtained at a much higher signal-to-noise ratio. A second-order rate constant for CH₃[•](g) coupling of 1.1×10^{-11} cm³ radical⁻¹ s⁻¹ at 670 °C compares favorably with a "best value" of $(2.6 \pm 1) \times 10^{-11}$ cm³ radical⁻¹ s⁻¹ reported in a review by Warnatz.⁹ The comparison of gasphase CH₃[•] radicals and C₂H₆ production is summarized in Table I. The results show that at least 40% of the C₂H₆ produced can be accounted for by the coupling of gas-phase CH₃[•] radicals. Additional experiments to substantiate this result were carried out by placing the leak directly in contact with the catalyst bed. These experiments showed that >45% of the C₂H₆ could be accounted for by the gas-phase CH₃[•] radicals.

In view of the tortuous path that the radicals must follow in leaving the polycrystalline catalyst particles and the catalyst bed

Table II. Experimental and Simple Collision Theory Rates for C_2H_6 Formation^{*a*}

	conc $CH_{3(g)}$, ^b	conc $CH_{3(s)}$, c	rate C_2H_6
	radical cm ⁻³	radical cm ⁻²	prod., s ⁻¹
gas phase surface coupling Rideal–Eley	$\begin{array}{c} 1.1 \times 10^{14} \\ 1.1 \times 10^{14} \\ 1.1 \times 10^{14} \end{array}$	8.8×10^{7} 8.8×10^{7}	$2.5 \times 10^{15 d} \\ 1.5 \times 10^{15 e} \\ 6.6 \times 10^{13 e}$

^aCalculations are for T = 670 °C. ^bConcentration is the value at the exit of the catalyst bed. ^cValue assumes that the virtual pressure at the surface is 20 times that of the gas phase. ^dValue obtained from Table I assumes all gas-phase radicals couple. ^eResults obtained by using a reaction efficiency of 0.06. This value was determined by comparing the coupling rate to the collision frequency.

it is expected that considerable recombination would occur before the radicals reach the exterior region of the bed. Thus, the value of 40-45% is a lower limit on the gas-phase reaction. Also, because of the nature of the bed, it is unlikely that the gas-surface equilibrium would have been perturbed to the point where surface recombination reactions would have been negated.

It was of interest to compare the experimental results with results predicted from simple collision theory for the surface coupling of adsorbed CH_3° radicals and also for C_2H_6 formation according to a Rideal-Eley mechanism; i.e., a gas-phase CH_3° radical reacting with a surface radical. These results are summarized in Table II. The results indicate that a Rideal-Eley mechanism is probably not important for this process. As a result of the assumptions used the experimental gas-phase and surface-coupling rates are comparable; however, it should be realized that the surface coupling calculation assumes a two-dimensional perfect gas velocity to describe the mobility of the adsorbed CH_3° radicals. The latter assumption ignores the fact that an adsorption process which would result in a high virtual pressure would also limit the mobility of the radicals across the surface.

In conclusion, the results presented here show that gas-phase coupling of methyl radicals during the catalytic oxidative coupling of CH_4 represents a major mechanistic pathway for the formation of C_2H_6 .

Acknowledgment. This research was supported by the Division of Basic Energy Sciences, Department of Energy.

Expeditious Enantioselective Syntheses of Indole Alkaloids of Aspidosperma - and Hunteria - Type

Manabu Node, Hideko Nagasawa, and Kaoru Fuji*

Institute for Chemical Research Kyoto University, Uji, Kyoto 611, Japan Received August 4, 1987

Indole alkaloids are known to possess a variety of physiological activities. The interest in *Aspidosperma* and *Hunteria* alkaloids is reflected in the numerous reports of syntheses of these alkaloids in the racemic and optically active forms.¹ The indole-2,3-quinodimethane strategy developed by Magnus² is among the most elegant racemic syntheses from the chemical point of view. The Pictet–Spengler or the Bischler–Napieralski condensation of tryptamine with the C₉ or C₁₀ unit is the most widely accepted strategy because of the general applicability.³ Here we describe

⁽⁹⁾ Warnatz, J. In Combustion Chemistry; Gardiner, W. C., Ed.; Springer-Verlag: New York, 1984; pp 197-360.

 ^{(1) (}a) Aspidosperma alkaloids: Cordell, G. A. In The Alkaloids; Manske,
 R. H. F., Rodrigo, R. G. A., Eds.; Academic Press: New York, 1979; Vol.
 XVII, p 199. (b) Hunteria alkaloids: Döpke, W. In The Alkaloid, Manske,
 R. H. F., Rodrigo, R. G. A., Eds.; Academic Press: New York, 1981; Vol.
 XX, p 297. Atta-ur-Rahman; Sultana, M. Heterocycles 1984, 22, 841.

^{(2) (}a) Magnus, P.; Gallagher, T.; Brown, P.; Pappalardo, P. Acc. Chem Res. 1984, 17, 35. (b) Magnus, P.; Pappalardo, P.; Southwell, I. Tetrahedron 1986, 42, 3215. (c) Magnus, P.; Pappalardo, P. J. Am. Chem. Soc. 1986, 108, 212 and references cited therein.

⁽³⁾ Kutney, J. P. In The Total Synthesis of Natural Products; ApSimon, J., Ed.; John-Wiley & Sons: New York, 1979; Vol. 3, p 273.

Scheme I^a

^a (a) TiCl₃/MeOH/pH5; (b) tryptamine/AcOH/reflux; (c) LiAlH₄/THF/reflux; (d) MsCl/Et₃N/CHCl₃; (e) Na/EtOH/liquid NH₃.

short efficient chiral syntheses, based on the Pictet-Spengler condensation, of two *Aspidosperma* alkaloids (+)-quebrachamine $(1)^4$ and (-)-aspidospermidine (2),⁵ and a *Hunteria* alkaloid, (-)-eburnamonine (3),⁶ all of which possess the C₉ unit as a monoterpenoid unit.

Synthesis of optically active alkaloids using the Pictet-Spengler condensation is difficult due to the lack of an efficient method for synthesizing the chiral C_9 unit. Compound 4 is an ideal chiral

(5) For the racemate, see: (a) Harley-Mason, J.; Kaplan, M.; Chem. Commun. 1967, 915. (b) Laronze, J.-Y.; Laronze-Fontaine, J.; Lévy, J.; Le Man, J. Tetrahedron Lett. 1974, 491. (c) Gallagher, T.; Magnus, P.; Huffman, J. C. J. Am. Chem Soc. 1982, 104, 1140. Gallagher, T.; Magnus, P.; Huffman, J. C. Ibid. 1983, 105, 4750. (d) N-Acetylaspidospermidine: Seki, K.; Ohnuma, T.; Oishi, T.; Ban, Y. Tetrahedron Lett. 1975, 723, ref 4c and 4k. No chiral synthesis has been reported.

(6) For the racemate, see: (a) Bartlett, M. F.; Taylor, W. I. J. Am. Chem. Soc. **1960**, 82, 5941. (b) Wenkert, E.; Wickberg, B. Ibid. **1965**, 87, 1580. (c) Soc. 1900, 82, 5941. (b) Wenkert, E.; Wickeerg, B. John. 1905, 67, 1960. Herrmann, J. L.; Kieczykowski, G. R.; Normandin, S. E.; Schlessinger, R. H. Tetrahedron Lett. 1976, 801. (d) Buzas, A.; Harrison, C.; Lavielle, G. C. R. Acad. Sci. Ser. C 1976, 283, 763. (e) Klatte, F.; Rosentreter, U.; Win-terfeldt, E. Angew. Chem. 1977, 89, 916; Angew. Chem., Int. Ed. Engl. 878. (f) Wenkert, E.; Hudlicky, T.; Showalter, H. D. H. J. Am. Chem. Soc. 1978, 100, 4893. (g) Costerousse, G.; Buendia, J.; Toromanoff, E.; Martel, J. Bull. Soc. Chem. Fr., Part 2 1978, 355. (h) Bölsing, E.; Klatte, F.; Rosentreter, U.; Winterfeldt, E. Chem. Ber. 1979, 112, 1902. (i) Herrmann, J. L.; Cregge, R. J.; Richman, J. E.; Kieczykowski, G. R.; Normandin, S. N.; Quesada, M. K. J., Richman, J. E., Rieczykowski, O. K., Hormandin, S. N., Quesada, M. L.; Semmelhack, C. L.; Poss, A. J.; Shlessinger, R. H. J. Am. Chem. Soc. 1979, 101, 1540. (j) Buzas, A.; Jacquet, J. P.; Lavielle, G. J. Org. Chem. 1980, 45, 32. (k) Irie, K.; Okita, M.; Wakamatsu, T.; Ban, Y. Nouv. J. Chem. 1980, 4, 275. Irie, K.; Ban, Y. Heterocycles 1981, 15, 201. (l) Imanishi, T.; Miyashita, K.; Nakai, A.; Inoue, M.; Hanaoka, M. Chem. Pharm. Bull. 1982, 30, 1521. (m) Massiot, G.; Oliveira, F. S.; Lévy, J. Tetrahedron Lett. 1982, 23, 177. (n) Atta-ur-Rahman; Sultana, M. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1982, 37, 793. (o) Imanishi, T.; Miyashita, K.; Nakai, A.; Inoue, M.; Hanaoka, M. Chem. Pharm. Bull. 1983, 31, 1191. (p) Attaur-Rahman; Sultana, M. J. Chem. Soc. Pak. 1984, 6, 49. (q) Kalaus, G.; Malkieh, N.; Katona, I.; Kajtar-Peredy, M.; Koritsanszky, T.; Kalman, A.; Szabo, L.; Szantay, C. J. Org. Chem. 1985, 50, 3760. (r) Shono, T.; Mat-sumura, H.; Ogaki, M.; Onomura, O. Chem. Lett. 1987, 1447, ref 2b and 4j. For the optically active form, see: (s) Novak, L.; Rohaly, J.; Szantay, C. Heterocycles 1977, 6, 1149. (t) Cartier, D.; Lévy, J.; Le Man, J. Bull. Soc. Chim. Fr. 1976, 1961. (u) Szabo, L.; Sapi, J.; Kalaus, G.; Argay, G.; Kalman, A.; Baitz-Gacs, E.; Tamas, J.; Szantay, C. Tetrahedron 1983, 39, 3737. (v) Takano, S.; Yonaga, M.; Ogasawara, K. Heterocycles 1982, 19, 1391. Takano, S.; Yonaga, M.; Morimoto, M.; Ogasawara, K. J. Chem. Soc., Perkin Trans. 1 1985, 305. (w) Magnus, P.; Brown, P. J. Chem. Soc., Chem. Commun. 1985, 184. (x) Hakam, K.; Thielmann, M.; Thielmann, T.; Winterfeldt, E. Tetrahedron 1987, 43, 2035.

^a(a) NaBH₄; (b) 5% HCl/reflux; (c) $CrO_3/H_2SO_4/acetone$; (d) DlBAH/Et₂O; (e) TsOH/MeOH/reflux; (f) tryptamine/AcOH/reflux; (g) NaOH/MeOH; (h) BF₃OEt₂; (i) $CrO_3/pyridine$; (j) LiAlH₄/Et₂O; (k) CF₃SO₃H.

 C_9 building block for the synthesis of (+)-quebrachamine (1) and compound 5 for (-)-aspidospermidine (2) and (-)-eburnamonine (3), because they possess a quarternary carbon atom bearing C_1 , C_2 , and C_3 units in different oxidation stages as well as an ethyl group indispensable to the construction of those optically active alkaloids.

The nitro olefin 6 is an efficient starting material for chiral syntheses of these units, since it has a chiral quarternary carbon with an ethyl group and the functional groups feasible for the necessary transformations. Moreover, nitro olefin 6 has been easily prepared in high yield and with a high enantiomeric excess from 2-ethyl-ô-valerolactone through asymmetric induction via an addition-elimination process that we developed recently.⁷ With use of the nitroolefin 6, we prepared 4 in a single step and 5 in five steps. Thus, treatment of the chiral nitroolefin 6 of 85% ee with TiCl₃ in methanol at pH 5 gave 4, which was immediately subjected to the Pictet-Spengler condensation with tryptamine in acetic acid to afford the tetracyclic lactam 7 (Scheme I) as a 1:1 mixture at C-3 in 84% yield in two steps. Exposure of 7 to LiAlH₄ in tetrahydrofuran (THF) gave the amino alcohols 8a and 8b in 83% combined yield. Separation by column chromatography over silica gel followed by recrystallization yielded pure

⁽⁴⁾ For the racemate, see: (a) Stork, G.; Dolfini, J. E. J. Am. Chem. Soc. 1963, 85, 2872. (b) Kuehne, M. E.; Bayha, C. Tetrahedron Lett. 1966, 1311.
(c) Kutney, J. P.; Abdurahman, N.; Le Quesne, P.; Piers, E.; Vlattas, I. J. Am. Chem. Soc. 1966, 88, 3656. Kutney, J. P.; Abdurahman, N.; Gletsos, C.; Le Quesne, P.; Piers, E.; Vlattas, I. Ibid. 1970, 92, 1727. (d) Ziegler, F. E.; Kloek, J. A.; Zoretic, P. A. Ibid. 1969, 91, 2342. (e) Takano, S.; Hatakeyama, S.; Ogasawara, K. Ibid. 1976, 98, 3022. (f) Takano, S.; Hatakeyama, S.; Ogasawara, K. Ibid. 1976, 98, 3022. (g) Takano, S.; Hatakeyama, S.; Ogasawara, K. Ibid. 1976, 98, 7024. (g) Takano, S.; Hatakeyama, S.; Ogasawara, K. Ibid. 1979, 101, 6414. (h) Giri, V. S.; Ali, E.; Pakrashi, S. C. J. Heterocycl. Chem. 1980, 17, 1133. (i) Takano, S.; Murakata, C.; Ogasawara, K. Heterocycles 1981, 16, 247. (j) Wenkert, E.; Halls, T. D.; Kwart, L. D.; Magnusson, G.; Showalter, H. D. H. Tetrahedron 1981, 37, 4017. (k) Ban, Y.; Yoshida, K.; Goto, J.; Oishi, T.; Takeda, E. Tetrahedron 1983, 39, 3657. For the optically active form, see: (l) Takano, S.; Chiba, K.; Yonaga, M.; Ogasawara, K. Ibid. 1981, 1153. (5) For the racemate, see: (a) Harley-Mason, J.; Kaplan, M.; Chem.

⁽⁷⁾ Fuji, K.; Node, M.; Nagasawa, H.; Naniwa, Y.; Terada, S. J. Am. Chem. Soc. 1986, 108, 3855.

8a [mp 155–156 °C (AcOEt-MeOH); $[\alpha]^{22}_{D} - 70.4^{\circ}$ (c 0.25, MeOH) [lit.^{4m} mp 157–158 °C; $[\alpha]_D$ –62.37°]] and **8b** [mp 194.5–195.5 °C (AcOEt); $[\alpha]^{22}_D$ + 63.3° (*c* 0.07, MeOH) [lit.^{4u} mp 193–194 °C; $[\alpha]_D$ + 61.14°]].

According to Kutney's procedure,4c quarternary ammonium salt 9 obtained on mesylation of a mixture of 8a and 8b was reduced with Na-EtOH in liquid ammonia to give crude (+)quebrachamine (1). A single recrystallization from MeOH yielded optically pure (+)-quebrachamine [mp 144–146 °C; $[\alpha]^{22}_{D}$ + 117° $(c \ 0.18, \ CHCl_3)$ [lit.⁸ mp 147–149 °C; $[\alpha]_D + 111^\circ$]] in 53% overall yield from the lactam 7. This revealed the absolute stereochemistry of 6^7 to be S.

Hemiacetal 10 was obtained when reductive denitration of 6 with TiCl₃ was conducted in dimethoxyethane. Treatment of 10 with NaBH₄ followed by refluxing in aqueous 9% HCl afforded the lactone alcohol 11 in 75% overall yield from 6 (Scheme II). Conversion of 11 into the acetal 5 was accomplished in 76% overall yield through three steps involving the Jones oxidation and partial reduction with diisobutylaluminum hydride (DIBAH), followed by treatment with p-toluenesulfonic acid in methanol. Condensation of 5 with tryptamine proceeded in acetic acid to afford a 1:1 mixture of tetracyclic lactams 12a and 12b in 84% overall yield from 5 after hydrolysis. Enantiomeric enrichment of 12a and 12b was carried out after separation with short-path column chromatography on silica gel and gave optically pure lactams 12a [mp 263-265 °C dec (aqueous MeOH); $[\alpha]^{22}_{D}$ -195.5° (c 0.16, MeOH)] and 12b [mp 107–108.5 °C (aqueous MeOH); $[\alpha]^{22}$ +88.3° (c 0.13, MeOH)]. The Sarett oxidation of the optically pure lactam alcohol 12a afforded dilactam 13 in 53% yield. (-)-Eburnamonine (3) [mp 171–172 °C (MeOH); $[\alpha]^{22}_{D}$ –88° (c 0.09, CHCl₃) [lit.⁹ mp 173–174 °C; $[\alpha]_{D}$ –85°]] was obtained in 74% yield from 13 through reduction with LiAlH₄ followed by the Sarett oxidation.¹⁰ This transformation confirmed the α -configuration of H(3) in 12a. Since 12a and 12b were shown to establish an equilibrium in the approximate ratio of 1:1 in boron trifluoride-etherate at 35-40 °C after 10 h, the lactam 12a necessary for the synthesis of (-)-eburnamonine (3) could be obtained from 12b.

The behavior of 12a against protic acids is totally different from boron trifluoride-etherate.¹¹ Thus, 12a was converted into 14 in triflic acid at 100-110 °C for 45 min in 60% yield along with the eburnamine-type lactams 15a (20%) and 15b (12%). Reduction of 14 with $LiAlH_4$ afforded (-)-aspidospermidine (2), which was characterized as acetate 16 (81% from 14) $[[\alpha]^{22}_{D}$ + 14.1° (c 0.31, CHCl₃) [lit.¹² $[\alpha]_D$ –15°]].

Recently, (-)-eburnamonine (3), (+)-eburnamine (17), and (-)-eburnamenine (18) were synthesized via the optically active bicyclic acetal 19 as a key intermediate. The latter was prepared

in more than 10 steps and resulted in a 13% overall yield from L-glutaric acid.^{6v} We prepared 19 [mp 89–90 °C (Et₂O); $[\alpha]^{22}$ _D

+ 5.4° (c 1.47, CH₂Cl₂) [lit.^{6v} mp 82–85 °C, $[\alpha]_{D}$ + 6.7°]] from 6 in 74% yield with TiCl₃ in DME followed by treatment with p-toluenesulfonic acid in benzene. This completed an extremely short synthesis of these alkaloids in a formal sense. Since the quarternary salt 9 has been transformed into vincadine (20),¹³ epi-vincadine (21),¹³ vincaminoreine (22),¹⁴ vincaminorine (23),¹³ vincadifformine (24),¹³ minovine (25),¹³ vincamine (26),¹⁵ and apovincamine (27),¹⁶ the synthesis of optically active 9 constitutes the total syntheses of those alkaloids in optically active form though in a formal sense. Formal total syntheses of optically active isoeburnamine (28) and 1,2-dehydroaspidospermidine (29) could also be done, because these alkaloids had been derived from dilactam 13^{6a} and quebrachamine (1),¹⁷ respectively.

Acknowledgment. We are grateful to Professor Seiichi Takano (Tohoku University, Japan) for providing us with ¹H NMR and IR spectra of (\pm) -quebrachamine and the authentic sample of optically active 19. We are also grateful to Professor James P. Kutney (University of British Columbia, Canada) for sending us ¹H NMR and IR spectra of **8a** and **8b**.

(16) Lewin, G.; Poisson, J. Tetrahedron Lett. 1984, 25, 3813.

(17) Bycroft, B. W.; Schumann, D.; Patel, M. B.; Schmid, H. Helv. Chim. Acta 1964, 47, 1147.

Assistance of Protodemercuration by Bis-Thiol Ligation and Nucleophilic Catalysis. A Model Study Which **Relates to the Organomercurial Lyase Reaction**

Enona Gopinath and Thomas C. Bruice*

Chemistry Department, University of California at Santa Barbara, Santa Barbara, California 93106 Received July 13, 1987

The first step in the microbial detoxification of organomercurial salts is the protonolytic cleavage of the carbon-mercury bond.¹ Organomercurial lyase enzymes that catalyze the protodemercuration of alkyl, aryl, allyl, and vinyl-mercury salts have been isolated from Escherichia coli and from Pseudomonas.²⁻⁴ Neither enzyme possesses a cofactor. At least $2 \times$ excess of thiol over substrate is required for activity. These enzymes show optimal activity at remarkably low [H⁺]. The E. coli enzyme^{2,3} shows optimal activity at pH 10 and the Pseudomonas enzyme⁴ at pH 7. Aspects of the enzymatic reaction must, therefore, increase the susceptibility of the C-Hg bond to protonolysis. We establish in this preliminary report a plausible means by which the susceptibility of the C-Hg bond is enhanced in the organomercurial lyase reaction.

The water-soluble 1b was obtained in >95% purity (¹H NMR, ¹³CNMR, elemental analysis) by reacting sodium 2-methylnaphthalene 6-sulfonate (1 mM) with mercuric nitrate (1 mM)

at 85 °C in 10 mL of 0.57 M HClO4 followed by reversed phase

⁽⁸⁾ Walls, F.; Collera, O.; Sandoval, A. Tetrahedron 1958, 2, 173.
(9) Döpke, W.; Meisel, H. Pharmazie 1966, 21, 444.

^{(10) (+)-}Dilactam 13 was converted into (+)-eburnamonine previously, see: ref 6a.

⁽¹¹⁾ In ref 5a, it is reported that a racemate of 12 (the relative configuration was not specified) afforded 14 on treatment with boron trifluoride etherate at 100 °C. However, poor yield of 14 was obtained with our hands.

⁽¹²⁾ Ferreira, J. M.; Gilbert, B.; Owellen, R. J.; Djerassi, C. Experientia 1963, 19, 585.

⁽¹³⁾ Kutney, J. P.; Chan, Y. K.; Failli, A.; Fromson, J. M.; Gletsos, C.; Leutwiler, A.; Nelson, V. R.; de Souzu, J. P. Helv. Chim. Acta 1975, 58, 1648. (14) Mokry, J.; Kompis, I. Lloydia 1964, 27, 428

⁽¹⁵⁾ Danieli, B.; Lesma, G.; Palmisano, G. J. Chem. Soc., Chem. Commun. 1981, 908.

⁽¹⁾ Robinson, J. B.; Touvinen, O. H. Microbiological Re. 1984, 48(2), 951. (2) Begley, T. P.; Walts, A. E.; Walsh, C. T. Biochemistry 1986, 25,

⁽³⁾ Begley, T. P.; Walts, A. E.; Walsh, C. T. Biochemistry 1986, 7192.

⁽⁴⁾ Tezuka, T.; Tonomura, K. J. Biochem. 1976, 80, 79.