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Abstract: A simple and general procedure for preparation of various phosphotyrosine 
mimetics from the corresponding phenolic precursors is described. In situ silylation of 
phenol acids followed by treatment with Et~V/CBr,/HP(O)(OEt)2 provides diethyl phosphate 
intermediates (36-96%), which can be cleanly deprotected in quantitative yields upon 
treatment with BSTFA/TMSI to afford novel phosphotyrosine mimetics. 
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Combinatorial organic synthesis has recently emerged as an important tool in drug discovery) In our 

efforts aimed at discovery of novel SH2 ligands, 2 we became interested in the rational design and synthesis of 

libraries incorporating phosphotyrosine and related constrained and desamino mimetics. This called for an easy 

access to such appropriately protected building blocks. Phosphotyrosine peptides have been typically prepared 

either by direct phosphorylation of corresponding tyrosine peptides (global phosphorylation) or by incorporation 

of protected phosphotyrosine as an amino acid building block in a regular peptide synthesis. 3 The latter route is 

more convenient and versatile, and is better suited for a combinatorial chemistry based approach. Several different 

phosphate protecting groups have been utilized for this purpose:  However, each protecting group, based on its 

specific nature and tolerance to various reagents, dictates and limits the scope for structural diversity in the 

remainder of the molecule: An attractive alternative which avoids protecting group related issues involves direct 

utilization of Fmoc-phosphotyrosine devoid of any protecting groups on the phosphate group. 6 We've 

successfully employed the latter approach for synthesis of phosphotyrosine peptides as well as the isosteric 4- 

phosphono (difluormethyl)-phenylalanine peptides. 7 In order to extend the utility of this procedure to various 

constrained and modified analogs, a mild and convenient synthetic protocol for conversion of tyrosine and related 

phenolic compounds into the corresponding phosphorylated building blocks was required. 
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A direct one-step conversion of tyrosine to phosphpotyrosine using pyrophosphoric acid has been 

reported, wherein the final product is conveniently precipitated using t-butanoL s Attempted application of this 

procedure to various tyrosine mimetics confronted us with the tedious task of isolating highly polar and non- 

crystallizable products from the reaction mixture. Another common alternative is treatment with 

phosporamidates followed by oxidation with peroxide reagents. 9 After some experimentation, this route was 

disfavored because of high expense and limited stability of phosphoramidates, and non-compatibility of the latter 

step with oxidizable functionalities. Finally, a two step synthetic protocol outlined in Scheme I was developed 

and found to be optimal in terms of convenience, versatility, and ease of synthesis. The first step involves in situ 

silylation of phenol acid I followed by treatment of the silyl ester with carbon tetrabromide, 1° diethylphosphite, 

and triethylamine leading to the formation of diethyl phosphonate intermediate 2.11 After silica gel flash 

chromatography purification, compound 2 is treated with bis(trimethylsilyl)trifluoroacetamide (BSTFA) and 

trimethylsilyl iodide (TMSI) in dichloromethane to afford the desired phosphate 3 in essentially quantitative 

yield.12 Compound 3 can be utilized directly without purification for synthesis of phosphotyrosine peptides.~3 

(X. H, NRFmoc,etc.) 36-96% 
1 2 3 

Several features pertaining to the synthetic simplicity of this procedure are noteworthy. The reagents 

required for this transformation are readily available. The final phosphorylated products 3 are highly polar in 

nature and will have to be typically purified by reverse phase HPLC or ion exchange chromatography. However, 

this is not necessary since the conversion of penultimate diethyl phosphate intermediates 2 to the final products 

using BSTFA/TMSI proceeds cleanly and quantitatively. Thus, purification is conveniently carried out at the 

diethylphosphate stage by silica gel flash chromatography. Additionally, it is important to realize that 

diethylphosphate precursors such as 2 may themselves find direct utility in specific instances where 

functionalities on the remainder of the molecule are incompatible with a free phosphate group during the course of 

synthesis. 

The synthetic protocol has been successfully extended to the preparation of various novel phosphorylated 

analogs from the corresponding tyrosine mimetics (compounds 4-25). 14 Preparation of Fmoc-protected alpha 

methyl (9, 75%), meta (11, 87%), and desamino (13, 96%) phosphotyrosine analogs proceeded in high yields. 
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Synthesis of the three regioisomers in cirmamoyl series (15, 17, and 19) was also uneventful (70-86%). The yields 

for tetrahydroisoquinoline (Tic) type constrained phosphptyrosine analogs (21 and 23) are unoptimized (36- 

38%). This is probably not a general problem associated with such constraied analogs, as evident by high yields 

of the corresponding meta regioisomer (25, 88%). 
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A wide variety of tyrosine mimetics are reported in the literature, 15 and the current study offers a practical 

approach for their conversion and utility as phosphotyrosine mimetics. Coupling this synthetic method 

advantageously with combinatorial chemistry as a drug discovery tool provides opportunities for preparing and 

screening a large number of structurally diverse and novel SH2 ligands that may find utility in treatment of 

diseases associated with signal transduction. 
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