Accepted Manuscript

Research paper

Novel phosphorus-coordinated palladium(II) complexes derived from 3,5-disubstituted-*1H*-1,2,4-diazaphospholes: synthesis and catalytic application in Suzuki-Miyaura cross-coupling reactions

Xuefeng Jia, Fang Zhao

PII:	\$0020-1693(16)30719-8
DOI:	http://dx.doi.org/10.1016/j.ica.2017.02.020
Reference:	ICA 17446
To appear in:	Inorganica Chimica Acta

Received Date:27 October 2016Revised Date:16 February 2017Accepted Date:17 February 2017

Please cite this article as: X. Jia, F. Zhao, Novel phosphorus-coordinated palladium(II) complexes derived from 3,5-disubstituted-*1H*-1,2,4-diazaphospholes: synthesis and catalytic application in Suzuki-Miyaura cross-coupling reactions, *Inorganica Chimica Acta* (2017), doi: http://dx.doi.org/10.1016/j.ica.2017.02.020

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Contents lists available at ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

Novel phosphorus-coordinated palladium(II) complexes derived from 3,5disubstituted-*1H*-1,2,4-diazaphospholes: synthesis and catalytic application in Suzuki-Miyaura cross-coupling reactions

Xuefeng Jia,^{*} Fang Zhao

School of Chemical and Material Science, Shanxi Normal University, Linfen, 041004, China

ARTICLE INFO

ABSTRACT

Article history: Received xx Received in revised form xx Accepted xx Available online xx

Keywords:

Palladium(II) complexes 1H-1,2,4-diazaphospholes Suzuki-Miyaura cross-coupling Aryl halides Arylboronic acids Four novel phosphorus-coordinated palladium(II) complexes(I-IV) were easily prepared by the reaction of 3,5-disubstituted-*1H*-1,2,4-diazaphospholes with $Pd(CH_3CN)_2Cl_2$ at room temperature and characterized. The catalytic activity of palladium(II) complexes was further evaluated in Suzuki-Miyaura reaction of aryl halides with arylboronic acids, giving the biphenyl derivatives in good yields.

2009 Elsevier Ltd. All rights reserved.

1. Intrduction

Palladium-catalyzed Suzuki-Miyaura reactions are one of the most versatile methods for the formation of C-C bonds in synthetic organic chemistry [1]. Over the past decades, special attention has been concentrated on synthesis of different palladium complexes and their activity in Suzuki-Miyaura coupling reactions. For example, N-heterocyclic carbenebased palladium complexes have proved to be excellent catalysts for C-C coupling reactions of organic halides with arylboronic acids [2-3]. Various pincer-type palladium complexes containing tridentate N-donor ligands have also been synthesized and applied to this reaction [4-5]. Besides that, many phosphine-based ligands were successfully used palladium-catalyzed Suzuki-Miyaura cross-coupling for reactions [6-8]. In 2010, Buchwald and co-worker reported synthesis of 2-aminobiphenyl-derived the palladium complexes with XPhos ligands and their application in

complexes with biaryl-like KITPHOS and dihydro-KITPHOS monophosphines ligands were used for these coupling reactions by Doherty's group [10]. In 2012, Fernández and Lassaletta documented phosphino hydrazones as efficient ligands in the palladium-catalyzed asymmetric Suzuki-Miyaura reactions [11]. In addition, the air-stable $PdCl_{2}{P^{t}Bu_{2}(p-NMe_{2}-Ph)}_{2}$ complexes were also employed in the cross-coupling reactions of aryl/heteroaryl chlorides with arylboronic acids [12] or potassium dioxolanylethyltrifluoroborate [13] as coupling partners. Yamamoto's group further developed the coupling reaction of tetrabutylammonium 2-pyridyltriolborate salts with various aryl/heteroaryl chlorides under PdCl₂dcpp {dcpp=1,3-bis (dicyclohexylphosphino)propane} and CuI/MeNHCH₂CH₂OH combined systems [14]. Very recently, Schoenebeck and co-worker achieved the air-stable dinuclear iodine-bridged palladium(I) complex as the catalyst for Suzuki-Miyaura cross-coupling reactions [15].

Suzuki-Miyaura reactions [9]. Subsequently, the palladium

^{*} Corresponding author. Tel.: +86-150-3435-8409; fax: +86-357-205-8711; E-mail: jxfliu@163.com

Although significant progress has been achieved in this field, the exploration of new palladium catalyst in Suzuki-Miyaura Reactions remains highly desirable. Herein, we report the synthesis and structural characterization of several palladium complexes using 3,5-disubstituted-1H-1,2,4-diazaphospholes {H[3,5- R_2 dp] (R = H, *i*-Pr, Ph, *t*-Bu) [16] as heteroatomcontaining monophosphine ligands and their catalytic performance in Suzuki-Miyaura reactions of aryl halides with arylboronic acids. To our knowledge, the use of a heteroatom-substituted phosphine as ligands for palladium-catalyzed Suzuki-Miyaura couplings is rarely studied [17]. More importantly, our palladium complexes are also air-stable and tunable catalyst, which may be conveniently applied in organic synthesis.

2. Results and discussion

2.1. Synthesis and characterization of palladium complexes(*I-IV*)

As described in Scheme 1, phosphorus-coordinated palladium(II) complexes I-IV were easily prepared by the reaction of H[3,5-R₂dp] (R = H, *i*-Pr, Ph, *t*-Bu) with Pd(CH₃CN)₂Cl₂ in anhydrous CH₃CN at room temperature. These complexes were isolated as solid with good yields (49% for I; 84% for II; 77% for III; 95% for IV, respectively) and characterized by NMR, IR spectroscopy, HRMS and elemental analysis. The ³¹P NMR spectroscopy of I-IV revealed that the chemical shift of phosphorous atom had a slight changes in comparison to those of H[3,5-R₂dp] (R = H, *i*-Pr, Ph, *t*-Bu), which confirmed the formation of palladium(II) complexes bearing heteroatom-containing monophosphine ligands.

$$\begin{array}{c} 2 & R \xrightarrow{Pd}(CH_{3}CN)_{2}CI_{2} \\ HN-N & \hline CH_{3}CN, RT \end{array} \xrightarrow{R} & \begin{array}{c} CI & R \\ N \xrightarrow{P} \xrightarrow{Pd} & Pd \xrightarrow{R} & Pd \xrightarrow{R} \\ N \xrightarrow{P} \xrightarrow{N} & Pd \xrightarrow{R} & Pd \xrightarrow{R} \\ CI & R \\ R & R \end{array}$$

Scheme 1. Synthesis of palladium complexes I-IV

To further identify the coordination mode of *1H*-1, 2, 4-diazaphosphole with palladium atom, we tried to crystallize four palladium complexes in different

solvents. Complex I is insoluble in common organic solvents such as CH₂Cl₂, CHCl₃ and CH₃CN, but slight soluble in DMSO. Complex II is well soluble in CH₂Cl₂ and complex III-IV may dissolve in CH₃OH. However, attempts to get single crystal of I-III at this stage were not successful. Fortunately, the single crystal of IV was obtained by slow evaporation of methanol solution at 4 °C and molecular structure was determined by X-ray diffraction [18]. X-ray structural analysis displayed that complex IV crystallized in monoclinic with P2(1)/c space group. As shown in Fig. 1, the central Pd ions take a precisely planar geometry with two phosphorus atoms from both H[3,5-t-Bu₂dp] and two chlorine atoms. The ligand of $H[3,5-t-Bu_2dp]$ adopts monodentate coordination mode. The selected bond length(Å) and angle(°) for **IV** were listed in Table 1. The Cl(1) - Pd(1) - P(1)angle is 90.28(5)° and the Cl(1)-Pd(1)-P(1A) angle is 89.72(5)°. The bond angles of both Cl(1)-Pd(1)-Cl(1A) and P(1A)-Pd(1)-P(1) are 180.0°. These data demonstrate that Pd ions take a precisely planar geometry. The distance of Pd-P bond (2.2987 Å) in **IV** is longer than those in palladium(**II**) complexes with novel bidentate phosphine ligand (Pd-P 2.2308 Å) [8b] or Buchwald-Type secondary phosphine oxide ligands (Pd-P 2.2595 or 2.2735 Å) [8c]. But the Pd–Cl bond length (2.2877 Å) is shorter than the average distance of these palladium(II) complexes (Pd-Cl 2.338 Å or 2.376 Å) [8b, 8c] and 3,5-di-*tert*-butyl-1H-pyrazolebased palladium(II) complexes (Pd-Cl 2.3158 Å) [19].

Fig. 1 X-ray crystal structure of palladium complex IV

Table 1

Selected bond length(Å) and angle(°) for IV

Pd(1)-P(1)	2.2987(11)	P(1)-Pd(1)-P(1A)	180.0
Pd(1)-Cl(1)	2.2877(16)	Cl(1)-Pd(1)-Cl(1A)	180.0

P(1)-C(2)	1.726(4)	Cl(1)-Pd(1)-P(1),	90.28(5)
P(1)-C(1)	1.728(4)	Cl(1)-Pd(1)-P(1A)	89.72(5)
N(1)-C(1)	1.327(5)	C(2)-P(1)-C(1)	91.4(2)
N(1)-N(2)	1.350(6)	C(2)-P(1)-Pd(1)	134.92(16)
N(2)-C(2)	1.336(5)	C(1)-P(1)-Pd(1)	133.62(15)

2.2. Catalytic activity of palladium complexes (I-IV)

Once palladium complexes I-IV were synthesized and characterized, we next investigate the catalytic activity of these complexes in Suzuki-Miyaura cross-coupling reaction. Initially, 4-bromoacetophenone (1a) and phenylboronic acid (2a) was chosen as model substrates to screen reaction conditions and the results were summaried in Table 2. When the reaction of 1a with 2a were carried out in DMF at 110°C using Cs₂CO₃ as a base in the presence of 8 mol% palladium complexes, we found that palladium complexes I-IV exhibited different catalytic activity and the desired product (3aa) were obtained in moderate to good yields (Table 2, entries 1-4). Among them, the activity of complex IV was greatly superior to other complexes I-III, which indicated that the substituted group (H, *i*-Pr, Ph, *t*-Bu) on *1H*-1, 2, 4diazaphospholes had obvious effect on catalytic activity of palladium complexes. Subsequently, the impact of the base on this model reaction was investigated empolying the complexe IV as palladium catalyst. When Cs_2CO_3 was replaced by other base such as K₂CO₃, KOH and Et₃N, the yield of **3aa** sharply reduced ranging from 99%, 82%, 62% to 34% (Table 2, entries 4-7). Thus Cs₂CO₃ was best choice to obtain high yields. When the reaction was performed in DMSO at 110°C, 3aa was isolated in 65% yield (Table 2, entry 8). So DMF should be better solvent. Then the effect of temperature on the reaction was also surveyed. The yield of coupled product obviously decreased after the reaction of 1a with 2a took place in DMSO or DMF at 160°C for 24 hours (Table 2, entries 9 and 10). Finally, we performed this coupling reaction at lower catalyst loading (5 mol% and 1 mol%), affording the desired product (3aa) with 92% and 44% yields respectively (Table 2, entries 11 and 12). As a result, the optimal reaction conditions were established as

follows: Pd complex **IV** (8 mol%), Cs_2CO_3 (2 equiv), and 1a/2a = 1:1.5 in DMF (1 mL) at 110°C for 24h.

3

Table 2

Screening for optimal reaction conditions ^a

H ₃ COC		-B(OH) ₂ -	Pd catalyst base, solvent	н₃сос-{	$\rightarrow \rightarrow$
	1a	2a		:	3aa
Entry	Pd catalyst	Base	Solvent	T (°C)	Yield ^b (%)
1	Ι	Cs_2CO_3	DMF	110	71
2	II	Cs_2CO_3	DMF	110	51
3	III	Cs ₂ CO ₃	DMF	110	54
4	IV	Cs ₂ CO ₃	DMF	110	99
5	IV	K ₂ CO ₃	DMF	110	82
6	IV	КОН	DMF	110	62
7	IV	Et ₃ N	DMF	110	34
8	IV	Cs ₂ CO ₃	DMSO	110	65
9	IV	Cs ₂ CO ₃	DMSO	160	54
10	IV	Cs_2CO_3	DMF	160	71
11°	IV	Cs ₂ CO ₃	DMF	110	92
12 ^d	IV	Cs ₂ CO ₃	DMF	110	44

^a Reaction conditions: **1a** (0.15 mmol), **2a** (0.225 mmol, 1.5 equiv), Pd catalyst (8 mol %), base (0.3 mmol, 2 equiv) in solvent (1.0 mL) at the indicated temperature for 24h.

^b Isolated yield.

^c Palladium complex IV (5 mol%) was used.

^d Palladium complex IV (1 mol%) was used.

With an optimized catalyst system in hand, the substrate scope for palladium-catalyzed Suzuki-Miyaura coupling reaction was evaluated. As summarized in Table 3, the reaction of several aryl bromide bearing different groups with phenylboronic acid were firstly carried out. The experiment results demonstrated that aryl bromide with electron-withdrawing groups (4-acetyl, 4formyl) exhibited high reactivity than those containing electron-donating groups (4-OMe, H) in this transformation (Table 3, entries 1, 2 vs entries 3, 4). Then a variety of arylboronic acids were employed as substrate to react with 4-bromoacetophenone (1a). Substrates with methyl group (2b), *tert*-butyl group (2c) and methoxy group (2d) at the para-position gave the corresponding products 3ab-3ae in 76-94% yields entries 5-7). Ortho-methyl-substituted (Table 3. arylboronic acid (2e) also furnished the desired product

3ae with 86% yield (Table 3, entry 8). The lower yields of the products were obtained when substrates bearing electron-withdrawing group (4-F, 3-Cl) at the para- or meta-position were used (Table 3, entries 9-10). However, meta-nitro-substituted phenylboronic acid proved to be poor substrate under optimal conditions (Table 3, entry 11). But to our delight, the reaction of 1naphthyl boronic acid (2i) with 4-bromoacetophenone (1a) led to the product 3ai in 55 % yield (Table 3, entry 12). These results revealed that arylboronic acid with electron-donating substituents (4-OMe, 4-t-Bu, 2-Me) was favorable to this coupling reaction. Sequently, we performed the Suzuki-Miyaura reaction of 4methoxyphenylboronic acid (2d)with 4bromobenzaldehye (1b) and 4-bromoanisole (1c) under standard conditions, providing the product 3bd and 3cd in good yields (82% for **3bd**; 78% for **3cd**, respectively) (Table 3, entry 13 vs entry 15). Surprisely, the reaction of 3-chlorophenylboronic acid (2g) with 1b afforded the coupling product **3bg** in 95% yield and 4-bromoanisole (1c) reacted with 2e to give 3ce in 91% yield (Table 3, entry 14 vs entry 16). These data indicated that steric hindrance of substituents on the aryl rings had obvious influence on substrate reactivity to a certain extent. Finally, the reactivity of aryl chloride was further explored. The reaction of 4-chloroacetophenone (1e) with several arylboronic acid such as 2a, 2c, 2d, 2e proceeded smoothly and offered the corresponding products in moderate to good yield (Table 3, entries 17-20).

Table 3

Palladium-catalyzed Suzuki-Miyaura coupling of aryl halides with different arylboronic acids ^{*a*}

$\begin{array}{c} B & \begin{array}{c} & & \\ & & \\ & & \\ & 1 \end{array} & B(OH)_2 & \begin{array}{c} Complex \ IV \ (8 \ mol\%) \\ & & Cs_2CO_3, \ DMF, \ 110^{\circ}C \end{array} & \begin{array}{c} B & \\ & & \\ $					
Entry	1(R)	X	2(R')	3	Yield ^b (%)
1	1a (4-COCH ₃)	Br	2a (H)	3aa	99
2	1b (4-CHO)	Br	2a (H)	3ba	88
3	1c (4-OCH ₃)	Br	2a (H)	3ca	83
4	1d (H)	Br	2a (H)	3da	69
5	1a (4-COCH ₃)	Br	2b (4-CH ₃)	3ab	76

6	1a (4-COCH ₃)	Br	2c (4- <i>t</i> -Bu)	3ac	77	
7	1a (4-COCH ₃)	Br	2d (4-OCH ₃)	3ad	94	
8	1a (4-COCH ₃)	Br	2e (2-CH ₃)	3ae	86	
9	1a (4-COCH ₃)	Br	2f (4-F)	3af	72	
10	1a (4-COCH ₃)	Br	2g (3-Cl)	3ag	72	
11	1a (4-COCH ₃)	Br	2h (3-NO ₂)	3ah	ND ^c	
12	1a (4-COCH ₃)	Br	2i (1-Naphthyl boronic acid)	3ai	55	
13	1b (4-CHO)	Br	2d (4-OCH ₃)	3bd	82	
14	1b (4-CHO)	Br	2g (3-Cl)	3bg	95	
15	1c (4-OCH ₃)	Br	2d (4-OCH ₃)	3cd	78	
16	1c (4-OCH ₃)	Br	2e (2-CH ₃)	3ce	91	
17	1e (4-COCH ₃)	Cl	2a (H)	3ea	51	
18	1e (4-COCH ₃)	Cl	2c (4- <i>t</i> -Bu)	3ec	56	
19	1e (4-COCH ₃)	Cl	2d (4-OCH ₃)	3ed	71	
20	1e (4-COCH ₃)	Cl	2e (2-CH ₃)	3ee	48	

^{*a*} Reaction conditions: aryl halides **1** (0.15 mmol), arylboronic acid **2** (0.225 mmol, 1.5 equiv), Pd complex **IV**(8 mol %), Cs₂CO₃ (0.3 mmol, 2 equiv) in DMF (1.0 mL) at 110°C for 24h. ^{*b*} Isolated yield.

 $^{\circ}$ ND = not detected.

3. Experimental

3.1 General information

All the reactions were performed under argon atmosphere using standard vacuum line techniques. The solvents were dried and distilled according to standard method. 3,5disubstituted-1H-1,2,4-diazaphospholes were synthesized according to reported procedure [16c]. Pd(CH₃CN)₂Cl₂ was used immediately after preparation. Preparative thin layer chromatography was carried out on GF-254 silica gel using petroleum ether/ethyl acetate as the eluent. The ¹H, ³¹P and ¹³C NMR spectra were obtained on 600 MHz spectrometers. The NMR data were reported as chemical shift (δ ppm) and coupling constants (J) were recorded in hertz unit (Hz). C, H, and N analyses were measured on an elemental analyzer. Infrared (IR) spectra were recorded as KBr pellets on FT-IR spectrometer. HRMS were measured on a TOF mass analyzer. The X-ray diffraction data of complex IV were collected with Oxford diffractometer using graphite-monochromated Mo Ka radiation ($\lambda = 0.71073$ Å). The structures were solved by the direct method and refined through full-matrix least-squares techniques method on F² using the SHELXL 2014 crystallographic software package[20].

3.2 Syntheses

3.2.1 Synthesis of $Pd\{H[3, 5-H_2dp]\}_2Cl_2(I)$

In a 100ml Schlenk flask, PdCl₂ (89 mg, 0.5 mmol) was dissolved in 20 ml of anhydrous CH₃CN and the mixture was refluxed for one hour to obtain the yellow solution of Pd(CH₃CN)₂Cl₂. After cooling to room temperature, a solution of 1H-1,2,4-diazaphospholes {H[3,5-H₂dp]} (95 mg, 1.1 mmol) in anhydrous CH₃CN (10 mL) was added. A vellow-green precipitate appeared immediately and the reaction mixture was stirred for 12 hours at room temperature. The resulting precipitate was filtered off, washed with CH₃CN (5 mL×3) and dried under vacuum. The product was afforded as yellow-green solid. No ¹H and ¹³C NMR data are available due to the low solubility of complex I in common organic solvents, but ³¹P NMR data was obtained. Yield: 85 mg, 49%; m.p. 208-210°C; ³¹P NMR (242 MHz, DMSO-d₆): δ 82.1. IR (KBr): v 3453, 3167, 3095, 2941, 1631, 1179, 1048, 655 cm⁻¹. HRMS (ESI): m/z calcd for C4H6Cl2N4P2PdNa: 370.8378 $[M+Na]^+$; found 370.8382. Anal. Calcd for C₄H₆N₄P₂PdCl₂: C, 13.75; H, 1.73; N, 16.04; found: C, 14.03; H, 1.68; N, 15.96.

3.2.2 Synthesis of $Pd{H[3,5-iPr_2dp]}_2Cl_2(\mathbf{II})$

As described for **I**, palladium complexe **II** was prepared by the same procedure with PdCl₂ (53 mg, 0.3 mmol) and 3,5-di*iso*-propyl-*1H*-1,2,4-diazaphospholes {H[3,5-*i*Pr₂dp]} (102 mg, 0.6 mmol). The product was afforded as pale-yellow solid. Yield: 130 mg, 84%; m.p. 180-182 °C; ¹H NMR (600 MHz, CD₂Cl₂): δ 12.87 (s, 2H, NH), 4.58-4.53 (m, 2H), 2.95-2.89 (m, 2H), 1.55 (d, *J* = 7.2 Hz, 12H), 0.93 (d, *J* = 6.6 Hz, 12H); ¹³C NMR (150 MHz, CD₂Cl₂): δ 33.87, 33.77, 29.55, 29.46, 25.05, 24.99, 24.33, 24.28; ³¹P NMR (242 MHz, CD₂Cl₂): δ 78.0. IR (KBr): υ 3441, 3122, 2967, 2930, 2866, 1627, 1463, 1390, 1043, 721 cm⁻¹. HRMS (ESI): m/z calcd for C₁₆H₃₀Cl₂N₄P₂PdNa: 539.0256 [M+Na]⁺; found 539.0252. Anal. Calcd for C₁₆H₃₀N₄P₂PdCl₂: C, 37.12; H, 5.84; N, 10.82; found: C, 37.45; H, 5.62; N, 11.05.

3.2.3 Synthesis of $Pd{H[3,5-Ph_2dp]}_2Cl_2(III)$

As described for **I**, palladium complexe **III** was prepared by the same procedure with $PdCl_2$ (53 mg, 0.3 mmol) and 3,5diphenyl-*1H*-1,2,4-diazaphospholes {H[3,5-Ph₂dp]} (143 mg, 0.6 mmol). The product was afforded as dark-red solid. Yield: 150 mg, 77%; m.p. 170-172°C; ¹H NMR (600 MHz, CD₃OD): δ 7.84 (d, J = 6.6 Hz, 5H), 7.44 (d, J = 7.2 Hz, 7H), 7.41-7.37 (m, 5H), 7.31 (dd, J = 1.2, 7.2 Hz, 2H), 7.26 (t, J = 6.6 Hz, 1H); ¹³C NMR (150 MHz, CD₃OD): δ 129.1, 128.7, 128.6, 126.1, 126.0; ³¹P NMR (242 MHz, DMSO-d₆): δ 72.9. IR (KBr): v 3450, 3140, 2958, 2858, 1627, 1490, 1454, 1271, 1007, 752, 688 cm⁻¹. HRMS (ESI): m/z calcd for C₂₈H₂₂Cl₂N₄P₂PdNa: 674.9630 [M+Na]⁺; found 674.9635. Anal. Calcd for C₂₈H₂₂N₄P₂PdCl₂: C, 51.44; H, 3.39; N, 8.57; found: C, 51.18; H, 3.52; N, 8.47.

3.2.4 Synthesis of Pd{H[3, 5-tBu₂dp]}₂Cl₂(IV).

As described for **I**, palladium complexe **IV** was prepared by the same procedure with PdCl₂ (67 mg, 0.38 mmol) and 3,5di-*tert*-butyl-*1H*-1,2,4-diazaphospholes {H[3,5-*t*Bu₂dp]} (150 mg, 0.76 mmol). The product was afforded as orange-yellow solid. Suitable single crystal for X-ray diffraction was obtained by the slow evaporation of the methanol solution of **IV** at 4 °C. Yield: 207 mg, 95%; m.p. 177-179°C; ¹H NMR (600 MHz, CD₃OD): δ 1.59 (s, 18H), 1.38 (s, 18H); ¹³C NMR (150 MHz, CD₃OD): δ 30.71; ³¹P NMR (242 MHz, CD₃OD): δ 64.0. IR (KBr): υ 3429, 3177, 2958, 2866, 1627, 1472, 1363, 1253, 1099, 1016, 807 cm⁻¹. HRMS (ESI): m/z calcd for C₂₀H₃₈Cl₂N₄P₂PdNa: 595.0882 [M+Na]⁺; found 595.0885. Anal. Calcd for C₂₀H₃₈N₄P₂PdCl₂: C, 41.86; H, 6.67; N, 9.76; found: C, 41.72; H, 6.54; N, 9.95.

3.3 General procedure for palladium-catalyzed Suzuki-Miyaura coupling reactions

A 25 mL Schlenk tube was charged with aryl halides **1** (0.15 mmol), arylboronic acids **2** (0.225 mmol, 1.5 equiv), Cs_2CO_3 (0.3 mmol, 2 equiv), Pd catalyst (8 mol%) and DMF (1.0 mL). Then the tube was sealed and heated to 110°C in oil bath. After stirring for 24h, the reaction mixture was cooled and extracted with ethyl acetate. The combined organic phase was concentrated and purification of the residue by preparative thin layer chromatography furnished the corresponding product **3**.

4. Conclusion

In summary, we have reported on synthesis, characterization and catalytic studies of four novel

palladium(II) complexes(**I-IV**) ligated with phosphorus atom of both 3,5-disubstituted-*1H*-1,2,4-diazaphospholes heterocycles and two chlorine atoms. The crystal structure of complex **IV** was confirmed by X-ray diffraction. The palladium complexes **IV** proved to be better catalyst for Suzuki-Miyaura cross-coupling reactions, which could tolerate many functional groups such as Me, MeO, *t*-Bu, F, Cl, 1-naphthyl, 4-acetyl, 4formyl and provide the corresponding products in good to excellent yields (up to 99%).

Acknowledgements

This project is financially supported by Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (STIP 2015157). Undergraduate Training Programs for Innovation and Entrepreneurship of Shanxi Province (2013156) and Teaching Reform Project of Shanxi Normal University (SD2014JGKT-52) are also acknowledged.

Appendix A. Supplementary data

Supplementary data (comparison on ³¹P NMR chemical shift, crystallographic data of palladium complex **IV**, characterization data of Suzuki Product **3**, and NMR spectral copies of all products) related to this article can be found at http://dx.doi.org/10.1016/

References and notes

- [1] (a) N. Miyaura, A. Suzuki, Chem. Rev. 95 (1995) 2457;
 - (b) F.A. Littke, G.C. Fu, Angew. Chem. Int. Ed. 41 (2002) 4176;
 - (c) A. Suzuki, Angew. Chem. Int. Ed. 50 (2011) 6722;
 - (d) A. Balanta, C. Godard, C. Claver, Chem. Soc. Rev. 40 (2011) 4973;
 - (e) P.G. Gildner, T.J. Colacot, Organometallics 34 (2015) 5497.
- [2] (a) D. Yuan, H.V. Huynh, Organometallics 29 (2010) 6020;
 (b) X. Xu, B. Xu, Y. Li, S.H. Hong, Organometallics 29 (2010) 6343;
 - (c) X.-X. Zhou, L.-X. Shao, Synthesis (2011) 3138;

(d) S.C. Sau, S. Santra, T.K. Sen, S.K. Mandal, D. Koley, Chem. Commun. 48 (2012) 555;

- (e) E.K. Bullough, M.A. Little, C.E. Willans, Organometallics 32 (2013) 570;
- (f) G. Guisado-Barrios, J. Hiller, E. Peris, Chem. Eur. J. 19 (2013) 10405;
- (g) J.J. Dunsford, K. J. Cavell, Organometallics 33 (2014) 2902;
- (h) M. Micksch, M. Tenne, T. Strassner, Organometallics33 (2014) 3966;
- (i) R. Garrido, P.S. Hernández-Montes, A. Gordillo, P. Gómez-Sal, C. López-Mardomingo, E. Jesús, Organometallics 34 (2015) 1855.
- [3] (a) L.Benhamou, C.Besnard, E.P. Kündig, Organometallics 33 (2014) 260;

(b) Y. Li, J. Tang, J. Gu, Q. Wang, P. Sun, D. Zhang, Organometallics 33 (2014) 876;

- [4] (a) F. Godoy, C. Segarra, M. Poyatos, E. Peris, Organometallics 30 (2011) 684;
 (b) C. Gao, H. Zhou, S. Wei, Y. Zhao, J. You,; G. Gao, Chem. Commun. 49 (2013) 1127;
 (c) V.M. Zende, C. Schulzke, A.R. Kapdi, Org. Chem. Front. 2 (2015) 1397.
- [5] (a) Q.-L. Luo, J.-P.Tan, Z.-F. Li, W.-H. Nan, D.-R. Xiao, J. Org. Chem. 77 (2012) 8332;
 (b) T. Wang, X.-Q. Hao, J.-J. Huang, K. Wang, J.-F. Gong, M.-P. Song, Organometallics 33 (2014) 194;
 (c) S.Sobhani, Z. Zeraatkar,; F. Zarifi, New J. Chem. 39 (2015) 7076;

(d) V. Arumugam, W. Kaminsky, N.S.P. Bhuvaneshc, D. Nallasamy, RSC Adv. 5 (2015) 59428.

- [6] (a) T.E. Barder, S.D. Walker, J.R. Martinelli, S.L. Buchwald, J. Am. Chem. Soc. 127 (2005) 4685;
 (b) K.L. Billingsley, K.W. Anderson, S.L. Buchwald, Angew. Chem. Int. Ed. 45 (2006) 3484;
 (c) K.L. Billingsley, S.L. Buchwald, J. Am. Chem. Soc. 129 (2007) 3358;
 - (d) W. Tang, N.D. Patel, G. Xu, X. Xu, J. Savoie, S. Ma,M. H. Hao, S. Keshipeddy, A.G. Capacci, X. Wei, Y.Zhang, J.J. Gao, W. Li, S. Rodriguez, B.Z. Lu, N.K. Yee,C.H. Senanayake, Org. Lett. 14 (2012) 2258;
 - (e) Y. Fang, L. Zhang, J. Li, X. Jin, M. Yuan, R. Li, R. Wu,

- J. Fang, Org. Lett. 17 (2015) 798.
- [7] (a) M.R. Netherton, C. Dai, K. Neuschütz, GC. Fu, J. Am. Chem. Soc. 123 (2001) 10099;

(b) J.H. Kirchhoff, M.R. Netherton, I.D. Hills, GC. Fu, J. Am. Chem. Soc. 124 (2002) 13662;

(c) J.H. Kirchhoff, C. Dai, G.C. Fu, Angew. Chem. Int. Ed. 41 (2002) 1945;

(d) Y. Zhang, Gao, J. W. Li, H. Lee, B.Z. Lu, C. H. Senanayake, J. Org. Chem. 76 (2011) 6394;

- (e) S.M. Raders, J.N. Moore, J.K. Parks, A.D. Miller,T.M. Leißing, S.P. Kelley, R.D. Rogers, K.H.Shaughnessy, J. Org. Chem. 78 (2013) 4649.
- [8] (a) F.Y. Kwong, K.S. Chan, C.H. Yeunga, A.S.C. Chan, Chem. Commun. (2004) 2336;
 - (b) R. Ghosh, N.N. Adarsh, A. Sarkar, J. Org. Chem. 75 (2010) 5320;
 - (c) D.-F. Hu, C.-M. Weng, F.-E. Hong, Organometallics 30 (2011) 1139;

(d) McNulty, J.; Keskar, K. Org. Biomol. Chem. 11 (2013) 2404;

- (e) Y. Chen, H. Peng, Y.-X. Pi, T. Meng, Z.-Y. Lian, M.-
- Q. Yan, Y. Liu, S.-H. Liu, G.-A. Yu, Org. Biomol. Chem. 13 (2015) 3236;
- (f) B. Qu, N. Haddad, S. Rodriguez, J.D. Sieber, J.-N. Desrosiers, N.D. Patel, Y. Zhang, N. Grinberg, H. Lee, S. Ma, U.J. Ries, N.K. Yee, C.H. Senanayake, J. Org. Chem. 81 (2016) 745.
- [9] (a) T. Kinzel, Y. Zhang, S.L. Buchwald, J. Am. Chem. Soc. 132 (2010) 14073;

(b) M.A. Oberli, S.L. Buchwald, Org. Lett. 14 (2012) 4604;

(c) M.A. Düfert, K.L. Billingsley, S.L. Buchwald, J. Am. Chem. Soc. 135 (2013) 12877.

- [10] (a) S. Doherty, J.G. Knight, N.A.B. Ward, D.M. Bittner,
 C. Wills, W. McFarlane, W. Clegg, R.W. Harrington,
 Organometallics 32 (2013) 1773;
 (b) S. Doherty, J.G. Knight, N.A.B. Ward, D.O. Perry,
 - D.M. Bittner, M. R. Probert, S.A. Westcott, Organometallics 33 (2014) 5209.
- [11] A. Ros, B. Estepa, A. Bermejo, E. Álvarez, R. Fernández, J.M. Lassaletta, J. Org. Chem. 77 (2012) 4740.
- [12] A.S. Guram, A. O. King, J. G. Allen, X. Wang, L.B.

Schenkel, J. Chan, E.E. Bunel, M.M. Faul, R.D. Larsen, M.J. Martinelli, P. Reider, J. Org. Lett. 8 (2006) 1787.

- [13] N. Fleury-Brégeot, D. Oehlrich, F. Rom, Molander, G A. Org. Lett. 15 (2013) 1536.
- [14] S. Sakashita, M. Takizawa, J. Sugai, H. Ito, Y. Yamamoto, Org. Lett. 15 (2013) 4308.
- [15] M. Aufiero, T. Scattolin, F. Proutière, F. Schoenebeck, Organometallics 34 (2015) 5191.
- [16] (a) W. Rösch, M. Regitz, Angew. Chem. Int. Ed. 23 (1984) 900;
 - (b) G. Märkl, I. Troetsch, Angew. Chem. Int. Ed. 23 (1984) 901;
 - (c) A. Schmidpeter, A. Willhalm, Angew. Chem. Int. Ed. 23 (1984) 903.
- [17] L. Ackermann, H.K. Potukuchi, A. Althammer, R. Born, P. Mayer, Org. Lett. 12 (2010) 1004.
- [18] CCDC 1455176 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [19] K. Li, J. Darkwa, I.A. Guzei, S.F. Mapolie, J. Organmet. Chem. 660 (2002) 108.
- [20] G.M. Sheldrick Acta Cryst. A, 71 (2015), 3.

Graphical

Abstract

Novel phosphorus-coordinated palladium(II) complexes derived from 3,5-disubstituted- <i>1H</i> - 1,2,4-diazaphospholes: synthesis and catalytic application in Suzuki-Miyaura cross-coupling reactions	Leave this area blank for abstract info.
Xuefeng Jia, * Fang Zhao	yst (8 mol%) B — P
(X +	DMF, 110℃ '\$
R = 4-Acetyl, 4-Formyl, 4-OMe R' = 4-Me, 4-OMe, 4-t-Bu, 4-F, 3-Cl, 2-	20 examples Me up to 99% yield
Pd catalyst : HN- N= Bu CI Bu	
	.55
Highlights of this manuscript are listed as follows:	

- 1. Employing 3,5-disubstituted-1H-1,2,4diazaphospholes heteroatomas containing monophosphine ligands
- 2. The formation of novel phosphoruscoordinated palladium(II) complexes
- 3. Good catalytic activity and wide substrate scope

RCC