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Evolving structural design solutions using an implicit redundant
Genetic Algorithm

A.M. Raich and J. Ghaboussi

Abstract Performing synthesis during conceptual de-
sign provides substantial cost savings by selecting an
efficient design topology and geometry, in addition to
selecting the structural member properties. A new evolu-
tionary-based representation, which combines redun-
dancy and implicit fitness constraints, is introduced to
represent and search for design solutions in an unstruc-
tured, multi-objective structural frame problem. The
implicit redundant representation genetic algorithm, in
tandem with the unstructured problem domain defin-
ition, allows the evaluation of diverse frame topologies
and geometries. The IRR GA allows the representation
of a variable number of location independent parameters,
which overcomes the fixed parameter limitations of stan-
dard GAs. The novel frame designs evolved by the IRR
GA synthesis design method compare favourably with
traditional frame design solutions calculated by trial and
error.

Key words genetic algorithm, redundancy, variable pa-
rameters, topology optimization, geometry optimization

1
Introduction

The challenge of efficient structural design is clear when
viewed through spectacles focused on optimization: Pro-
vide the least cost design over the life-cycle of the struc-
ture. Optimization lowers the total cost of a structure
by reducing the volume of material and the fabrication
and construction time. The exploration for cost-efficient
designs, however, is prematurely limited if the design top-
ology and geometry are not allowed to change during
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optimization. The cost-savings resulting from shape op-
timization of the structural members is limited to the fi-
nal design stage. More substantial cost savings can result
from design changes made during the preceding concep-
tual design stage when synthesis of design topology and
geometry occurs.
Supporting the synthesis of design alternatives dur-

ing conceptual design requires evolving the topology and
geometry of frame structures, in addition to optimizing
the member properties. To achieve this goal, the design
problem is modelled as an unstructured problem. Design
alternatives are represented using location independent,
variable parameters provided by the implicit redundant
representation genetic algorithm (IRRGA). The IRRGA
also provides the method for searching the highly com-
plex and deceptive space of design alternatives.
Optimizing the topology and geometry of frame struc-

tures presents a new challenge to researchers. The top-
ology of the structure defines the number of joints, the
joint support locations, and the number of members con-
nected to each joint. The structural geometry defines the
location of joints within the problem domain and the
length of the members. Optimizing the geometry of the
structure requires designating the x, y, or z coordinates of
the joints as design variables. Topology optimization re-
quires the ability to add and remove members and joints
from the structure, either heuristically or implicitly dur-
ing the search for design solutions. Adding the represen-
tational flexibility to model topology and geometry alter-
ations makes the frame problem nearly unapproachable
using any existing design or optimization method, includ-
ing the ground structure approach. Frame solutions with
diverse topologies and geometries provide similar levels of
satisfaction of multiple design objectives and may have
similar fitness values.

2
Overview of genetic algorithms in structural
optimization

This paper presents an evolutionary-based, random dir-
ected search methodology called IRR GA that extends
the GA first proposed by Holland (1975) and the simple
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GA (SGA) further developed by Goldberg (1989). SGAs
have been applied in a wide range of disciplines on an even
more diverse set of optimization, classification, control,
design, and adaptive evolution problems. SGAs have four
properties that make them fundamentally different from
traditional optimization methods (Goldberg 1989).

1. GAs work with a coding of the parameters, not the
parameters themselves.

2. GAs use a population of solutions, not a single solu-
tion.

3. GAs use payoff information, not additional informa-
tion or derivatives.

4. GAs use probabilistic transition rules, not determinis-
tic transition rules.

Researchers have applied genetic algorithms (GA) to
structural truss optimization problems, including the op-
timization of trusses with fixed topology and fixed geom-
etry (Yang and Soh 1997); the optimization of trusses
with fixed topology and variable geometry (Wu andChow
1995); and the optimization of trusses with variable top-
ology and geometry (Rajan 1995; Rajeev and Krish-
namoorthy 1997). The GA truss topology and geometry
optimization methods cited, including those based on the
ground structure approach (Hajela and Lee 1995; Rajan
1995), are not directly transferable to frame optimization
problems. Several researchers have applied GAs for shape
optimization of frame structures with fixed geometry and
topology (Camp et al. 1998) and to provide limited geom-
etry optimization of frame structures (Jenkins 1997). The
synthesis method developed using the IRR GA and the
unstructured problem domain formulation discussed by
this paper provides concurrent topology and geometry
optimization of frame structures without requiring the
definition of a ground structure or heuristic rules for
adding or deleting members.

3
Implicit redundant representation Genetic Algorithm

In order to provide an evolutionary-based method cap-
able of synthesizing design alternatives, a more flexible
GA representation is required. The IRR provides a mech-
anism that allows essential and redundant sections of
a string to interact dynamically by using a string length
that is longer than the length required to encode only the
parameter values (Raich and Ghaboussi 1997). Each pop-
ulation individual represents a complete solution and all
individuals have the same string length.

3.1
Introduction of the IRR genotype representation

The specific location of each encoded parameter value
or gene instance is not designated explicitly by the IRR.

Instead, each gene instance is allowed to drift within
the length of the string as shown in Fig. 1a. Each gene
instance in an IRR string consists of two parts: a pre-
selected Gene Locator (GL) pattern identifying the lo-
cation of the gene instance in the string and a specified
number of useful bits of the gene instance that encode the
parameter values. To decode the parameter values from
the IRR string, the string is parsed until a GL pattern is
found indicating a gene instance.

Fig. 1 Comparison of generic IRR GA and SGA genotype
representation. (a) IRR GA, (b) SGA

The parameter values are encoded using binary or
real numbers similar to SGAs. The number of bits, n,
encoding each parameter within a gene instance sets ex-
plicitly the range of the parameter values, such as a two-
bit binary number that represents the integer numbers
{0, 1, 2, 3}. Typically, a mapping adjusts the ranges for
continuous parameters or discrete parameters based on
the encoded number of bits. The genotype/phenotype
IRR GA representation is distinct from the SGA repre-
sentation. In SGAs, each parameter value is represented
as a n-bit binary number, but the encoded binary values
are concatenated together without any redundant bits as
shown in Fig. 1b. The fixed string length in SGAs is de-
termined by adding the lengths of the individual encoded
values.
The portions of the IRR GA string that are not part

of a gene instance contain redundant material. Incor-
porating redundant, or noncoding segments, has been
researched previously (Levenick 1991; Wu and Lindsay
1996; Raich and Ghaboussi 1997). Each redundant seg-
ment consists of a variable number of bits that separate
the gene instances in the string. The IRR GA provides
several benefits to the evolutionary process: redundant
segments protect existing gene instances from the dis-
ruption of crossover and mutation and in future gener-
ations new gene instances may be designated within pre-
viously redundant segments by the actions of crossover or
mutation.
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In addition to providing redundancy, the IRR does not
require the designer to specify the number of parameter
values to be represented. Problems in which the opti-
mal number of parameters is not known are common in
design. The SGA works with a fixed number of param-
eters, which limits its effectiveness on design problems.
The IRR GA allows the number of parameters encoded
to change dynamically from generation to generation and
between individuals in the population. No external con-
straints are required to process over or underspecified
strings, since the IRR GA strings are the same length.
The benefit of providing dynamic redundancy allows the
IRRGA to search for solutions effectively in unstructured
problems by encoding a variable number of location inde-
pendent design parameters and allowing self-organization
of the linkage of the encoded design parameters. Varying
the number of parameters encoded allows the IRR GA to
alter the structural topology and geometry. A severe re-
duction in the number of elements represented in the IRR
GA genotype often occurs during evolution. This type of
dynamic behaviour cannot be captured by SGAs.

3.2
IRR GA computation algorithm

The iterative computational algorithm for the IRR GA
is shown in Fig. 2 and is the same algorithm used for the
SGA (Goldberg 1989). The designer selects the popula-
tion size based on diversity and computational issues and
randomly initializes the bit values of the population in-

Fig. 2 Statement of computational algorithm for the IRR
GA

dividuals. The population size, N , controls the number
of fitness evaluations (i.e. structural analysis) performed
during each generation. The remaining components of
the genetic algorithm (GA) selected by the designer are:
fitness evaluation function, selection scheme, crossover
method and rate, and mutation rate. The solution repre-
sented by each individual is decoded from the IRR GA
genotype and evaluated using the defined fitness function.
An individual with a high fitness will have an increased
chance of being propagated into the next generation;
those individuals with low fitness may not be selected
at all. The genetic operations of selection, crossover, and
mutation are performed to determine the individuals in
the new population. The IRRGA uses the same selection,
crossover, and mutation operators as the SGA. Typically,
the entire population of N individuals is replaced by the
children generated by crossover andmutation during each
generation. The iterative process of fitness evaluation and
genetic manipulation is continued until a stopping crite-
rion related to the maximum number of generations or
a desired population convergence is satisfied.

4
Unstructured problem formulation

Design synthesis has two principles driving it: provid-
ing partial optimality of design (in some sense the best
design) and ensuring feasibility of design. Synthesis al-
ternatives are found in the search space bounded by the
infinite and ill-defined unconstrained space of all pos-
sible design alternatives and the small and well-defined
space of constrained mathematical programming design
alternatives. The synthesis of structural design alterna-
tives is supported in this research by defining an unstruc-
tured problem domain. The unstructured design problem
formulation removes the explicit constraints put on the
number of design variables modeled and, therefore, de-
sign solutions can be generated and compared that have
diverse topologies and geometries. The IRR GA is highly-
suited to model unstructured problem domains because
of the flexibility of parameter representation and global
search properties provided. Defining the required design
grammar for the design problem is simplified since the
grammar is explicit in the genotype/phenotype relation-
ship provided by the IRR GA representation itself.
The level of unstructuredness provided by the state-

ment of the problem domain can be controlled by con-
straining the design variables within the problem domain.
A tradeoff occurs in the process of determining the level
of unstructuredness that is beneficial to the overall pro-
cess of synthesis. Removing constraints allows for a more
diverse set of synthesis alternatives to be explored by
expanding the search space. Increasing the space of de-
sign alternatives, however, has a high computational cost
attached. Limiting the size of the search space by con-
straining specific design variables lowers the computa-
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tional cost, but at the cost of possibly excluding beneficial
design alternatives.
The problem objective function, constraints, and pa-

rameter value ranges define a fitness landscape within the
search space. A structured problem with a fixed num-
ber of variables provides a single, static fitness landscape
within the search space, even if the landscape is multi-
modal and deceptive. In unstructured problem domains,
there is no assurance that the fitness landscape remains
static. Instead, each distinct topology and geometry con-
sidered will have its own fitness landscape defined in a dis-
tinct dimensional search space. If the topology or geom-
etry changes, then a new fitness landscape will be defined.
The search for synthesis design solutions in an unstruc-
tured problem domain is performed over a nonstation-
ary, multimodal, meshed fitness landscape. Unstructured
problems, therefore, can be categorized as highly decep-
tive problems (Goldberg 1989).

5
Design problem statement

The design problem selected is the synthesis of a plane
frame structure with a maximum total structure width of
60’–0” and a maximum structure height of 36’–0” (three
floor levels). The corresponding structured and unstruc-
tured frame problem domains are shown in Figs. 3a and b,

Fig. 3 Model of structured and unstructured problem for-
mulation for frame design. (a) Structured problem domain,
(b) unstructured problem domain

respectively, to provide a comparison of the two ap-
proaches. The structured frame problem domain defines
the location and connectivity of all 15 members in the
structure using a fixed topology and geometry. The bay-
widths and floor heights for the two-bay, three-storey
structure are provided and the loading configurations are
fixed. The only remaining design variables are the indi-
vidual member properties. In structured problems, the
synthesis of design alternatives is limited to shape opti-
mization since the topology and geometry remains fixed.
The unstructured frame problem domain, in comparison,
is defined by: dimensional bounds placed on the max-
imum structure width and height and the statement of
the location of plane(s) of possible applied loading and
possible support placement. The fixed design parameters
are the magnitudes of the dead load, live load and wind
loading and the designation of pinned support nodes. The
loading applied to the frame structure is a function of the
number of storeys and bays defined and varies for each
proposed frame synthesis alternative. All other required
design information, including the number and location
of structural nodes and members, member properties,
support information, member connectivity, number of
storeys, and number and size of bays, is specified by the
design variables.

5.1
Definition of the IRR GA frame synthesis gene
instance

Assembling a frame design solution within the unstruc-
tured problem domain shown in Fig. 3b requires know-
ledge about the number of members, the member areas,
and the member locations in the structure as defined by
the nodal coordinates. All the required design informa-
tion to model a frame member is encoded in a single
IRR gene instance identified by the GL pattern [1 1 1] in
the order shown in Fig. 4a: the x-coordinate of node 1
(X1); the y-coordinate of node 1 (Y 1); the x-coordinate
of node 2 (X2); the y-coordinate of node 2 (Y 2); the
depth of the nonhorizontal member (Depth 1); the depth
of any horizontal member connected to the right of node 1
(Depth 2); and the depth of any horizontal member con-
nected to the right of node 2 (Depth 3). The design in-
formation defines the nonhorizontal member coordinates,
nodal incidences, and member depths as shown in Fig. 4b.
The design variable value ranges are set by the num-

ber of binary bits that encode each variable. The nodal
x-coordinates, X1 and X2, are encoded as six-bit bi-
nary numbers that are mapped by the following func-
tion: (X1− 31.0)× 12.0, which provides a x-coordinate
value range of (−372.0, 384.0).The y-coordinates, Y 1 and
Y 2, are encoded as two-bit binary numbers. Each of the
four encoded binary values corresponds to a floor level
of 0, 1, 2, or 3. The three member depths are three-
bit binary numbers that encode eight discrete member
depths {5,10,15, 20, 25, 30, 40, 50}. The member area and
section modulus are calculated using the decoded mem-
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Fig. 4 IRR GA gene instance and the corresponding pheno-
type definition of a single frame member for the unstructured
frame problem

ber depth. The structural frame members are steel tube
sections with fixed width and thickness and a variable
depth.
The frame member information encoded in each gene

instance does not depend on the location of the gene in-
stance in the string. In addition, there are no explicit
constraints applied to the fitness function that influence
the number of members encoded in the string length.
The total number of frame members (gene instances)
encoded in each IRR GA genotype is implicitly con-
strained by the fitness and penalty functions and will
vary among the individuals in the current population.
Allowing the number of gene instances to vary among
the individuals in the population provides the mechan-
ism for evaluating structures with varying topology and
geometry.

5.2
Frame assembly from individual members

Assembling a complete frame structure consists of defin-
ing: the nonhorizontal member locations using the nodal
coordinates decoded from the IRR genotype and gener-
ating the horizontal members based on the locations of
the nodal coordinates defined by the nonhorizontal mem-
bers. The two horizontal member depths decoded from
the gene instance for each nonhorizontal member are used
when a horizontal member is generated. The horizontal
members are generated between each pair of adjacent
nodes defined on the same floor level after the nonhor-
izontal member information has been decoded. A ho-
rizontal member could be connected to either the starting
or ending node of the decoded nonhorizontal member.
The depth of horizontal member is provided by the value
of the horizontal depth (Depth 2 or Depth 3) decoded for

the designated starting node of the horizontal member as
shown in Fig. 4.
Three repair strategies were applied to the assembled

frame structures as required: assigning a minimal fitness
to frames with fewer than two supports to prevent analyz-
ing unstable structures; replacing nodes closer than 5’–0”
with a single node to prevent the automatic generation
of very short members; and removing single nodes in the
structure that carry no loading.

5.3
Frame synthesis fitness and penalty functions

Typically, a frame design problem has a single objec-
tive: provide minimum weight while satisfying flexural
strength and deflection requirements. Optimizing the sin-
gle objective in an unstructured frame problem domain,
however, results in the evolution of minimal structures
(two member frames) that carry no loading. Therefore,
a second objective is required: maximize the total floor
space provided by the frame. The nonpenalized GA
fitness functions that optimize the volume (minimum
weight), FV and floor area, FF , can be stated for the
frame synthesis design problem,

FV =



CV −

m∑
i=1

�Ai�i

CV




dV

,

FF =




mh∑
j=1

hj(xj)

LH




dF

, (1)

wherem is the total number of members;mh is the num-
ber of horizontal members; CV is a selected scalar value
larger than the maximum expected volume; LH is the
maximum total floor space provided by the dimensional
bounds; and aV and aF are selected exponential power
terms.
A stress penalty function, PS , reduces the fitness of

frame design solutions that violate the code-specified
maximum stress criteria:

PS =



CS−

m∏
j=1

Int(Mj ,Mjall, Pj , Pjall)

CS




aS

, (2)

where Int() is the interaction ratio defined by the LRFD
code,Mj is the design moment in member j;Mjall is the
allowable moment in member j; Pj is the design axial
force in member j; Pjall is the allowable axial force in
member j; aS is a selected exponential power term; and
CS is a selected scalar value that is larger than the max-
imum stress interaction penalty.
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The frame design solutions are required to meet ser-
viceability limits. The horizontal deflection of the struc-
ture must satisfy the NEHRP allowable inter-storey
drift limits and the vertical deflection of the structural
members is limited to a deflection of less than �/360
along the member. The deflection penalty functions,
PHD and PVD, reduce the fitness of design solutions
that have excessive horizontal and vertical deflections
(with a subscript of H for horizontal and V for vertical
deflection):

PD =



CD−

n∏

=1

(
1.0+ ∆�

∆max

)

CD




aD

, (3)

where n is the number of nodes considered for horizontal
or vertical deflection; ∆
 is the horizontal or vertical
deflection of node � exceeding the set limit; ∆max is
the maximum limit on horizontal or vertical deflection
for the nodes; aD is a selected exponential power term,
and CD is a selected scalar value that is larger than
the maximum expected horizontal or vertical deflection
penalty.
Aesthetics are introduced into the frame synthesis

search process by promoting the symmetric placement of
structural members and nodes, while still allowing the
placement of nonsymmetrical members and nodes. Penal-
ties for nonsymmetrical members and nodes in the struc-
ture are calculated using a two foot tolerance. Nodal and
member symmetry penalty functions, PSN and PSM , can
be stated that penalize the design solution:

PSN =




1.0
n∑
k=1

0.2×NumSym




aSN

,

PSM =


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1.0
m∑
k=1

Sym(k, j)




aSM

, (4)

whereNumSym is the number of nonsymmetrical nodes;
aSN and aSM are selected exponential power terms; and
Sym(k, j) is 0 if members k and j are symmetric or 1 if
members k and j are nonsymmetric.
Applying the LRFD load combinations to potentially

nonsymmetric frame structures requires a total of four
load cases: two load cases for Dead Load + Live Load
on alternating spans and two load cases for Dead Load
+ Wind Load from each direction. Three of the penalty
functions, stress (PS), horizontal deflection (PHD), and
vertical deflection (PV D), must be evaluated for each
of the four specified load cases applied to the struc-
ture to determine the total penalty function. A separate
structural analysis is required for each individual in the
IRR GA population. The unstructured formulation of the

plane frame design problem creates a difficulty in apply-
ing the gravity and wind loading to the structure. The
loading cannot be applied to a fixed set of members or
nodes, since the same members and nodes are not always
present due to variable geometry and topology. Instead,
gravity load is applied uniformly along the horizontal
members defined at each floor level, which do not neces-
sarily relate to equal spans. The wind load is applied to
the exterior nodes defined at each floor level. If a specific
floor level is not defined, the wind load is transferred to
the adjacent floors.
A product composite penalty term, PTOT that mag-

nifies the differences existing between the individual
penalty terms defined in (2) to (4) was defined:

PTOT =

∑
k=1

P kS ×
h∑
k=1

P kHD×
j∑
k=1

P kV D×PSN ×PSM ,

(5)

where � is the number of loading cases analyzed; h is the
number of load cases analyzed for horizontal deflection;
and j is the number of load cases analyzed for vertical de-
flection. Table 1 presents a summary of the values of the
scalar terms used for the fitness and penalty functions de-
fined in (1) to (4).
The product composite fitness function is composed of

the two fitness terms defined in (1) and the ten penalty
terms defined in (5):

maxF (x) = FV ×FF ×PTOT . (6)

Table 1 Values of scalar variables for calculating the fitness
and penalty functions

Scalar term Scalar value

CV 600.0
CS 2000.0
CVD 2000.0
CHD 2000.0
aV 1.0
aF 1.0
aVD 4.0
aHD 4.0
aSN 0.1
aSM 0.1
LH 2268.0

5.4
Selection of IRR GA string length

The provision of an appropriate level of redundancy
within the string length is an important design consid-
eration (Raich and Ghaboussi 1997). Initially, the level
of redundancy is determined by the probability of an oc-
currence of the selected GL pattern within the string



228

length. For an IRR GA string length of 600 bits and
a total encoded gene instance length of 22 bits, an average
of 16 members (gene instances) are randomly initialized
in each individual (genotype). During the GA evolu-
tionary trials performed, the number of gene instances
encoded decreased. The initially overspecified string pro-
tected the population from premature convergence by
reducing the average stress and deflection penalties dur-
ing early generations, which lowered the severity of the
penalties.

5.5
Discussion of the genetic control operators

The search space for the frame design problem includes
multiple, equally optimal solutions. To prevent the popu-
lation from converging to a single optimum, fitness shar-
ing distributed the population among multiple solutions
so that only a few individuals were maintained in the
vicinity of each solution in the search space (Goldberg
and Richardson 1987). The sharing function applied was
the same as defined by Goldberg (1989) with a similarity
measure, σS , of 0.05 to control the size of the niche. A Eu-
clidean distance measure related the similarity between
the satisfaction of the individual objective and penalty
terms for all individuals in the population. The fitness of
each individual was reduced based on the number of simi-
lar individuals in the current population as defined by the
niche count,mi. Tournament selection used the modified
fitness values to select the next generation population.
The individual with the highest fitness in the randomly
chosen tournament group of size n was selected to be the
winner. The size of the tournament subgroup controlled
the level of selection pressure applied. The tournament
competition continued until a new population of individ-
uals were selected. To prevent the loss of the fittest indi-
vidual in the current population due to low selection pres-
sure or the disruption of crossover or mutation, an elitist
strategy was used. The fittest individual in the current
population was copied to the next generation bypassing
any genetic manipulation.
A multiple crossover operator increased the number of

string segments recombined and reduced the size of the
string segments exchanged. A random, normal distribu-
tion selected the number of crossover sites using a mean
of 10 crossovers and a standard deviation of two. Two
individuals were randomly paired from the set of tour-
nament selected individuals; the string was cut virtually
at multiple, random locations; and the portions of the
strings between the cuts were exchanged. The crossover
rate varied randomly between 0.2 to 0.7. Mutations pre-
vent the loss of diversity in the population by introducing
new genetic information or reintroducing previously lost
information (Goldberg 1989). Single bit mutation was ap-
plied probabilistically to each population individual by
flipping the encoded bit values from zero to one, or vice
versa, using a mutation rate of either 0.0025 or 0.0033.

6
Frame synthesis design results

Experimental trials were performed using the IRR GA to
model the unstructured plane frame problem domain de-
fined in Fig. 3b. Three frame synthesis design solutions
evolved by the IRR GA using a population size of 200,
a string length of 800 bits, and a tournament size of 10
after 1500 generations are presented in Fig. 5. The IRR
GA trials were randomly initialized using different ran-
dom seeds. The product composite fitness function de-
fined by (6) was used. Each of the IRR GA trials con-
verged to frame design solutions having three storeys and
the maximum floor space allowed.

Fig. 5 IRR GA frame design solutions represented by the
fittest population individual

The beneficial influence of the member symmetry
penalty on the evolution of design features and com-
plete frame design solutions is evident. The IRR GA
converged the search process towards symmetrical de-
signs. Incorporating symmetry into the design process by
penalizing unsymmetrical solutions allowed the evalua-
tion of single members before promoting the addition of
symmetrical members to the structure. To support mem-
ber symmetry, the IRR GA genotype must maintain two
separate gene instances within the genotype. The self-
organization of the location independent gene instances
along the IRR GA genotype protects the pairs of gene in-
stances from the disruption of crossover and mutation. If
flexibility of encoding is not provided, representing struc-
tures having multiple pairs of symmetrical members is
difficult.
The results of additional IRR GA frame synthesis de-

sign trials are presented using a less unstructured prob-
lem formulation, which provided a slightly smaller search
domain. The nodal x-coordinates (X1 and X2) encoded
in the genotype gene instances were encoded using three-
bits, which provided a 10’–0” joint spacing along each
floor, instead of the 1’–0” spacing used in the previous
trials. Multiple, randomly initialized IRR GA trials were
performed using the product composite fitness function
defined by (6), a population size of 100 or 200, a string
length of 600, and a tournament size of 5. In addition,
IRR GA trials were performed using a sum composite fit-
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ness function that added the fitness and penalty terms
in (6) instead of multiplying the terms. The same con-
trol parameters were used for the product and sum com-
posite fitness function IRR GA trials. The reduced pop-
ulation size and string length for these trials resulted
from constraining the size of the search space by reduc-
ing the number of possible x-coordinate locations as-
signed. The frame synthesis design solutions obtained
after 500 generations for the IRR GA trials are shown
in Fig. 6.

Fig. 6 IRR GA frame design solutions represented by
the fittest population individual after 500 generations with
a 10’–0” restriction on the x-coordinate spacing. (a) Product
composite fitness function, (b) sum composite fitness function

The frame synthesis design solutions shown in Fig. 6
provide complete frame design solutions that incorpo-
rate inclined columns to aid in resisting wind loading,
tension members carrying gravity loading, and stiff, tri-
angular substructures. A striking feature of these de-
signs was the specification of separate load carrying
systems for the individual floors. For the design solu-
tion shown in the bottom, right-hand corner of Fig. 6a,
the second and third floor loadings are carried to the
foundation through an arch structural system. The first
floor loading is carried on additional vertical one-storey
columns. The evolved design solutions satisfied the sym-
metry penalties to a greater extent than the trials
performed without restricting the x-coordinates of the
nodes.

6.1
The evolution of frame synthesis design solutions

The evolution of frame synthesis design solutions can be
investigated by examining the features of the fittest indi-
vidual in the IRR GA population at specific generations.
Figure 7 presents an overview of the evolutionary search
process for two of the IRR GA frame synthesis design
trials in Fig. 6.

Fig. 7 Example of the evolution of the best IRR GA design
solution at each generation with a 10’–0” restriction on the
x-coordinate spacing. (a) Product composite fitness function,
(b) sum composite fitness function

The IRR GA evolutionary process starts with a pop-
ulation of randomly initialized individuals. After one
generation, the frame design solution represented by
the IRR GA population individual is not random since
one tournament selection has been performed. Although
three storeys are defined by the design solution, the floor
space provided by each storey does not maximize the do-
main boundaries. The frame design solutions also have
more members than are required to prevent assigning
extremely high stress and deflection penalties to a high
percentage of the population. The best frame design so-
lution at 20 generations included several design features
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similar to the features found in the final design solution.
After 50 generations, the influence of the floor space ob-
jective and the nodal symmetry penalty begins to appear.
The floor space provided is extended towards the do-
main boundaries and the nodal coordinates are placed
in nearly symmetrical positions. The synthesis of the
topology and geometry of the design solution continued
during the first 200 generations. Shape optimization of
the member depths was performed after 200 generations
on the fixed structural topology and geometry evolved.
The disruptive effect of crossover and mutation on the
IRR GA genotype, however, makes the shape optimiza-
tion process difficult. The flexibility provided to encode
variable topologies and geometries during synthesis does
not provide the best representation for performing size
optimization. The best frame design solution at 500 gen-
erations is symmetric and optimizes the floor space and
volume objectives. The design solution also satisfies the
stress, deflection, and symmetry penalties for each of the
four applied load cases.
To support the exploration of design alternatives dur-

ing synthesis, a diverse population is essential. The diver-
sity of the population maintained during evolution can be
investigated by comparing the maximum fitness reached
by the population at each generation with the average
fitness of the population. The average fitness of the pop-
ulation did not converge to the maximum fitness after
synthesis was finished. Convergence of the population to
the maximum fitness shows that the population individ-
uals were becoming similar. Instead, a high level of pop-
ulation diversity was maintained throughout the entire
evolutionary process of synthesis and optimization for the
IRR GA trials.

6.2
Comparison of IRR GA and standard frame design
solutions

The quality, or optimality, of the IRR GA frame design
solutions cannot be determined directly based on a com-
parison with known optimal frame design solutions. The
frame design problem has numerous optimal solutions
that each satisfy the constraints and optimize the objec-
tives equally well using different structural configurations
of member sizes, topologies, and geometries. Three frame
solutions were designed using a trial and error process for
standard frame topologies and geometries. The standard
frame design solutions have vertical columns and rectan-
gular bays and are shown graphically in Table 2 as frame
design solutions I, II, and III. Standard frame design I has
three, 12’–0” storeys and three, 20’–0” bays. Standard
frame design II has three, 12’–0” storeys and two, 30’-0”
bays. Standard frame design III has three, 12’–0” storeys
and an 10’–0” wide interior bay and the two, 25’–0” wide
exterior bays.
Table 2 presents the structural properties of the three

standard frame design solutions. The comparison cate-
gories are the total volume of the structure, the maximum

Table 2 Evolutionary frame solutions vs. trial and error
frame solutions

Structure Volume ∆max ∆max
(ft3) Horz. (in.) Vert. (in.)

Solutions generated by trial and error

I 99.666 0.5241 0.25
II 102.666 0.5585 0.25
III 105.499 0.5704 0.25

Solutions generated by IRR GA

NAL 104.506 0.7216 0.27
NAL (Modified) 99.811 0.4281 0.28
NAL (Ratio) 90.665 0.7772 0.55
NAH 108.422 0.558 1.44
NAH (Modified) 118.336 0.216 0.89

horizontal deflection, and the maximum vertical deflec-
tion. Standard frame design solution I provided the lowest
volume of the three design solutions. All three design so-
lutions, I, II, and III, provided approximately the same
level of structural deflection. In addition, the standard de-
sign solutions had relatively low average member stress
ratios under both gravity and wind loading.
Two IRR GA frame synthesis design solutions were

selected from the results presented in Fig. 6 for compari-
son with the standard frame design solutions. Both IRR
GA trials restricted the nodal x-coordinates to 10’–0”
spacings. The structural properties of the IRR GA tri-
als (NAL and NAH) are shown in Table 2. The IRR
GA frame design solutions provide competitive solutions
when compared with the standard frame design solutions
generated by trial and error. Both IRR GA trials had vol-
umes that compared favorably with the standard frame
design solution volumes. The average horizontal and non-
horizontal member stress ratios for the IRR GA synthesis
solutions were lower than those maintained by the stan-
dard design solutions.
The IRR GA synthesis design method evolved solu-

tions having symmetric topologies and geometries, but
not necessarily having symmetric member sizes. The two
IRR GA trials presented were re-evaluated after provid-
ing symmetric member sizes and limiting excessive nodal
deflections. The NAL (Modified) trial provided a very
competitive design solution. The NAH (Modified) trial
reduced the excessive deflections at the expense of in-
creasing the structural volume. The excessive deflections
in the two IRR GA frame solutions were located at the
nodes of cantilever members.
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In addition, one IRR GA trial was selected and
changes were made to the evolved structural member
sizes to increase the average stress ratios in the horizontal
and nonhorizontal members, resulting in the best frame
design solution of all the alternatives examined. The IRR
GA trial NAL (Ratio) design solution had the lowest vol-
ume (90.665) of all the designs considered. The average
stress ratios were increased to the same level as those pro-
vided by the standard frame design solutions. The low
stress ratios maintained by the IRR GA design solution
could be controlled in future IRR GA trials by penalizing
the design solutions for member under-stress in addition
to the current penalty for member over-stress.

7
Conclusions

A new evolutionary-based representation was introduced
to represent and search for synthesis design solutions in
unstructured problem domains. The implicit redundant
representation genetic algorithm (IRR GA) uses redun-
dancy to encode a variable number of location indepen-
dent parameters and allows the representation to self-
organize. The IRR GA represented and searched for de-
sign synthesis alternatives in a highly unstructured, plane
frame problem domain. Two levels of unstructured prob-
lem formulations were examined to determine the effec-
tiveness of the IRR GA representation on synthesizing
frame design solutions. Constraining the allowable spac-
ing of the x-coordinates along each floor, in addition to
imposing member and nodal symmetry penalties, aided
the synthesis process by reducing the size of the search
space.
The IRR GA evolved novel design solutions using an

unstructured problem formulation that minimized vol-
ume while maximizing the floor space subject to satisfy-
ing stress, deflection, and symmetry penalties. The IRR
GA did not require the statement of heuristics to add
or remove members or the definition of a ground struc-
ture topology and geometry for the design domain. The
benefits of providing topology and geometry synthesis
using an unstructured formulation in conjunction with
the IRR GA were shown. The frame design solutions

evolved by the IRR GA synthesis design method com-
pared favourably with traditional frame design solutions
calculated by trial and error.
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