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AbstractÐAvermectin B1a (1) is a potent anthelmintic, insecticide, miticide and chloride channel activator on interaction with a
speci®c nerve membrane site analyzed by binding assays with [3H]1. Candidate photoa�nity probes were prepared replacing the
dioleandrosyl substituent with potential isosteric esters and ethers approximating the original overall atom length and terminating
in a phenyl moiety substituted with azido, iodo or hydroxy. Several of the candidates met the goal of high potency on mouse,
house¯y and fruit ¯y brain chloride channels with IC50 values of 7±57 nM in competing for the [3H]1 binding site. # 2000 Elsevier
Science Ltd. All rights reserved.

Introduction

The avermectins are potent anthelmintics, insecticides
and miticides used to control pests of humans, veter-
inary animals and crops.1,2 The prototype avermectin
B1a (1) consists of a macrocyclic lactone with a 13a-
dioleandrosyl substituent (R) (Fig. 1). Compound 1 and
many analogues bind to vertebrate and invertebrate
g-aminobutyric acid (GABA)-gated and invertebrate
glutamate-gated chloride channels to increase ion con-
ductance, thereby disrupting inhibitory or excitatory
action. These mechanisms are established by physio-
logical, biochemical and molecular biological investi-
gations3±8 with an important contribution from
radioligand binding studies with [5a-3H]1 and its 22,23-
ditritio derivative [3H]ivermectin.9±13 Photoa�nity
labeling has been successfully applied by Merck scien-
tists to the action of the avermectins, using radioligand
2 which is 400-amino-400-deoxy-1 with 4-azido-3-125

iodosalicylic acid attached to the amino group through
a b-alanyl-e-aminocaproyl spacer (Fig. 1).14,15 Photo-
a�nity probe 2 labels a 47-kDa polypeptide from head
membranes of the fruit ¯y Drosophila melanogaster and

53-, 47- and 8-kDa polypeptides from the free-living
nematode Caenorhabditis elegans but does not bind to
rat brain membranes and, therefore, is selective for the
insect and nematode membranes.16±18 Although target
site selectivity is a distinct advantage for safe use of a
pharmaceutical or pesticide, it does not enable a single
probe to be employed for comparing vertebrate and
invertebrate targets and de®ning di�erences in their
binding sites within the chloride channel, as has been
successfully applied to chloride channel blockers.19

The goal of this investigation is to design a candidate
photoa�nity probe e�ective for both mammals and
insects. The failure of 2 to act in mammalian brain16 is
conceivably due to the far greater length of its R sub-
stituent than that of 1. An alternative is that 2 has
amide bonds versus only ether linkages in the R sub-
stituent of 1. The candidate photoa�nity probes 3±6
prepared here, therefore, include ester and ether moieties
more nearly isosteric with the dioleandrosyl substituent
(Fig. 1). Potency is evaluated using the [3H]1 binding
assay with membranes from mouse brain and house¯y
(Musca domestica) and fruit ¯y heads.

Structural modi®cations

Esters 3a±f of 1-aglycone (Figs 1 and 2). Key inter-
mediate 9 was synthesized by a two-step reaction from
5-O-tert-butyldimethylsilylavermectin B1a aglycone
(7).20 Treatment of 7 with the anhydride prepared in situ
from N-(2,2,2-trichloroethoxycarbonyl)-b-alanine and
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pivaloyl chloride in the presence of triethylamine gave
ester 8 in high yield, and reductive cleavage of the 2,2,2-
trichloroethoxycarbonyl group of this ester a�orded 9.
Acylation of the deprotected amino group of 9 was
carried out with benzoyl chloride for 3a or with the
previously known azidobenzoic acid derivatives in the
presence of 1,3-dicyclohexylcarbodiimide (DCC) for
3b±d or with the N-hydroxysuccinimidyl ester of 4-
azido-2-hydroxybenzoic acid and 4-hydroxy-2-iodo-
benzoic acid for 3e and 3f, respectively. Finally, desilyla-
tion of the 5-hydroxy group gave the esters 3a±f.14,20,21

Ethers 4 of 1-aglycone, 5a and 5b of 1-monosaccharide
and 6a and 6b of 1 (Figs 1 and 3). The ether-type deri-
vatives (4±6) were obtained from 7, 5-O-tert-butyl-
dimethylsilylavermectin B1a monosaccharide (12),
and 5-O-tert-butyldimethylsilylavermectin B1a (14)22 by
coupling with phenoxyethoxymethyl chloride or 2-(2-
azido-4-iodophenoxy)ethoxymethyl chloride followed
by deprotection of the 5-hydroxy group.

Structure±activity relationships

General (Fig. 1 and Table 1). Compound 1 di�ers only
3-fold in potency for the mouse, house¯y and fruit ¯y
brain [3H]1 binding site and 1-aglycone is 18- to 68-fold
less active. Photoa�nity probe 2 is similar to ivermectin
in its a�nity for the C. elegans membrane binding site
despite the long spacer group between the macrocyclic
lactone and the terminal photoreactive 4-azido-3-125

iodosalicylate moiety.16 However, 2 does not bind to the
rat brain [3H]ivermectin binding site16 suggesting that
an R substituent more isosteric with that of 1 may be
more appropriate. Several of the candidates in the pre-
sent study met the goal of high potency on mouse,
house¯y and fruit ¯y brain chloride channels with IC50

values of 7±57 nM in competing for the [3H]1 binding
site.

Esters 3a±f (Fig. 1 and Table 1). The goal was to replace
the dioleandrosyl unit with an ester of approximately

Figure 1. Structures of avermectin B1a (1) and the corresponding aglycone (1-aglycone) and of an amide (2), esters (3) and ethers (4±6) derived
therefrom.
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10-atom equivalent length including an aryl moiety that
would potentially bear azido, iodo and possibly hy-
droxy substituents. The b-alanyl group was used as a
candidate isosteric spacer unit. All of the esters are
potent in the house¯y receptor assays (IC50 values 7±31
nM) while 3c and 3e are best for the mouse preparation
(IC50 values 57 and 105 nM) and 3d±f for the fruit ¯y
membranes (IC50 values 26±56 nM). On this basis iodo-
containing compounds 3d and 3f are candidates for
radiolabeling, especially for the insect receptor. While a
portion of the activity of the esters may be due to
hydrolysis to 1-aglycone, this is probably not a major
factor since the IC50 values of 3e for mouse brain and
house¯y membrane preparations were not changed by
treating with a potent esterase inhibitor (phenyl sali-
genin cyclic phosphonate or phenylmethanesulfonyl
¯uoride, 10 mM, 30 min preincubation, data not detailed
here) and the ester linkage can be substituted with a
non-hydrolyzable ether moiety with enhanced potency
relative to the aglycone (see below).

Ethers 4, 5a, 5b, 6a and 6b (Fig. 1 and Table 1). Ether
linkages were examined as one way to rule out the pos-
sibility of esterases or amidases limiting the potency of

candidate photoa�nity probes. The 13-O-(2-phenoxy-
ethoxymethyl) derivatives as prepared from 1-aglycone
(4), 1-monosaccharide (5a) and 1 (6a) retain a high level
of potency in the house¯y receptor assay (IC50 values
19±97 nM). However, the 2-azido-4-iodophenoxy ana-
logues (5b and 6b) are �100-fold less active than their
phenoxy counterparts with mouse and 2±5-fold less
active with house¯y. Further optimization is required in
the phenoxy substituents for a general photoa�nity
probe.

Experimental

Chemistry

General. 1H NMR spectra were recorded for CDCl3
solutions with a Bruker AM-300 spectrometer. Fast
atom bombardment (FABMS) (both low- and high-
resolution, LR and HR) was conducted with the Fisons
ZAB2-EQ spectrometer. Analytical thin-layer chroma-
tography (TLC) was performed on silica gel with ¯uor-
escent indicator using precoated plastic sheets.
Preparative TLC involved 20�20 cm plates coated with

Figure 2. 5-O-(tert-Butyldimethylsilyl)-13-O-(2-aminopropionyl)avermectin B1a aglycone (9) and precursors (7 and 8) and derivatives (10) thereof.
Su refers to N-hydroxysuccinimidyl ester of the acid.
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0.25 or 0.5 mm silica gel containing PF250 indicator.
Compounds were visualized with short wavelength UV
light. Column ¯ash chromatography was performed
using silica gel 60. All ®nal products were puri®ed to
homogeneity as determined by TLC and 1H NMR and
had appropriate 1H NMR spectra (Table 2) and mole-
cular mass by FABMS.

5-O-(tert-Butyldimethylsilyl)-13-O-[2-(2,2,2-trichloroeth-
oxycarbonylamino)propionyl]-avermectin B1a aglycone
(8). To a solution of N-(2,2,2-trichloroethoxycarbonyl)-
b-alanine23 (530mg) in CH2Cl2 (7mL) in an ice bath
were added triethylamine (280 mL) and pivaloyl chloride
(250 mL). The mixture was stirred for 30min at 0 �C and
a solution of 720 (141mg) in CH2Cl2 (3mL), diisopro-
pylethylamine (174 mL), and 4-(N,N-dimethylamino)-
pyridine (DMAP) (123mg) was added at 0 �C. The

mixture was stirred at room temperature for 18 h and
poured into ice-cold water (40mL). The resulting mix-
ture was extracted with ethyl acetate (40mL, and then
3�20mL) and the combined organic layer was washed
with water (20mL) and brine (20mL), then dried over
Na2SO4 and evaporated in vacuo. The residue was pur-
i®ed by silica gel column chromatography (hexane-ethyl
acetate gradient) to give 188mg (99%) of 8.

5-O-(tert-Butyldimethylsilyl)-13-O-(2-aminopropionyl)-
avermectin B1a aglycone (9). A mixture of 8 (184mg),
water (10 mL), acetic acid (100 mL) and zinc dust
(747mg) in tetrahydrofuran (THF) (8mL) was stirred
for 4.5 h at room temperature. The reaction mixture was
®ltered through Celite and the solid was washed with
ethyl acetate (80mL). The ®ltrate and the ethyl acetate
were combined and washed with water (20mL) and

Figure 3. 5-O-(tert-Butyldimethylsilyl)-13-O-(2-phenoxyethoxymethyl)avermectin B1a aglycone (11) and related compounds (12±15).
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brine (20mL), then dried over Na2SO4 and evaporated
in vacuo. The residue was puri®ed by preparative TLC
(CH2Cl2:MeOH, 10:1) to give 85mg (57%) of 9.

5-O-(tert-Butyldimethylsilyl)-13-O-(2-benzoylaminopro-
pionyl)-avermectin B1a aglycone (10a). To a solution of
9 (17.5mg) in CH2Cl2 (1mL) were added triethylamine
(8 mL) and benzoyl chloride (3 mL) at 0�C. The reaction
mixture was stirred at room temperature for 24 h and
puri®ed by preparative TLC (hexane:ethyl acetate, 2:1)
to give 17.2mg (87%) of 10a.

5-O-(tert-Butyldimethylsilyl)-13-O-[2-(4-azidobenzoyl)-
aminopropionyl]avermectin B1a aglycone (10b). A solu-
tion of 9 (16.9mg), 4-azidobenzoic acid24 (6.1mg), and
DCC (10mg) in CH2Cl2 (1mL) was stirred in the dark
at room temperature for 15 h. The reaction mixture was
puri®ed by preparative TLC (hexane:ethyl acetate, 2:1)
to give 13.1mg (65%) of 10b.

5-O-(tert-Butyldimethylsilyl)-13-O-[2-(2-azidobenzoyl)-
aminopropionyl]avermectin B1a aglycone (10c). The
above procedure with 9 (14.3mg), 2-azidobenzoic acid25

(6.0mg) and DCC (10mg) in the dark gave 13.1mg
(77%) of 10c.

5-O-(tert-Butyldimethylsilyl)-13-O-[2-(2-azido-5-iodobenz-
oyl)aminopropionyl]-avermectin B1a aglycone (10d). The
above procedure with 9 (17.0mg), 2-azido-5-iodo-
benzoic acid26 (11mg) and DCC (10mg) in the dark
gave 16.7mg (72%) of 10d.

5-O-(tert-Butyldimethylsilyl)-13-O-[2-(4-azido-2-hydroxy-
benzoyl)aminopropionyl]-avermectin B1a aglycone (10e).
A solution of 9 (17.8mg) and N-hydroxysuccinimidyl-
4-azido-2-hydroxybenzoate26 (6.9mg) in CH2Cl2 (1mL)
was stirred in the dark at 0�C for 30min and then at
room temperature for 25 h. The reaction mixture was
puri®ed by preparative TLC (hexane:ethyl acetate, 2:1)
to give 14.2mg (66%) of 10e.

5-O-(tert-Butyldimethylsilyl)-13-O-[2-(4-azido-2-hydroxy-
5-iodobenzoyl)-aminopropionyl]avermectin B1a aglycone
(10f). The above procedure with 9 (17.8mg) and N-
hydroxysuccinimidyl-4-azido-2-hydroxy-5-iodobenzoate27

(14.5mg) in the dark gave 16.0mg (66%) of 10f.

5-O-(tert-Butyldimethylsilyl)-13-O-(2-phenoxyethoxyme-
thyl)avermectin B1a aglycone (11). To a solution of 7
(20mg) and 2-phenoxyethoxymethyl chloride (106mg)
in CH2Cl2 (150 mL) was added diisopropylethylamine
(120 mL). The reaction mixture was stirred for 3 days,
poured into ice-cold saturated aqueous NaHCO3

(20mL), extracted with CH2Cl2 (4�10mL) and the
combined organic layer was washed with NaHCO3

solution (2�10mL) then dried over Na2SO4 and eva-
porated in vacuo. The residue was puri®ed by pre-
parative TLC (hexane:ethyl acetate, 6:1) to give 16.3mg
(67%) of 11.

5-O-(tert-Butyldimethylsilyl)avermectin B1a monosac-
charide (12). A solution of avermectin B1a mono-
saccharide28 (326mg), imidazole (183mg), and tert-
butyldimethylsilyl chloride (202mg) in DMF (4mL)
was stirred for 40min. Then additional imidazole
(183mg) and tert-butyldimethylsilyl chloride (202mg)
were added followed by stirring for 75min. The reaction
mixture was poured into ice-cold water (50mL) and
extracted with hexane:ethyl acetate (1/1) (4�25mL).
The combined organic layer was washed with water
(2�25mL) and brine (25mL) then dried over Na2SO4

and evaporated in vacuo. The residue was puri®ed by
silica gel column chromatography (hexane±ethyl acetate
gradient) to give 190mg (50%) of 12.

5-O-(tert-Butyldimethylsilyl)-40-O-(2-phenoxyethoxy-
methyl)avermectin B1a monosaccharide (13a). To a
solution of 12 (21.9mg) and 2-phenoxyethoxymethyl
chloride (from treatment of 2-phenoxyethanol and par-
aformaldehyde in toluene with HCl gas) (260mg) in
CH2Cl2 (150 mL) was added diisopropylethylamine
(243 mL). The reaction mixture was stirred for 1 day
and poured into ice-cold saturated aqueous NaHCO3

(10mL), extracted with ethyl acetate (4�10mL) and the
combined organic layer was washed with aqueous
NaHCO3 (2�10mL) then dried over Na2SO4 and eva-
porated in vacuo. The residue was puri®ed by pre-
parative TLC (CH2Cl2:MeOH, 30:1) to give 12.7mg
(49%) of 13a.

5-O-(tert-Butyldimethylsilyl)-40-O-[2-(2-azido-4-iodophen-
oxy)ethoxymethyl]avermectin B1a monosaccharide (13b).
To a solution of 12 (40mg) and 2-(2-azido-4-iodophe-
noxy)ethoxymethyl chloride (from 2-(2-azido-4-iodo-
phenoxy)ethanol and paraformaldehyde with HCl gas
as above) (101mg) in CH2Cl2 (100 mL) was added di-
isopropylethylamine (243 mL). The reaction mixture was
stirred for 3 days with work up as for 13a to give 2.6mg
(4.7%) of 13b.

5-O-(tert-Butyldimethylsilyl)-400 -O-(2-phenoxyethoxy-
methyl)avermectin B1a (15a). The procedure for 11 but
with 1422 and a reaction time of 1 day gave 14.7mg
(57%) of 15a.

Table 1. Structure±activity relationships of avermectin derivatives as

inhibitors of [3H]avermectin binding in brain membranes of mouse,

house¯y and fruit¯y

Compound IC50, nM�SD (n)

Mouse House¯y Fruit ¯y

Avermectin series
1 2.9�0.9 (10) 1.5�0.6 (9) 4.2�1.3 (5)
1-aglycone 196�46 (3) 64�20 (4) 77�18 (3)

Esters
3a 653, 424a 13�5 (3) 73�28 (4)
3b 170�98 (4) 15�10 (3) 243�86 (3)
3c 57�34 (3) 15�9 (3) 477, 304a

3d 185�72 (3) 31�12 (5) 44�38 (3)
3e 105�28 (3) 6.7�3.7 (3) 54�24 (3)
3f 130�2 (3) 21�15 (3) 56, 26a

Ethers
4 29�18 (5) 19�8 (4) Ð
5a 38�7 (30) 33�21 (3) Ð
5b 3400, 506a 174, 154a Ð
6a 33�13 (3) 97, 62a Ð
6b 3684, 1210a 201, 153a Ð

aValues from separate experiments.
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Table 2. Characteristic 300-MHz 1H NMR chemical shifts (CDCl3) of avermectin B1a derivatives

Chemical shift, d (multiplicity, coupling constants)

Compound (s) C5H C13H C40H C400H 13-Substituent other than saccharide

Avermectin series
1 4.28 (brs) 3.93 (s) 3.24 (t, 9) 3.16 (t, 9)
14 4.43±4.45 (m) 3.94 (s) 3.25 (t, 9) 3.17 (t, 9)
1-monosaccharide 4.29 (brs) 3.96 (s) 3.17 (t, 9) ÐÐ
12 4.43±4.45 (brs) 3.95 (s) 3.17 (t, 9) ÐÐ
1-aglycone 4.29 (brs) 4.00 (s) ÐÐ ÐÐ
7 4.41±4.44 (m) 4.01 (s) ÐÐ ÐÐ

Intermediates
8 4.41±4.44 (m) 5.19 (s) ÐÐ ÐÐ 2.62±2.73 (2H, m, N-C-CH2CO), 3.55 (2H, q, J=6Hz, NCH2-C-CO),

4.70 (1H, s, Cl3CCHOCO-N), 4.71 (1H, s, Cl3CCHOCO-N)
9 4.42±4.43 (m) 5.20 (s) ÐÐ ÐÐ 2.61±2.72 (2H, m, N-C-CH2CO), 2.84 (2H, brs, NH2), 3.08 (2H, t,

J=6Hz, NCH2-C-CO)

Esters
3a 4.29 (brs) 5.20 (s) ÐÐ ÐÐ 2.63±2.81 (2H, m, N-C-CH2CO), 3.70±3.86 (2H, m, NCH2-C-CO), 6.85

(1H, t, J=6Hz, NH), 7.38±7.49 (3H, m, PhCO), 7.72±7.75 (2H, m,
PhCO)

10a 4.41±4.43 (m) 5.20 (s) ÐÐ ÐÐ 2.64±2.81 (2H, m, N-C-CH2CO), 3.70±3.86 (2H, m, NCH2-C-CO), 6.86
(1H, t, J=6Hz, NH), 7.39±7.51 (3H, m, PhCO), 7.72±7.75 (2H, m,
PhCO)

3b 4.28±4.32 (m) 5.21 (s) ÐÐ ÐÐ 2.64±2.81 (2H, m, N-C-CH2CO), 3.71±3.86 (2H, m, NCH2-C-CO), 6.84
(1H, t, J=6 Hz, NH), 7.06 (2H, dd, J=7 and 2Hz, PhCO), 7.75 (2H, dd,
J=7 and 2Hz, PhCO)

10b 4.41±4.44 (m) 5.21 (s) ÐÐ ÐÐ 2.64±2.81 (2H, m, N-C-CH2CO), 3.71±3.85 (2H, m, NCH2-C-CO), 6.84
(1H, t, J=6Hz, NH), 7.06 (2H, dd, J=7 and 2Hz, PhCO), 7.75 (2H, dd,
J=7 and 2Hz, PhCO)

3c 4.29 (brs) 5.23 (s) ÐÐ ÐÐ 2.65±2.82 (2H, m, N-C-CH2CO), 3.76±3.86 (2H, m, NCH2-C-CO), 7.17
(1H, dd, J=8 and 1Hz, PhCO), 7.22 (1H, td, J=8 and 1Hz, PhCO),
7.48 (1H, td, J=8 and 2Hz, PhCO), 7.92 (1H, t, J=5Hz, NH), 8.11 (1H,
dd, J=8 and 2Hz, PhCO)

10c 4.42±4.44 (m) 5.23 (s) ÐÐ ÐÐ 2.65±2.82 (2H, m, N-C-CH2CO), 3.76±3.85 (2H, m, NCH2-C-CO), 7.18
(1H, d, J=9Hz, PhCO), 7.22 (1H, td, J=8 and 1Hz, PhCO), 7.48 (1H,
td, J=8 and 2Hz, PhCO), 7.93 (1H, t, J=5Hz, NH), 8.11 (1H, dd, J=8
and 2Hz, PhCO)

3d 4.27±4.31 (m) 5.23 (s) ÐÐ ÐÐ 2.63±2.80 (2H, m, N-C-CH2CO), 3.73±3.86 (2H, m, NCH2-C-CO), 6.92
(1H, d, J=8Hz, PhCO), 7.76 (1H, dd, J=8 and 2Hz, PhCO), 7.90 (1H,
t, J=6Hz, NH), 8.41 (1H, d, J=2Hz, PhCO)

10d 4.41±4.31 (m) 5.23 (s) ÐÐ ÐÐ 2.65±2.80 (2H, m, N-C-CH2CO), 3.75±3.86 (2H, m, NCH2-C-CO), 6.92
(1H, d, J=9Hz, PhCO), 7.76 (1H, dd, J=9 and 2Hz, PhCO), 7.90 (1H,
t, J=6Hz, NH), 8.41 (1H, d, J=2Hz, PhCO)

3e 4.27±4.31 (m) 5.21 (s) ÐÐ ÐÐ 2.67±2.80 (2H, m, N-C-CH2CO), 3.75±3.86 (2H, m, NCH2-C-CO), 6.47
(1H, dd, J=9 and 2Hz, PhCO), 6.62 (1H, d, J=2Hz, PhCO), 7.02±7.06
(1H, m, NH), 7.28 (1H, d, J=9Hz, PhCO), 12.30 (1H, s, HOPhCO)

10e 4.41±4.44 (m) 5.21 (s) ÐÐ ÐÐ 2.64±2.85 (2H, m, N-C-CH2CO), 3.75±3.85 (2H, m, NCH2-C-CO), 6.47
(1H, dd, J=9 and 2Hz, PhCO), 6.62 (1H, d, J=2Hz, PhCO), 7.03 (1H,
t, J=6Hz, NH), 7.28 (1H, d, J=9Hz, PhCO), 12.30 (1H, s, HOPhCO)

3f 4.27±4.31 (m) 5.23 (s) ÐÐ ÐÐ 2.67±2.82 (2H, m, N-C-CH2CO), 3.74±3.83 (2H, m, NCH2-C-CO), 6.75
(1H, s, PhCO), 7.00 (1H, t, J=6Hz, NH), 7.67 (1H, s, PhCO), 12.32 (1H,
s, HOPhCO)

10f 4.42±4.44 (m) 5.23 (s) ÐÐ ÐÐ 2.66±2.85 (2H, m, N-C-CH2CO), 3.72±3.83 (2H, m, NCH2-C-CO), 6.75
(1H, s, PhCO), 7.00 (1H, t, J=6Hz, NH), 7.67 (1H, s, PhCO), 12.32 (1H,
s, HOPhCO)

Ethers
4 4.27±4.31 (m) 3.96 (s) ÐÐ ÐÐ 3.80±4.18 (4H, m, OCH2CH2O), 4.65±4.68 (1H, obsc, OCH2O), 4.71

(1H, d, J=7Hz, OCH2O), 6.90±6.96 (2H, m, PhO), 7.25±7.31 (3H, m,
PhO)

11 4.41±4.44 (m) 3.96 (s) ÐÐ ÐÐ 3.82±4.16 (4H, m, OCH2CH2O), 4.71 (1H, d, J=7Hz, OCH2O), 4.77
(1H, d, J=7Hz, OCH2O), 6.90±6.97 (2H, m, PhO), 7.26±7.30 (3H, m,
PhO)

5a 4.30 (brs) 3.94 (s) 3.23 (t, 9) ÐÐ 3.83±4.20 (4H, m, OCH2CH2O), 4.89 (1H, d, J=7Hz, OCH2O), 5.08
(1H, d, J=7Hz, OCH2O), 6.91±6.97 (2H, m, PhO), 7.25±7.31 (3H, m,
PhO)

13a 4.43±4.45 (m) 3.94 (s) 3.23 (t, 9) ÐÐ 3.82±4.16 (4H, m, OCH2CH2O), 4.89 (1H, d, J=7Hz, OCH2O), 5.08
(1H, d, J=7Hz, OCH2O), 6.91±6.97 (2H, m, PhO), 7.24±7.31 (3H, m,
PhO)

5b 4.28±4.32 (m) 3.94 (s) 3.20 (t, 9) ÐÐ 3.92±4.02 (2H, m, OCH2CH2O), 4.17 (2H, t, J=5Hz, OCH2CH2O), 4.87
(1H, d, J=7Hz, OCH2O), 5.06 (1H, d, J=7Hz, OCH2O), 6.67 (1H, d,
J=9Hz, PhO), 7.25 (1H, d, J=2Hz, PhO), 7.35 (1H, dd, J=9 and 2Hz,
PhO)

(continued)
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5-O-(tert-Butyldimethylsilyl)-400-O-[2-(2-azido-4-iodophen-
oxy)ethoxymethyl]avermectin B1a (15b). The procedure
of 13b but with 14 (40mg) in the dark gave 3.6mg
(6.8%) of 15b.

13-O-(2-Benzoylaminopropionyl)avermectin B1a aglycone
(3a). To a solution of 10a (17.2mg) in acetonitrile
(1mL) was added HF-pyridine (HF=68%, 0.1mL) and
the mixture was stirred at room temperature. After 3 h,
additional HF-pyridine (0.1mL) was added and the
mixture was stirred for 1 h. The reaction mixture was
poured into ice-cold saturated aqueous NaHCO3

(15mL) and extracted with ethyl acetate (4�5mL). The
combined organic layer was washed with water (5mL)
and brine (5mL) then dried over Na2SO4 and evapo-
rated in vacuo. The residue was puri®ed by preparative
TLC (hexane:ethyl acetate, 2:3) to give 12.9 mg (86%)
of 3a. MS-LR: C44O57O10N, (MH+) 760.

13-O-[2-(4-Azidobenzoyl)aminopropionyl]avermectin B1a

aglycone (3b). The above procedure with 10b (13.1mg)
but in the dark gave 11.5mg (100%) of 3b. MS-LR:
C44H56O10N4, (MH+) 801.

13-O-[2-(2-Azidobenzoyl)aminopropionyl]avermectin B1a

aglycone (3c). The above procedure with 10c (13.1mg)
in the dark gave 11.4mg (99%) of 3c. MS-LR:
C44H56O10N4, (MH+) 801.

13-O-[2-(2-Azido-5-iodobenzoyl)aminopropionyl]avermectin
B1a aglycone (3d). The above procedure with 10d
(16.7mg) in the dark gave 11.7mg (79%) of 3d. MS-LR:
C44H55O10N4I, (MH+) 927; HR (MH+) calcd 927.3041,
found 927.3020.

13-O-[2-(4-Azido-2-hydroxybenzoyl)aminopropionyl]aver-
mectin B1a aglycone (3e). The above procedure with 10e
(14.2mg) in the dark gave 8.6mg (69%) of 3e. MS-LR:
C44H56O11N4, (MH+) 817.

13-O-[2-(4-Azido-2-hydroxy-5-iodobenzoyl)aminopropio-
nyl]avermectin B1a aglycone (3f). The above procedure
with 10f (16.0mg) in the dark gave 13.0mg (91%) of 3f
MS-LR: C44H55O11N4I, (MH+) 943; HR (MH+) calcd
943.2990, found 943.3015.

13-O-(2-Phenoxyethoxymethyl)avermectin B1a aglycone
(4). The procedure for 3a but with 11 (16.3mg) gave
10.0mg (71%) of 4. MS-LR: C43H58O10, (MH+) 735.

40-O-(2-Phenoxyethoxymethyl)avermectin B1a monosac-
charide (5a). The procedure for 3a but with 13a
(12.7mg) gave 9.1mg (81%) of 5a. MS-LR: C50H70O13,
(MH+) 879.

40-O-[2-(2-Azido-4-iodophenoxy)ethoxymethyl]avermectin
B1a monosaccharide (5b). The procedure for 3a but with
13b (2.6mg) in the dark gave 2.2mg (94%) of 5b. MS-
LR HR: C50H68O13IN3, (MLi+) 1052.

400-O-(2-Phenoxyethoxymethyl)avermectin B1a (6a). The
procedure for 3a but with 15a (14.7mg) gave 9.0mg
(68%) of 6a. MS-LR: C57H82O16, (MH+) 1023.

400-O-[2-(2-Azido-4-iodophenoxy)ethoxymethyl]avermectin
B1a (6b). The procedure for 3a but with 15b (3.3mg) in
the dark gave 1.4mg (46%) of 6b. MS-LR: C57H80

O16IN3, (MLi+) 1196.

Mouse and insect brain [3H]1 binding assays

Brain and head preparations. The studies used whole
brain from male mice (25±30 g) and frozen (ÿ70 �C)
heads from male and female house¯ies (susceptible
strain cultured in this laboratory, 4±7 days after emer-
gence as adults) and male and female adult fruit ¯ies
(provided by Gerald Rubin of the Department of
Molecular and Cell Biology on this campus). The frozen
insects at dry ice temperature were shaken in a ¯ask to
break them into their body parts and the heads recov-
ered by passing through a 2-mm sieve and recovery on a
1-mm sieve for house¯ies or a 1-mm and 0.5-mm sieve,
respectively, for fruit ¯ies. Dry ice temperature was
maintained for glassware and sieves and the frozen
heads were held at ÿ80 �C until used for membrane
preparation. Subsequent steps were carried out at 4 �C.

Membrane preparations. Mouse brain homogenate at
10% (w/v) in 0.32 M sucrose was centrifuged at 1000�g
for 10min and the supernatant at 10,000�g for 20min.
The pelleted membranes were suspended in 1mM

Table 2 (continued)

13b 4.43±4.45 (m) 3.94 (s) 3.20 (t, 9) ÐÐ 3.92±4.02 (2H, m, OCH2CH2O), 4.17 (2H, t, J=5Hz, OCH2CH2O), 4.87
(1H, d, J=7Hz, OCH2O), 5.06 (1H, d, J=7Hz, OCH2O), 6.67 (1H, d,
J=9Hz, PhO), 7.25 (1H, d, J=2Hz, PhO), 7.35 (1H, dd, J=9 and 2Hz,
PhO)

6a 4.30 (brs) 3.94 (s) 3,24 (t, 9) 3.22 (t, 9) 3.92±4.00 (2H, m, OCH2CH2O), 4.15 (2H, d, J=5Hz, OCH2CH2O),
4.88 (1H, d, J=7Hz, OCH2O), 5.06 (1H, d, J=7Hz, OCH2O), 6.91±6.97
(3H, m, PhO), 7.25±7.30 (2H, m, PhO)

15a 4.43±4.45 (m) 3.93 (s) 3.24 (t, 9) 3.22 (t, 9) 3.80±4.00 (2H, m, OCH2CH2O), 4.15 (2H, t, J=5Hz, OCH2CH2O), 4.88
(1H, d, J=7Hz, OCH2O), 5.06 (1H, d, J=7Hz, OCH2O), 6.91±6.97
(3H, m, PhO), 7.25±7.30 (2H, m, PhO)

6b 4.31 (brs) 3.94 (s) 3.23 (t, 9) 3.20 (t, 9) 3.90±4.05 (2H, m, OCH2CH2O), 4.16 (2H, t, J=5Hz, OCH2CH2O), 4.87
(1H, d, J=7Hz, OCH2O), 5.05 (1H, d, J=7Hz, OCH2O), 6.67 (1H, d,
J=9Hz, PhO), 7.25 (1H, d, J=2Hz, PhO), 7.36 (1H, dd, J=9 and 2Hz,
PhO)

15b 4.42±4.44 (m) 3.93 (s) 3.23 (t, 9) 3.20 (t, 9) 3.80±3.98 (2H, m, OCHCH2O), 4.16 (2H, t, J=5Hz, OCH2CH2O), 4.85
(1H, d, J=7Hz, OCH2O), 5.03 (1H, d, J=7Hz, OCH2O), 6.66 (1H, d,
J=9Hz, PhO), 7.24 (1H, d, J=2Hz, PhO), 7.34 (1H, dd, J=9 and 2Hz,
PhO)
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EDTA and dialyzed versus distilled water for 5±6 h at
4 �C. Centrifugation (25,000�g, 30min) gave the ®nal
brain membrane fraction. Insect heads were homo-
genized in 0.25 M sucrose-10mM Tris±HCl bu�er, pH
7.5, and the homogenate was centrifuged at 1000�g for
10min and the supenatant thereof at 130,000�g for
60min. The pelleted mouse brain and insect head mem-
branes were suspended in assay bu�er (see below) and
stored at ÿ80 �C until used.

[3H]1 binding assays. Procedures for the [3H]1 binding
assays were based on earlier reports for mammalian
brain9±12 and house¯ies.13 The assay bu�er was 10mM
phosphate, pH 7.5, containing 200mM NaCl for mouse
and 300mM NaCl for insect membranes. The incuba-
tion mixtures were prepared by adding, in sequence,
assay bu�er (870 mL), the test compound in dimethyl
sulfoxide (DMSO) (10 mL), [3H]1 in DMSO:assay bu�er
(1:3, 20 mL) and ®nally the membrane preparation
(100 mL) with mixing. The protein level29 was 50, 200
and 400 mg/assay for mouse, house¯y and fruit ¯y,
respectively. The ®nal [3H]1 concentration was 2.9 nM
(45,000 dpm) for mouse and 1.9 nM (30,000 dpm) for
the insects. The mixtures were incubated for 90min
(mouse) or 70min (insect) at 22 �C and then ®ltered on
Whatman GF/C (mouse) or GF/B (insects) glass-®ber
®lters followed by three 5mL rinses with ice-cold NaCl
(0.9% w/v) solution containing ethanol (2% v/v). Spe-
ci®c binding was considered to be the di�erence between
total 3H bound with 1.9 or 2.9 nM [3H]1 and nonspeci®c
3H bound on addition of 5 mM unlabeled 1. The speci-
®cally bound [3H]1 with mouse and house¯y membranes
was directly proportional to protein level. Typical
values for percentage and dpm speci®c binding were
67% and 7700 dpm for mouse, 67% and 7500 dpm for
house¯y and 86% and 12,000 dpm for fruit ¯y.
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