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A highly regioselective, one-pot sequential iodination–copper-

catalyzed cross-coupling of arene C–H bonds has been developed

affording an efficient method for biaryl synthesis.

Copper complexes have been known to promote carbon–

carbon bond formation for more than a century.1 However,

the development of the corresponding catalytic processes has

started only in the last decade. Efficient copper-catalyzed

cross-coupling reactions have been developed for the formation

of carbon–carbon bonds.2 Unfortunately, copper is under-

utilized as a catalyst for the functionalization of carbon–

hydrogen bonds. We have recently developed a general

method for copper-catalyzed arylation of sp2 C–H bonds

possessing pKa’s below 35 (in DMSO).3 A variety of electron-

rich and electron-poor heterocycles such as azoles, thiophenes,

benzofuran, pyridine oxides, pyridazine, and pyrimidine can

be arylated. Furthermore, arenes possessing electron-

withdrawing fluorine, chlorine, nitro, and cyano substituents

can also be arylated. Aryl iodides, aryl bromides, and even

some activated aryl chlorides can be used as the coupling

partners. These reactions can be described as a carbon–

hydrogen/carbon–halogen bond coupling that results in the

formation of a biaryl or polyaryl (Scheme 1A). From atom-

economy and generality viewpoints it would be advantageous

if one could employ unfunctionalized coupling partners by

coupling two C–H bonds to form a carbon–carbon bond.

Several recent examples involve palladium-catalyzed arylation

of directing-group-containing arenes or electron-rich hetero-

cycles by simple benzenes.4 Unfortunately, regioselectivity

with respect to the simple arene coupling component is

difficult to achieve and often only symmetric arenes can be

used for the arylations (Scheme 1B). We reasoned that a

C–H/C–H coupling could be achieved by employing a

combination of regioselective halogenation with copper-

catalyzed arylation (Scheme 1C).

We report here an electrophilic halogenation followed by a

copper-catalyzed arylation that allows a highly regioselective

heterocoupling of arene C–H bonds.

For accomplishing the C–H/C–H coupling, two sequential

carbon–hydrogen bond functionalizations are required.

A halogenation of an sp2 C–H bond should be followed by

copper-catalyzed C–H bond arylation. It has been shown

previously that the Cu-catalyzed arylation is highly regio-

selective with the most acidic C–H bond arylated exclusively.3

Consequently, a highly regioselective and efficient iodination

procedure that is compatible with Cu-catalyzed arylation

was needed. Iodine chloride has been employed for arene

halogenation for at least 130 years.5 High iodination regio-

selectivities have been reported.6 The halogenation mechanism

has been extensively studied by Kochi et al.7 Several issues that

had to be considered are as follows. First, competing substrate

chlorination is often observed.7 Second, incomplete iodination

of the less reactive substrates may result in lower conversions.

Kochi et al. have reported that ICl is more reactive in

nonpolar solvents such as CH2Cl2, but the selectivity for

iodination over chlorination is higher in polar aprotic

solvents.7 A mixture of these solvents is most likely to deliver

the optimal compromise of rate and selectivity. In some cases,

relatively stable cation radicals are formed by reaction of

arenes with ICl.7 The cation radicals were shown to react with

I2 forming iodinated products. Thus, addition of iodine to the

reaction mixture may result in higher reactivity and/or

selectivity for the iodination. Third, iodination procedure

should be compatible with subsequent copper-catalyzed

cross-coupling reaction. An excess of ICl may retard

the coupling by oxidizing catalytically active Cu species.

p-Dimethylaminobenzene reacts with ICl forming a haloarene

Scheme 1 Carbon–hydrogen bond arylation.
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Table 1 Copper-catalyzed cross-coupling of C–H Bondsa

Entry Ar–H R–H Ar–R Yield (%)

1b C6F5H 63

2c Biphenyl 45

3 71

4cd m-Xylene 63

5c Diphenyl ether 56

6 59

7cd 49

8ce 57

9c 51

10c 72

11 52

12f 90

a See ESIz and ref. 8 for stoichiometry. Yields are isolated yields of pure regioisomer. b Ten mmol scale reaction. c Dimethylaminobenzene added

after step 1. d Crude isomer ratio: 12/1. e Crude isomer ratio: 32/1. f Crude isomer ratio: 24/1.

6434 | Chem. Commun., 2009, 6433–6435 This journal is �c The Royal Society of Chemistry 2009
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that is relatively inactive in the copper-catalyzed arylation

step. Thus, in cases where full consumption of ICl was not

observed or an excess of halogenating reagent was required,

p-dimethylaminobenzene was added.

The scope of the reaction is presented in Table 1. Electron-

rich heterocycles such as thiophenes (entries 1 and 9),

N-methylindole (entry 3), and N-methylpyrazole (entry 6)

can be coupled with electron-deficient arenes such as penta-

fluorobenzene, tetrafluoropyridine, 3,5-difluorobenzonitrile,

and 1,3-dinitrobenzene. 2-Bromothiophene (entry 1) is diarylated

by substituting both the bromide and newly introduced iodide.

Electron-rich arenes such as biphenyl, alkylbenzenes, diphenyl

ether, anisole, naphthalene derivatives, and azulene can be

coupled with polyfluorobenzenes (entries 2, 8, 10, and 11), acidic

electron-rich heterocycles (entries 4 and 5), and terminal

alkynes (entry 12). Entry 1 was run on a 10 mmol scale.

The first component of the cross-coupling reaction is an

electron-rich aromatic compound. The regioselectivity of

iodination step is dictated by the rules of electrophilic aromatic

substitution.9 In most cases, only a single product isomer was

observed. However, anisole derivatives and alkylbenzenes are

halogenated with selectivities ranging from 12/1 (entry 7,

anisole) to 32/1 (entry 8, t-butylbenzene). The second coupling

component can be an arene (or alkyne) possessing a C–H bond

with DMSO pKa’s below 35 (in DMSO).10 The regioselectivity

with respect to the second coupling component (R–H in

Table 1) is dependent on the acidity of the arene. The most

acidic position is functionalized exclusively. Either potassium

phosphate or lithium t-butoxide base can be employed in the

second step. Choice of base depends on the acidity of the

second coupling component. Less acidic substrates such as

methyltriazole (entry 5) and dichloropyridine (entry 7) require

use of a stronger LiOtBu base. For obtaining reproducible

yields fresh ICl should be used since older samples dispropor-

tionate to chlorine gas and iodine.7

In conclusion, we have developed a one-pot procedure for a

highly regioselective cross-coupling of arene carbon–hydrogen

bonds. A variety of electron-rich arenes such as alkyl- and

arylbenzenes, anisole derivatives, azulene, and five membered

heterocycles can be coupled with electron-poor arenes

possessing at least two electron-withdrawing groups on a

benzene ring, thiophenes, triazoles, and alkynes. The

cross-coupling reaction is performed by an initial electrophilic

iodination of an electron-rich arene followed by a

copper-catalyzed arylation of a carbon–hydrogen bond.
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