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a b s t r a c t

The individual chemical components of commercial extract of Gymnema sylvestre, a medicinal plant used
in the traditional systems of the Indian medicine for its antidiabetic and hypolipidemic properties, were
isolated and evaluated for their capability to act as modulators of nuclear and membrane receptors
involved in glucose and lipid homeostasis.

The study disclosed for the first time that individual gymnemic acids are potent and selective antago-
nists for the b isoform of LXR. Indeed the above activity was shared by the most abundant aglycone gym-
nemagenin (10) whereas gymnestrogenin (11) was endowed with a dual LXRa/b antagonistic profile. Deep
pharmacological investigation demonstrated that gymnestrogenin, reducing the expression of SREBP1c
and ABCA1 in vitro, is able to decrease lipid accumulation in HepG2 cells. The results of this study substan-
tiate the use of G. sylvestre extract in LXR mediated dislypidemic diseases.

� 2015 Published by Elsevier Inc.
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1. Introduction

Gymnema sylvestre (family Asclepiadaceae), known as ‘‘gurmar’’
(sugar destroyer) in Hindi, is a well-known plant native to central
and western India that also grows wild in the tropical forests of
Africa, Australia, and China. It is considered a relevant medicinal
plant and is used since thousands of years in folk medicine and
Ayurveda [1], especially for its antidiabetic properties, but also
for the treatment of a broad range of ailments including asthma,
eye complaints, family planning, colic pain, cardiopathy, constipa-
tion, dyspepsia, hemorrhoids, and hyperlipidemic conditions [2–5].
Several preclinical studies on polar/nonpolar extracts of roots
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and leaves of G. sylvestre suggested that G. sylvestre exerts its
hypoglycemic effects through the increase in insulin secretion
[6], in regeneration of islets cells [7], peripheral utilization of glu-
cose and inhibition of glucose absorption from intestine. Further,
clinical reports validated the use of G. sylvestre in type 1 and 2
diabetic conditions [8]. From a chemical point of view, G. sylvestre
extracts contain triterpene saponins belonging to oleanane and
dammarane classes [9,10]. Gymnemic acids (GAs), a complex
mixture of oleanane saponins, are largely considered the active
constituents, and the quality of extracts and its formulations is
assessed by the content of gymnemic acids [11]. Besides several
efforts have been reported on the beneficial effects of gymnemic
acid crude extracts in ameliorating metabolic diseases, few reports
on the effects of a single, structural characterized biological mole-
cule have been published and few data are today available on the
biological targets involved in GAs beneficial effects. A recent report
disclosed two components of G. sylvestre crude extracts, gymnemic
acids V and XV, as potent inhibitors of sodium-dependent glucose
transporter 1 (SGLT1), demonstrating for the first time the role of
selected components of GAs in inhibiting electrogenic glucose
uptake in the gastrointestinal tract [12].

Indeed the varied pharmacological activities exhibited by
G. sylvestre extracts in regulating body weight [13], lipid [14] and
liver X

http://dx.doi.org/10.1016/j.steroids.2015.01.024
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glucose homeostasis would suggest a modulation of liver X recep-
tors (LXRs), transcriptional factors belonging to the superfamily of
metabolic nuclear receptors.

Liver X receptor-a (LXRa) and liver X receptor-b (LXRb) (also
known as NR1H3 and NR1H2, respectively) are critical modulators
of lipid and glucose metabolism, inflammatory responses and
innate immunity. LXRs are ligand-activated transcription factors
belonging to the nuclear receptor superfamily that controls biolo-
gical responses by coordinating regulation of gene transcription
[15–17]. As ligand-activated transcription factors, these receptors
are amenable to modulation by small drug-like molecules, and
LXRs have emerged as potential therapeutic targets for atheroscle-
rosis, Alzheimer’s disease and type 2 diabetes. The LXRs function as
heterodimers with the retinoid X receptor (RXR) and are activated
by naturally occurring cholesterol metabolites known as sterols
and oxysterols [18,19]. Consistent with their role as sensors of
cholesterol level, LXRs coordinately regulate set of genes to control
cholesterol metabolism in various tissues [15,16]. In the liver, LXRa
directly induces Cyp7a1, the rate-limiting enzyme in the classical
bile acid biosynthesis pathway, leading to the catabolism of choles-
terol to bile acids. In macrophages, adipocytes and other peripheral
cell types, LXRs respond to high intracellular sterol levels by
inducing cholesterol efflux through stimulation of expression of
ATP-binding cassette ABCA1, (ABC)G1 and apolipoprotein (apoE)
– proteins that increase the removal of excess cholesterol from
cells [20–24]. In addition LXRs also participate in both innate and
acquired immune responses [25,26], improve glucose tolerance
and insulin sensitivity in both mouse and rat models of diabetes
[27] through coordinate regulation of glucose metabolism in liver
and adipose tissue [28]. As a consequence, LXRs agonists are recog-
nized a promising strategy in the treatment of several human dis-
eases including hypercholesterolemia, diabetes, autoimmune
disorders, and neurodegenerative diseases [29].

In addition to their central role in cholesterol homeostasis, LXRs
are important regulators of hepatic lipogenesis [30–32]. Indeed
LXRs stimulate the expression of sterol regulatory element-binding
protein (SREBP)-1c, acetyl-CoA carboxylase, stearoyl-CoA desat-
urase-1 and fatty acid synthase in the liver leading to increased fat-
ty acid biosynthesis and plasma triglycerides (TGs). While LXRa
and LXRb are capable of inducing hepatic lipogenesis, studies in
LXR knockout mice suggest that LXRa is the dominant isoform in
this pathway [31]. A number of LXR agonists have been shown to
induce hypertriglyceridemia and hepatic steatosis, and this obser-
vation hinders the development of this class of compounds for
human use in atherosclerotic cardiovascular disease [33]. Indeed
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Gymnemic acid VII (1) H H H GlcA
Gymnemagenin 3-O-glucuronide (2) H OH H GlcA
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Gymnemic acid II (4) mba OH Ac GlcA
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Fig. 1. Gymnemic acids (GAs) isolated from Gymnema sylvestre; tig: tigloyl; mba:
(S)-2-methylbutyroyl.
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several recent efforts have demonstrated the utility of LXRs
antagonists in human diseases in which hepatic fatty acid level
are impaired. Fatty liver accumulation, which often accompanies
obesity and type 2 diabetes, frequently leads to a much more
debilitating hepatic disease including non-alcoholic steatohepati-
tis, cirrhosis, and hepatocellular carcinoma [34,35].

With this background in mind and within our long-standing
interest in nuclear receptor modulators from natural sources
[36,37], we proceeded in the isolation of individual gymnemic
acids from a commercial available preparation of G. sylvestre
extracts. Gymnemic acids 1–9 and the corresponding aglycone
moieties gymnemagenin 10 and gymnestrogenin 11 (Fig. 1) were
tested on a panel of metabolic nuclear receptors demonstrating
for the first time their ability to antagonize LXRs. In detail, apart
compound 2, all isolated gymnemic acids as well as the most abun-
dant aglycone gymnemagenin (10) were demonstrated potent and
selective antagonists for LXRb whereas gymnestrogenin (11) was
endowed with a dual LXRa/b antagonistic profile.
2. Experimental

2.1. General experimental procedures

High-resolution ESIMS spectra were performed with a Micro-
mass QTOF Micromass spectrometer. ESIMS experiments were
performed on an Applied Biosystem API 2000 triplequadrupole
mass spectrometer.

NMR spectra were obtained on Varian Inova 500 and 700 NMR
spectrometers (1H at 500 and 700 MHz, 13C at 125 and 175 MHz,
respectively) equipped with a Sun hardware, d (ppm), J in Hz, spec-
tra referred to CHD2OD as internal standard (dH = 3.31 and
dC = 49.0 ppm). Spin multiplicities are given as s (singlet), br s
(broad singlet), d (doublet), dd (double doublet) or m (multiplet).

Droplet counter current chromatography (DCCC) was performed
on a DCC-A apparatus (Tokyo Rikakikai Co., Tokyo, Japan) equipped
with 250 glass-columns (internal diameter 3 mm).

HPLC was performed using a Waters 510 pump equipped with
Waters Rheodyne injector and a Waters 401 differential refrac-
tometer as detector.

Silica gel MN Kieselgel 60 (70–230 mesh) from Macherey–Nagel
Company was used for column chromatography.

The purities of compounds were determined to be greater than
95% by HPLC, MS and NMR.
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2.2. Separation of individual gymnemic acids

Dried and finely powdered extract of G. sylvestre (3.0 g) was
chromatographed in two runs by DCCC using CHCl3/MeOH/H2O
(7:13:8) in the ascending mode (the lower phase was the station-
ary phase), flow rate 8 ml/min; 4 ml fractions were collected.
Fractions were monitored by TLC on SiO2 with n-BuOH/AcOH/
H2O (60:15:25) as eluent and combined on the basis of their
similar TLC retention factors.

Fraction 2 (220 mg) was purified by HPLC on a reverse phase
Nucleodur 100-5 C18 (5 lm; 4.6 mm i.d. � 250 mm) column
eluting in isocratic mode with MeOH/H2O (45:55) (flow rate
1 mL/min) to give 1.8 mg of gymnemagenin 3-O-glucuronide[38]
(2) (tR = 2.4 min) and 2.4 mg of gymnemic acid VII [39] (1)
(tR = 4.2 min) (Table S2 in Supporting information).

Fraction 3 (160 mg) was purified by HPLC on a reverse phase
Nucleodur 100-5 C18 (5 lm; 4.6 mm i.d. � 250 mm) column elut-
ing in isocratic mode with MeOH/H2O (1:1) (flow rate 1 mL/min) to
afford 3.1 mg of gymnemic acid IV [40] (6) (tR = 8.1 min), 3.7 mg of
gymnemic acid II [40] (4) (tR = 9.6 min), 5.4 mg of gymnemic acid I
[40] (3) (tR = 17.1 min), 1.6 mg of gymnemic acid III [40] (5)
mnemic acids from Gymnema sylvestre. Discovery of a new class of liver X
.01.024
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(tR = 19.5 min), 0.7 mg of gymnemic acid VIII [41] (8) (tR = 21.3
min) (Table S2 in Supporting information).

Fraction 4 (60 mg) was purified by HPLC on a reverse phase
Nucleodur 100-5 C18 (5 lm; 4.6 mm i.d. � 250 mm) column elut-
ing in isocratic mode with MeOH/H2O (65:35) (flow rate 1 mL/min)
to give 1.6 mg of gymnemic acid V [38,39] (7) (tR = 15.6 min) and
1.5 mg of gymnemic acid XI [41] (9) (tR = 22.8 min) (Table S2 in
Supporting information).

2.2.1. Gymnemic acid VII (1)
White amorphous solid; selected 1H NMR (500 MHz, CD3OD):

5.28 (1H, br s, H-12), 4.42 (1H, d, J = 7.9 Hz, H-100), 4.20 (1H, dd,
J = 11.8, 5.3 Hz, H-16), 3.75 (1H, d, J = 10.6 Hz, H-28a), 3.55 (1H,
d, J = 10.8 Hz, H-23a), 3.32 (1H, overlapped with solvent signal,
H-28b), 3.30 (1H, overlapped with solvent signal, H-23b), 2.27
(1H, dd, J = 13.5, 3.8 Hz, H-18), 1.25 (3H, s, H3-27), 1.02 (3H, s,
H3-26), 1.00 (3H, s, H3-25), 0.95 (3H, s, H3-30), 0.88 (3H, s,
H3-29), 0.71 (3H, s, H3-24). ESI-MS: m/z 665.4 [M�H]�. HRMS
(ESI): calcd. for C36H57O11 665.3901; found 665.3909 [M�H]�.

2.2.2. Gymnemagenin 3-O-glucuronide (2)
White amorphous solid; selected 1H NMR (500 MHz, CD3OD):

5.35 (1H, br s, H-12), 4.60 (1H, dd, J = 11.0, 5.4 Hz, H-16), 4.43
(1H, d, J = 7.8 Hz, H-100), 3.97 (1H, d, J = 10.4 Hz, H-22), 3.54 (1H,
d, J = 10.4 Hz, H-21), 2.65 (1H, dd, J = 14.5, 4.1 Hz, H-18), 1.27
(3H, s, H3-27), 1.02 (3H, s, H3-25), 1.03 (3H, s, H3-26), 0.99 (3H, s,
H3-30), 0.91 (3H, s, H3-29), 0.71 (3H, s, H3-24). ESI-MS: m/z 681.4
[M�H]�. HRMS (ESI): calcd. for C36H57O12 681.3850; found
681.3852 [M�H]�.

2.2.3. Gymnemic acid I (3)
White amorphous solid; selected 1H NMR (500 MHz, CD3OD):

6.91 (1H, q, J = 7.2 Hz, H-30), 5.34 (1H, br s, H-12), 5.18 (1H, d,
J = 10.7 Hz, H-21), 4.77 (1H, dd, J = 11.4, 5.5 Hz, H-16), 4.42 (1H,
d, J = 7.6 Hz, H-100), 4.34 (1H, d, J = 10.9 Hz, H-28a), 4.22 (1H, d,
J = 10.9 Hz, H-28b), 4.07 (1H, d, J = 10.7 Hz, H-22), 2.63 (1H, dd,
J = 13.7, 4.4 Hz, H-18), 2.09 (3H, s, OCOCH3), 1.87 (3H, s, H3-20),
1.83 (3H, d, J = 7.2 Hz, H3-40), 1.31 (3H, s, H3-27), 1.05 (3H, s, H3-
25), 1.02 (3H, s, H3-26), 1.01 (3H, s, H3-30), 0.88 (3H, s, H3-29),
0.71 (3H, s, H3-24). ESI-MS: m/z 805.4 [M�H]�. HRMS (ESI): calcd.
for C43H65O14 805.4374; found 805.4381 [M�H]�.

2.2.4. Gymnemic acid II (4)
White amorphous solid; selected 1H NMR (500 MHz, CD3OD):

5.33 (1H, br s, H-12), 5.12 (1H, d, J = 10.7 Hz, H-21), 4.75 (1H, dd,
J = 11.5, 5.0 Hz, H-16), 4.44 (1H, d, J = 7.7 Hz, H-100), 4.33 (1H, d,
J = 10.9 Hz, H-28a), 4.22 (1H, d, J = 10.9 Hz, H-28b), 4.03 (1H, d,
J = 10.7 Hz, H-22), 2.63 (1H, dd, J = 14.2, 4.3 Hz, H-18), 2.48 (1H,
m, H-20), 2.10 (3H, s, OCOCH3), 1.31 (3H, s, H3-27), 1.18 (3H, d,
J = 6.5 Hz, H3-50), 1.03 (3H, s, H3-25), 1.02 (3H, s, H3-26), 1.01
(3H, s, H3-30), 0.96 (3H, t, J = 7.2 Hz, H3-40), 0.90 (3H, s, H3-29),
0.72 (3H, s, H3-24). ESI-MS: m/z 807.4 [M�H]�. HRMS (ESI): calcd.
for C43H67O14 807.4531; found 807.4540 [M�H]�.

2.2.5. Gymnemic acid III (5)
White amorphous solid; selected 1H NMR (500 MHz, CD3OD):

5.37 (1H, br s, H-12), 5.10 (1H, d, J = 10.7 Hz, H-21), 4.70 (1H, dd,
J = 11.4, 5.3 Hz, H-16), 4.42 (1H, d, J = 7.9 Hz, H-100), 4.14 (1H, d,
J = 10.7 Hz, H-22), 3.89 (1H, d, J = 10.6 Hz, H-28a), 3.57 (1H, ovl,
H-28b), 2.71 (1H, dd, J = 13.9, 4.5 Hz, H-18), 2.47 (1H, m, H-20),
1.30 (3H, s, H3-27), 1.17 (3H, d, J = 6.8 Hz, H3-50), 1.03 (3H, s,
H3-25), 1.02 (3H, s, H3-26), 1.00 (3H, s, H3-30), 0.96 (3H, t,
J = 7.6 Hz, H3-40), 0.88 (3H, s, H3-29), 0.72 (3H, s, H3-24). ESI-MS:
m/z 765.4 [M�H]�. HRMS (ESI): calcd. for C41H65O13 765.4425;
found 765.4432 [M�H]�.
Please cite this article in press as: Renga B et al. Molecular decodification of gy
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2.2.6. Gymnemic acid IV (6)
White amorphous solid; selected 1H NMR (500 MHz, CD3OD):

6.91 (1H, q, J = 6.9 Hz, H-30), 5.38 (1H, br s, H-12), 5.16 (1H, d,
J = 10.7 Hz, H-21), 4.75 (1H, dd, J = 11.5, 5.0 Hz, H-16), 4.43 (1H,
d, J = 7.8 Hz, H-100), 4.18 (1H, d, J = 10.7 Hz, H-22), 3.90 (1H, d,
J = 10.8 Hz, H-28a), 3.57 (1H, d, J = 10.8 Hz, H-28b), 2.70 (1H, dd,
J = 14.0, 4.4 Hz, H-18), 1.87 (3H, s, H3-20), 1.82 (3H, d, J = 6.9 Hz,
H3-40), 1.31 (3H, s, H3-27), 1.04 (3H, s, H3-25), 1.03 (3H, s, H3-26),
1.02 (3H, s, H3-30), 0.86 (3H, s, H3-29), 0.71 (3H, s, H3-24).
ESI-MS: m/z 763.4 [M�H]�. HRMS (ESI): calcd. for C41H63O13

763.4269; found 763.4275 [M�H]�.
2.2.7. Gymnemic acid V (7)
White amorphous solid; selected 1H NMR (500 MHz, CD3OD):

6.78 (2H, m, H-30 and H-300), 5.62 (1H, d, J = 11.2 Hz, H-21 or H-
22), 5.41 (1H, br s, H-12), 5.30 (1H, d, J = 11.2 Hz, H-21 or H-22),
4.72 (1H, dd, J = 11.5, 5.0 Hz, H-16), 4.43 (1H, d, J = 7.8 Hz, H-100),
2.73 (1H, dd, J = 14.3, 4.0 Hz, H-18), 1.87 (6H, s, H3-20 and H3-200),
1.85 (6H, ovl, H3-40 and H3-400), 1.31 (3H, s, H3-27), 1.04 (3H, s,
H3-25), 1.03 (3H, s, H3-26), 1.02 (3H, s, H3-30), 0.86 (3H, s,
H3-29), 0.71 (3H, s, H3-24). ESI-MS: m/z 845.4 [M�H]�. HRMS
(ESI): calcd. for C46H69O14 845.4687; found 845.4693 [M�H]�.
2.2.8. Gymnemic acid VIII (8)
White amorphous solid; selected 1H NMR (500 MHz, CD3OD):

5.28 (1H, br s, H-12), 4.67 (1H, dd, J = 11.3, 5.3 Hz, H-16), 4.42
(1H, d, J = 7.7 Hz, H-100), 4.32 (1H, d, J = 10.8 Hz, H-28a), 4.22 (1H,
d, J = 10.8 Hz, H-28b), 2.60 (1H, dd, J = 14.4, 4.6 Hz, H-18), 2.42
(1H, m, H-20), 1.29 (3H, s, H3-27), 1.18 (3H, d, J = 6.7 Hz, H3-50),
1.02 (3H, s, H3-25), 1.01 (3H, s, H3-26), 1.00 (3H, s, H3-30), 0.92
(3H, t, J = 7.6 Hz, H3-40), 0.93 (3H, s, H3-29), 0.71 (3H, s, H3-24).
ESI-MS: m/z 765.4 [M�H]�. HRMS (ESI): calcd. for C41H65O13

765.4425; found 765.4433 [M�H]�.
2.2.9. Gymnemic acid XI (9)
White amorphous solid; selected 1H NMR (500 MHz, CD3OD):

6.91 (2H, m, H-30 and H-300), 5.31 (1H, br s, H-12), 5.19 (1H, d,
J = 10.6 Hz, H-21), 4.80 (1H, dd, J = 11.2, 5.0 Hz, H-16), 4.42 (1H,
d, J = 7.8 Hz, H-100), 4.40 (1H, d, J = 10.7 Hz, H-28a), 4.27 (1H, d,
J = 10.7 Hz, H-28b), 4.10 (1H, d, J = 10.6 Hz, H-22), 2.67 (1H, dd,
J = 14.2, 4.4 Hz, H-18), 1.84 (6H, s, H3-20 and H3-200), 1.82 (6H, ovl,
H3-40 and H3-400), 1.32 (3H, s, H3-27), 1.06 (3H, s, H3-25), 1.03
(3H, s, H3-26), 1.01 (3H, s, H3-30), 0.89 (3H, s, H3-29), 0.71 (3H, s,
H3-24). ESI-MS: m/z 845.4 [M�H]�. HRMS (ESI): calcd. for
C46H69O14 845.4687; found 845.4689 [M�H]�.
2.3. Acid Hydrolysis of fraction 3

30 mg of fraction 3 from DCCC was dissolved in 5% H2SO4 in 50%
MeOH (2 mL) and was heated at 100 �C for 2 h. The reaction mix-
ture was neutralized with NaHCO3 and evaporated to dryness to
give a solid residue, that was purified by silica gel chromatography,
eluting with CHCl3/MeOH 9:1. The mixture (25 mg) was purified
by HPLC on a Nucleodur 100–5 C18 (5 lm; 4.6 mm i.d. � 250 mm)
with MeOH/H2O (8:2) as eluent (flow rate 1 mL/min), to give
2.5 mg of gymnemagenin [38] (10) (tR = 6 min) and 1.2 mg of
gymnestrogenin [39] (11) (tR = 8.4 min).
2.3.1. Gymnemagenin (10)
White amorphous solid; 1H and 13C NMR spectroscopic data in

CD3OD given in Supporting information, Table S1. ESI-MS: m/z
505.3 [M�H]�. HRMS (ESI): calcd. for C30H49O6 505.3529; found
505.3533 [M�H]�.
mnemic acids from Gymnema sylvestre. Discovery of a new class of liver X
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2.3.2. Gymnestrogenin (11)
White amorphous solid; 1H and 13C NMR spectroscopic data in

CD3OD given in Supporting information, Table S1. ESI-MS: m/z
489.3 [M�H]�. HRMS (ESI): calcd. for C30H49O5 489.3580; found
489.3585 [M�H]�.

2.4. Cell cultures

HepG2 cells were cultured in E-MEM supplemented with 10%
FBS, 1% glutamine, 1% penicillin/streptomycin. THP-1 cells were
cultured in RPM-I supplemented with 10% FBS, 2 mmol/L L-glu-
tamine, 1% penicillin/streptomycin.

2.5. Transactivation assay

To investigate the LXRa and LXRb mediated transactivation,
HepG2 cells were plated at 5 � 104 cells/well in a 24 well plate.
Cells were transfected with 200 ng reporter vector p(UAS)5XTKLuc,
100 ng of a vector containing the ligand binding domain of LXRa or
LXRb cloned upstream of the GAL4-DNA binding domain (i.e. pSG5-
LXRaLBD-GAL4DBD or pSG5-LXRbLBD-GAL4DBD) and 100 of
pGL4.70 (Promega), a vector encoding the human Renilla gene.

To investigate the specificity of compounds 1–11 versus PPARc,
HepG2 cells were transiently transfected with 200 ng reporter vec-
tor p(UAS)5XTKLuc, 100 ng pGL4.70 and with a vector containing
the ligand binding domain of nuclear receptors PPARc cloned
upstream of the GAL4-DNA binding domain (pSG5-PPARcLBD-
GAL4DBD).

To investigate the specificity of compounds 1–11 versus PXR,
HepG2 cells were transfected with 100 ng pSG5-PXR, 100 ng
pSG5-RXR, 100 ng pGL4.70 and with 200 ng of the reporter vector
containing the PXR target gene promoter (CYP3A4 gene promoter)
cloned upstream of the luciferase gene (pCYP3A4promoter-TKLuc).

To investigate the specificity of compounds 1–11 versus FXR,
HepG2 cells were transfected with 200 ng of the reporter vector
p(hsp27)-TK-LUC containing the FXR response element IR1 cloned
from the promoter of heat shock protein 27 (hsp27), 100 ng of
pSG5-FXR, 100 ng of pSG5-RXR, and 100 of pGL4.70 (Promega), a
vector encoding the human Renilla gene.

To investigate the specificity of compounds 1–11 versus GP-
BAR1, HEK-293T cells were plated at 1 � 104 cells/well in a 24
well-plate and transfected with 200 ng of pGL4.29 (Promega), a
reporter vector containing a cAMP response element (CRE) that
drives the transcription of the luciferase reporter gene luc2P, with
100 ng of pCMVSPORT6-human GP-BAR1, and with 100 ng of
pGL4.70.

At 24 h post-transfection, cells were stimulated 18 h with
10 lM GW3965, a dual LXRa and b agonist, and compounds 1–
11. For dose–response curves, cells were transfected as described
above and then treated with increasing concentrations of 11 (0.1,
1, 10, 25 lM). After treatments, 10 lL of cellular lysates were read
using Dual Luciferase Reporter Assay System (Promega Italia s.r.l.,
Milan, Italy) according manufacturer specifications using the Glo-
max20/20 luminometer (Promega Italia s.r.l., Milan, Italy).

2.6. Real-Time PCR

Total RNA was isolated using the TRIzol reagent according to
the manufacturer’s specifications (Invitrogen). One lg RNA was
purified of the genomic DNA by DNase I treatment (Invitrogen)
and random reverse-transcribed with Superscript II (Invitrogen)
in a 20 lL reaction volume. Ten ng template was added to the
PCR mixture (final volume 25 lL) containing the following
reagents: 0.2 lM of each primer and 12.5 lL of 2X SYBR FAST
Universal ready mix (Invitrogen). All reactions were performed in
triplicate and the thermal cycling conditions were: 2 min at
Please cite this article in press as: Renga B et al. Molecular decodification of gy
receptor antagonists. Steroids (2015), http://dx.doi.org/10.1016/j.steroids.2015
95 �C, followed by 40 cycles of 95 �C for 20 s, 60 �C for 30 s in
iCycler iQ instrument (Biorad). The relative mRNA expression
was calculated and expressed as 2�(DDCt). Forward and reverse
primer sequences were the following: human GAPDH: GAAGGTG
AAGGTCGGAGT and CATGGGTGGAATCATATTGGAA; human
(SREBP)-1c: GCAAGGCCATCGACTACATT and GGTCAGTGTGTCCTCC
ACCT; human ABCA1: GCTTGGGAAGATTTATGACAGG and AGGGGA
TGATTGAAAGCAGTAA; human LXRa: CAACCCTGGGAGTGAGAGT
ATC and ATAGCAATGAGCAAGGCAAACT; human LXRb: AGGCATCC
ACTATCGAGATCAT and GTCCTTGCTGTAGGTGAAGTCC.

2.7. ORO staining

HepG2 cells were grown at an initial density of 105 cells/well in
a 6-well plate and treated daily for 7 d with 10 lM GW3965 or
with the combination of GW3965 plus 11 (10 lM). Cells were then
washed three times with iced PBS and fixed with 10% formalin for
60 min. After fixation, cells were washed with ddH20, with 60%
isopropanol for 5 min and then stained with Oil Red O working
solution (obtained by mixing 6 mL Oil Red O stock solution
(0.35 g Oil Red O powder dissolved in 100% isopropanol) with
4 mL ddH20) for 15 min at room temperature. Cells were washed
immediately 4 times with ddH20 and acquired under microscope
for qualitative analysis of Oil Red O accumulation. To quantify Oil
Red O content levels, Oil Red O was eluted by incubating cells with
1 mL 100% isopropanol for 10 min with gently shaking. Density of
samples were read at 500 nm on a spectrophotometer (Thermo)
using 100% isopropanol as blank.

2.8. Computational details

The structures of 10 and 11 were built by the graphical interface
Maestro 9.6 and their geometries optimized through MacroModel
10.2 software package [42] and using the MMFFs force field [43].
The geometries of both small molecules were optimized using
the Polak–Ribier conjugate gradient algorithm (PRCG, 9 � 107

steps, maximum derivative less than 0.001 kcal/mol), using a GB/
SA (generalized Born/surface area) [44] solvent treatment to mimic
the presence of H2O. The structures of isoforms a and b were
downloaded from Protein Data Bank (www.rcsb.org) [45,46] with
the PDB IDs: 3IPU [43] (LXRa) and 3L0E (LXRb) [47] The macro-
molecules for the docking calculations were processed by Protein
Preparation Wizard [48,49] module from Schrödinger suite 2013-
3: ligand, water molecules and chains B, C and D were deleted;
hydrogens and missing residues were added, the charges of side
chains were assigned considering their pKa at physiological pH of
7.4. For Induced Fit Docking, we applied the extended protocol,
producing 80 ligand–protein poses for both ligands with LXRa,b.
The coordinates of co-crystal ligands with isoform a (PDB ID:
3IPU) and b (PDB ID: 3L0E) were used for grid generation. The con-
formational search was performed allowing the sample ring con-
formations of the ligands (10 and 11), with an energy window of
2.5 kcal/mol. For Prime refinement, the default values were used.
3. Results

Dried and finely powdered extract of G. sylvestre (3.0 g) was
purified by DCCC (CHCl3/MeOH/H2O (7:13:8), ascending mode) fol-
lowed by reverse-phase HPLC to afford gymnemic acid VII (1),
gymnemagenin 3-O-glucuronide (2), gymnemic acids I–V (3–7),
gymnemic acid VIII (8), and gymnemic acid XI (9). The chemical
structures were identified by means of MS and 1D/2D-NMR experi-
ments (see Experimental section and Supporting information).
Comparison of all spectroscopic data with those previously report-
ed in the literature [38–41] led to the unequivocal identification of
mnemic acids from Gymnema sylvestre. Discovery of a new class of liver X
.01.024
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compounds 1–9 as reported in the Fig. 1. As shown, all gymnemic
acids are triterpene glycosides invariably presenting at least one
unit of D-glucuronic acid linked at C-3 hydroxyl group on the ring
A of the aglycone moiety. Compounds 2–9 share the same aglycone
unit identified in 3b,16b,21b,22a,23,28-hexahydroxyolean-12-ene,
also known as gymnemagenin (10), whereas gymnemic acid VII
(1), lacking the hydroxyl group at C-22 on ring E, is the correspond-
ing 3-O-glucuronide of gymnestrogenin (11). Gymnemagenin (10)
and gymnestrogenin (11) were obtained as pure samples through
acid hydrolysis on the crude extract of G. sylvestre followed by
careful HPLC separation. Apart compounds 1 and 2, all isolated
gymnemic acids possess one or two acylating units (acetyl, (S)-2-
methylbutyroyl, tigloyl) involved in an ester bond with the hydrox-
yl group(s) on the aglycone ring E.

Gymnemic acids 1–9 and the corresponding aglycones 10–11
were first investigated for their ability to transactivate LXRa and
LXRb. As shown in Fig. 2A and C, we demonstrated that several
compounds analyzed in this study were able to reduce the basal
transactivation of both LXRa and LXRb, respectively (Fig. 2A and
C, ⁄p < 0.05 versus not treated cells). Furthermore, when com-
pounds 1–11 were co-administered with GW3965 (a dual LXRa/b
agonist), we observed that, except compound 2, all gymnemic
acids and the aglycones gymnemagenin (10) and gymnestrogenin
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Fig. 2. Effect of gymnemic acids 1–9 and aglycones 10–11 on LXRs transactivation. (A-B)
the Gal4 DNA binding domain is fused to the LBD of LXRa (pSG5GAL4-LXRaLBD) and wit
with a chimeric receptor plasmid in which the Gal4 DNA binding domain is fused to the L
post transfection cells were stimulated for 18 h with GW3965 (10 lM), a dual LXRa/b ag
plus compounds 1–11 (50 lM). Data are the mean ± S.E. of three experiments. ⁄p < 0.05
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(11) were potent antagonist for LXRb (Fig. 2D, #p < 0.05 versus
GW3965 administered cells). By the contrast, when 1–11 were
tested on LXRa, we found that only gymnestrogenin (11) was able
to antagonize the effect of GW3965 (Fig. 2B, #p < 0.05 versus
GW3965 administered cells).

The relative antagonism potency of 11 was first investigated by
a detailed measurement of concentration–response curve on LXRa
and LXRb transactivation. As illustrated in Fig. 3, gymnestrogenin
(11) antagonized both LXRa and LXRb transactivation with an
IC50 of 2.5 and 1.4 lM, respectively.

To investigate the specificity of the above described com-
pounds, we have tested whether compounds 1–11 interact with
other metabolic nuclear receptors such as FXR, PXR and PPARc
and also with GP-BAR1, a membrane G-protein coupled receptor
activated by endogenous bile acids and several natural occurring
triterpenenoids [50]. Our investigations revealed that these
compounds at the concentration of 10 lM failed to transactivate
FXR, GP-BAR1, PXR and PPARc (Fig. 4A–D).

Among all tested compounds, gymnestrogenin (11) represents
promising template in generating selective dual LXRa/b antago-
nists. Thus, to further certificate that 11 specifically antagonizes
LXRa and LXRb we have investigated the possibility that 11 could
antagonize other nuclear receptors including FXR, GP-BAR1, PXR
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HepG2 cells were transiently transfected with a chimeric receptor plasmid in which
h the reporter vector p(UAS)5xTKLuc. (C-D) HepG2 cells were transiently transfected
BD of LXRb (pSG5GAL4-LXRbLBD) and with the reporter vector p(UAS)5xTKLuc. 24 h
onist, with compounds 1–11 (10 lM) or with the combination of GW3965 (10 lM)
versus not treated cells (NT). #p < 0.05 versus GW3965 stimulated cells.
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Fig. 3. Concentration–response curve of gymnestrogenin (11) on LXRa (A) and LXRb (B). LXRa and LXRb transacriptional activities were measured in HepG2 cells transfected
using the GAL4-LBD fusion system. Twenty-four hour post transfection cells were stimulated with 10 lM GW3965, a dual LXRa/b agonist, in presence of increasing
concentration of 11 (0.1, 1, 10 and 25 lM).
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Fig. 4. Specificity of gymnemic acids 1–9 and the aglycones 10–11 on other nuclear receptors. (A) HepG2 cells were cotransfected with pSG5-FXR, pSG5-RXR, and with the
reporter vector phsp27TKLuc and then stimulated 18 h with CDCA (10 lM), a FXR agonist, or with 1–11 (10 lM); (B) HEK293T cells were cotrasfected with pCMVSPORT-GP-
BAR1 and with a reporter gene containing a cAMP responsive element in front of the luciferase gene (CRE) and stimulated 18 h with TLCA, (10 lM), a GP-BAR1 agonist, or with
1–11 (10 lM); (C) HepG2 cells were cotransfected with pSG5-PXR, pSG5-RXR, and with the reporter pCYP3A4 promoter-TKLuc and then stimulated 18 h with rifaximin (Rif,
10 lM), a PXR agonist, or with 1–11 (10 lM); (D) HepG2 cells were cotransfected with the Gal4 luciferase reporter vector and with a chimera in which the Gal4 DNA binding
domain is fused to the LBD of PPARc and stimulated 18 h with rosiglitazone (Rosi, 10 lM), a PPARc agonist, or with 1–11 (10 lM). Data are the mean ± SE of three
experiments. ⁄p < 0.05 versus not treated cells (NT).
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and PPARc and demonstrated that gymnestrogenin (11) at the
concentration of 50 lM failed to antagonize the transcriptional
activity driven by these receptors (Fig. 5, panels A–D).

We have subsequently analyzed whether 11 regulate mRNA
expression of canonical LXR target genes. As shown in Figs. 6A
and B, 11 was able to reduce the expression of SREBP-1c in HepG2
cells both in basal condition and in cells co-stimulated with
GW3965 as well as that of ABCA1 in THP1 cells co-stimulated with
GW3965 (p < 0.05 versus not treated cells; p < 0.05 versus GW3965
stimulated cells). Furthermore, gymnestrogenin (11) abrogated the
effects of GW3965 on intracellular lipid accumulation measured by
Oil red O staining (Fig. 6C). The lipid accumulation was quantified
spectrophotometrically and quantitative analysis confirmed the
data to be statistically significant (Fig. 6C). Noteworthy, gymne-
strogenin (11) was also able to reduce mRNA levels of LXRb
(Fig. 6E, #p < 0.05 versus GW3965 stimulated cells) but not that
of LXRa (Fig. 6D) in HepG2 cells stimulated with GW3965.

Molecular modelling. Up to date, the experimental structures of
ligand-LXRa,b concern small molecules acting as agonists [51–
53]. In the present contribution, we proposed the first tentative
model of LXRs bound to antagonists. In particular, X-ray crystallog-
raphy studies show the plasticity of ligand binding domain (LBD) of
LXRs [47,51–55], like many nuclear receptors [56], adapting the
shape and size of binding cavity on the nature of the bound small
molecule. Based on this structural consideration, we performed our
analysis by using the induced fit docking protocol (IFD) [57–59]
developed by Schrödinger LLC [60], which calculates movements
of backbone and side chains upon ligand binding.
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Fig. 5. Antagonism of gymnestrogenin (11) on other nuclear receptors. HepG2 cells (A, C
Twenty-four hour post transfection cells were stimulated with 10 lM of appropriate a
experiments. ⁄p < 0.05 versus not treated cells (NT).
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Our theoretical results about isoform b show that both ligands
(10 and 11) fill equivalent spaces in the LBD of the biological target
(Fig. 7A and B) presenting superimposable docked poses.

The compound 10 establishes van der Waals contacts by its
polycyclic moiety and methyl groups with Ser242, Phe268,
Phe271, Thr272, Leu274, Ala275, Ile277, Ser278, Ile309, Met312,
Glu315, Ile327, Thr328, Phe329, Leu330, Phe340, Leu345, Phe349,
His435, Gln438, Val439, Leu442, Leu449, Leu453, Trp457
(Fig. 7A). The double bond at C-12 is normal to side chain of
Phe329 (Fig. 7A). The hydroxyl group at C-16 donates a hydrogen
bond to the backbone CO of Met312, whereas the OH at C-21
interacts with side chain of Glu281 (Fig. 7A). The hydroxyl groups
at C-23 and C-28 accept a H-bond from His435 and Thr316, respec-
tively (Fig. 7A).

The docked pose of 11 shows the same van der Waals interac-
tions with the residues found by 10, (Fig. 7B), except for the further
contact with Leu313. The hydrogen bonds network is also similar,
but more H-bonds are observed for 11. In particular, the hydroxyl
group at C-3 accepts a hydrogen bond from side chain of Gln438
(Fig. 7B) and the OH at C-23 donates a H-bond to Gln438
(Fig. 7B). The hydroxyl group at C-21 is also hydrogen bonded to
side chain of Arg319 (Fig. 7B). The superimposition of the 10 and
11 docked poses with the co-crystallized agonist of LXRb, reveals
that 10 and 11 explore different spaces of the binding site com-
pared to the agonist (Figs. S1 and S2 in Supporting information).

Differently from the results on the isoform b, the predicted
bioactive conformations of 10 and 11 are not overlapping
(Fig. 8A and B) in the isoform a.
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(C) Images of Oil Red O staining and Oil Red O quantification at 500 nm. (D and E) Real Time PCR analysis of mRNA expression of LXRa and LXRb. Values are normalized
relative to GAPDH mRNA and are expressed relative to those of not treated (NT) cells which are arbitrarily set to 1. GW: GW3965.

Fig. 7. (A and B) Three-dimensional models of the interactions formed by 10 (A) and 11 (B) with LXRb. The protein is depicted by tube and coloured in green except for the
following atoms: polar H, white; N, dark-blue; O, red; S, yellow. All ligands are represented by sticks (black for 10; kaki for 11) and balls (coloured: O, red; polar H, white). The
C atoms of the small molecules are coloured as for the sticks: black for 10 and kaki for 11. The black dashed lines indicate hydrogen bonds between protein and ligands. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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In particular for 11, van der Waals are observed with Phe257,
Leu260, Ala261, Val263, Ser264, Met298, Leu299, Glu301,
Thr302, Arg305, Ile313, Thr314, Leu316, Phe326, Leu331, Phe335,
Ile339, Trp443 (Fig. 8B). In the docked pose of 11, the double bond
is parallel to the side chain of Phe315 (Fig. 8B). The OH at C-3 faces
the p system of Phe326. The hydroxyl group at C-23 donates a
H-bond to the backbone CO of Phe257, whereas the OH at
C-28 gives the same interaction with the side chain of Glu267
Please cite this article in press as: Renga B et al. Molecular decodification of gy
receptor antagonists. Steroids (2015), http://dx.doi.org/10.1016/j.steroids.2015
(Fig. 8B). The hydroxyl groups at C-16 accepts two H-bonds from
side chain of Arg232, whereas the side chain of Asn225 gives a
hydrogen bond to OH at C-21 (Fig. 8B). The binding mode of 11
with LXRa presents different interactions compared to the refer-
ence agonist (Fig. S3 in Supporting information).

On the other hand, we observe that the docked pose of 10 is
superimposable (Fig. S4 in Supporting information) to the co-
crystallized agonist of LXRa (PDB ID: 3IPU) [51]. In fact, the presence
mnemic acids from Gymnema sylvestre. Discovery of a new class of liver X
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of the OH at C-22 causes the formation of two hydrogen bonds with
the side chain of Arg305 (Fig. 8a), causing a relative displacement
with respect to 11. In details, in the binding cavity of LXRa, 10 is clo-
ser to the residues Asn225, Arg232, Thr258, Ser264, Ile295, Phe315,
His421, Gln424 (Fig. 8A), not involved in interactions with 11. The
OH at C-3 and C-23 donate a H-bond to the side chains of Gln424
and His421, respectively (Fig. 8A). The hydroxyl group at C-16 is
hydrogen bonded to backbone CO of Met298 (Fig. 8A). The OH at
C-21 donates a H-bond to the side chain of Glu267 and accepts a
hydrogen bonds from Arg305 (Fig. 8A).

The outcomes of both ligands against isoform b and of 11-LXRa
could suggest a perturbation of some residues in the LBD upon
binding of the small molecules, negatively modulating the biologi-
cal activity of the protein. Compound 10 adopts an agonist-like
arrangement in the LBD of LXRa, but, as suggested from the
biological experimental evidence, it is not able to interfere with
the protein activity.

4. Discussion and conclusion

Fatty liver is the most common cause of asymptomatic abnormal
liver function tests among adults in Western countries. Fatty liver
disease affects 10–24% of the general population and 57.5–74% of
obese persons [61]. The most well-known molecular pathway
involved in the development of fatty liver is the activation of
SREBP-1c [62]. Analysis of the mouse SREBP-1c gene promoter
revealed an LXR/RXR DNA-binding site that is essential for its
regulation, indicating that SREBP-1 is a direct target gene of LXR
[30]. Additional support for the role of LXR came from the finding
that LXR agonist treatment induces the expression of SREBP-1 tar-
get genes, such as fatty acid synthase (FAS) and increases plasma
and hepatic TG levels in wild-type, but not LXR-deficient mice
[31]. Consequently, LXR-null mice are defective in hepatic lipid
metabolism and resistant to obesity and steatosis when challenged
with a Western-style diet containing both high fat and cholesterol
[63]. LXRs also contribute to the development of steatosis induced
by essential polyunsaturated fatty acid deficiency [64]. Therefore,
synthetic or natural compounds that inhibit LXRs activation or act
as an inverse agonist for LXRs would be beneficial in patients with
fatty liver disease [35,65].

In the present study we have reported the isolation and the
pharmacological decodification of gymnemic acids, largely consid-
ered the active constituents of G. sylvestre extract. Isolated GAs and
the aglycone gymnemagenin (10) showed the ability to selectively
antagonize LXRb in a transactivation assay in HepG2 cells
Please cite this article in press as: Renga B et al. Molecular decodification of gy
receptor antagonists. Steroids (2015), http://dx.doi.org/10.1016/j.steroids.2015
transiently transfected with a chimera vector containing the LBD
of LXRb fused with the DBD of Gal4. Differently, gymnestrogenin
(11), a less common aglycone in gymnemic acids and differing
from the widespread aglycone 10 in the absence of an hydroxyl
group on the ring E, was proved a potent dual LXRa/b antagonist.

Furthermore, results from our investigation have clearly demon-
strated that gymnemic acids as well as gymnemagenin (10) and
gymnestrogenin (11), are non promiscuous antagonists for LXRs.
This specificity was confirmed by transactivation experiments.
Exposure of HepG2 cells to these compounds fails to modulate
the expression of a wide array of mammalian nuclear receptors
and fails to activate FXR, GP-BAR1, PXR and PPARc in transactiva-
tion assay.

Indeed analysis of transactivation assays reveals that compound
2 is the sole component of the complex mixture of GAs to be almost
inactive on LXRb when tested at 50 lM. Looking to the chemical
structure of 2, this result suggests that the presence of a D-glucuron-
ic acid unit at C-3 with the concomitant absence of any acylating
unit on the hydroxyl group around ring E is detrimental for both
isoforms of LXR. On the contrary gymnemic acid VII (1), the corre-
sponding 22-dehydroxyl derivative of 2, still retains the ability to
antagonize GW3965 mediated LXRb activation thus demonstrating
that the presence of the hydroxyl group at position-22 is a negative
factor in the LXRb recognition by non-acylated gymnemic acids.
Otherwise the presence of acylated hydroxyl groups on ring E
produces potent LXRb antagonists independently by the chemical
nature (acetyl, mba or tig), the amount (one or two) or the position
(C-21, C-22 or/and C-26) of the acylating unit.

Of interest are also the results of the transactivation assays on
the two aglycone moieties, gymnemagenin (10) and gymnestrogen-
in (11). As shown in Fig. 2B and C, the observation that gymnema-
genin (10) retains the selective LXRb antagonistic profile of its
cognate acylated gymnemic acids (compare 10 versus compounds
3–9 in Fig. 2) whereas gymnestrogenin (11) is a dual LXRa/b antago-
nist points towards the profound impact engaged by position 22 in
the aglycone fitting in the two LXR isoforms. Furthermore, we have
shown that gymnestrogenin (11) failed to antagonize other nuclear
receptors as well as that the antagonism potency on LXRa and
b occurred with an IC50 of 2.5 lM and 1.4 lM respectively, thus rep-
resenting a promising template in generating selective dual LXRa/b
antagonists.

In this study we have further investigated the effects of 11 in
modulating LXRs target genes by RT-PCR. Using HepG2 cells we
have shown that gymnestrogenin (11) reduces the expression of
SREBP1c, a transcription factor that promotes the expression of
mnemic acids from Gymnema sylvestre. Discovery of a new class of liver X
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lipogenic genes, a typical effect of LXR activation in the liver.
Similarly, we have shown that gymnestrogenin (11) is able in
antagonizing the LXR mediated induction of ABCA1 in THP1 cells.
ABCA1 is a transporter that mediates cholesterol efflux from lipid
laden macrophages onto HDL particles for transport back to the
liver. Thus, gymnestrogenin (11) was able to reduce lipid accumu-
lation in HepG2 cells. Indeed, morphological observation and
quantitative analysis have demonstrated that intracellular lipid
content increased after treatment of cells with GW3965 while
co-administration of both LXR agonist and gymnestrogenin sig-
nificantly reduced red lipid droplets inside cells. Finally, another
important finding we made in this study was that 11 retains the
ability to reduce the relative mRNA expression of LXRb but not that
of LXRa. The slight repressive effect of 11 on the expression of
LXRb might be explained by the following: (i) gymnestrogenin
(11) is a more potent antagonist of LXRb (IC50 of 1.4 lM) instead
of LXRa (IC50 of 2.5 lM); (ii) the promoter of LXRs contains multi-
ple LXRE that allow to the autoregulation of LXR gene expression
following interaction with agonists/antagonists [66]. Thus, gymne-
strogenin (11) could reduce the transcriptional activity of LXR even
on its own promoter, thus reducing the mRNA expression.

The results of this study, along with the well demonstrate
hydrolytic biotransformation of gymnemic acids to corresponding
aglycones in the gastrointestinal tract after oral administration
[67] substantiate the use of G. sylvestre extract in LXR mediated
dislypidemic diseases.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.steroids.2015.01.
024.
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