

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bmc

Design and synthesis of N^6 -substituted-4'-thioadenosine-5'-uronamides as potent and selective human A₃ adenosine receptor agonists

Won Jun Choi^a, Hyuk Woo Lee^a, Hea Ok Kim^a, Moshe Chinn^b, Zhan-Guo Gao^b, Amit Patel^b, Kenneth A. Jacobson^b, Hyung Ryong Moon^c, Young Hoon Jung^d, Lak Shin Jeong^{a,*}

^a Department of Bioinspired Science and Division of Life and Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Republic of Korea ^b Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA

^c College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 609-735, Republic of Korea

^d College of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea

ARTICLE INFO

Article history: Received 31 August 2009 Revised 5 October 2009 Accepted 6 October 2009 Available online 12 October 2009

Keywords: A₃ adenosine receptor 4'-Thionucleosides Agonist Binding affinity

1. Introduction

The A₃ adenosine receptor (AR), which belongs to the family of G-protein-coupled receptors (GPCRs), is known to be involved in cell signaling by modulating the levels of cAMP, inositol triphosphate (IP₃), and diacylglycerol (DAG) through binding of the endogenous chemical messenger, adenosine.¹ Thus, the A₃AR has been regarded as good therapeutic target for the treatment of several diseases associated with cell signaling such as cancer, ischemia, inflammation, and glaucoma.²

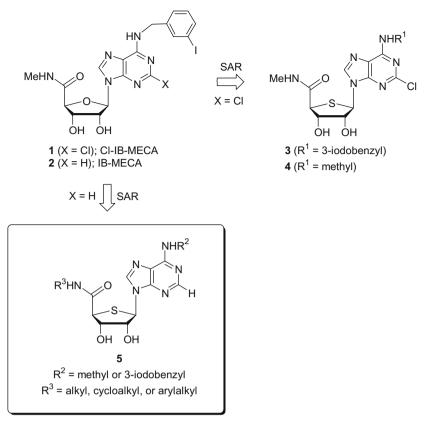
Adenosine has served as a good template for the development of A₃AR ligands. Extensive modification of adenosine resulted in the discovery of Cl-IB-MECA, **1** ($K_i = 1.0 \text{ nM}$ for human A₃AR)³ and IB-MECA, **2** ($K_i = 1.4 \text{ nM}$ for human A₃AR)⁴ as potent and selective A₃AR agonists and these are in clinical trials as anticancer agents⁵ (Fig. 1). Recently, probing the structure–activity relationship (SAR) of compound **1** on the basis of a bioisosteric rationale indicated that a 4'-thionucleoside could serve as an excellent template for the development of A₃AR agonists, among which compounds **3** and **4** were discovered as more potent A₃AR agonists ($K_i = 0.38$ and 0.28 nM, respectively) than Cl-IB-MECA **1**.⁶ Compound **3** also showed potent in vitro as well as in vivo anticancer

ABSTRACT

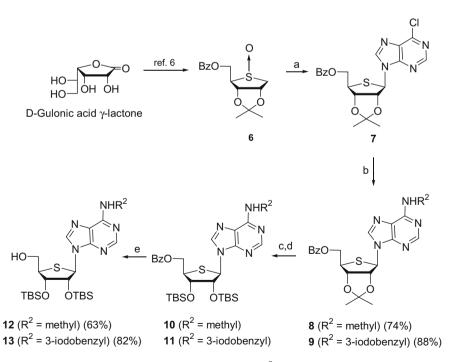
On the basis of a bioisosteric rationale, 4'-thionucleoside analogues of IB-MECA (N^6 -(3-Iodo-benzyl)-9-(5'-methylaminocarbonyl- β -D-ribofuranosyl)adenine), which is a potent and selective A₃ adenosine receptor (AR) agonist, were synthesized from D-gulonic acid γ -lactone. The 4'-thio analogue (**5h**) of IB-MECA showed extremely high binding affinity ($K_i = 0.25$ nM) at the human A₃AR and was more potent than IB-MECA ($K_i = 1.4$ nM). Bulky substituents at the 5'-uronamide position, such as cyclohexyl and 2-methylbenzyl, in this series of 2-H nucleoside derivatives were tolerated in A₃AR binding, although small alkyl analogues were more potent.

© 2009 Elsevier Ltd. All rights reserved.

activity.⁷ Because IB-MECA **2** is another representative of A_3AR agonists, it would be of great interest to synthesize its 4'-thio analogue and to compare their biological activities and substituent effects (H vs Cl) at the C2 position. It would be also interesting to study SAR surrounding the 5'-uronamide moiety of the 4'-thionucleosides. The A_3AR has displayed a moderate tolerance for sterically bulky substituents at this position, in contrast to the *N*-methylamides of the protypical agonists **1** and **2**.^{6b} Herein, we report the synthesis and binding affinity of the series of compound **5** as potent and selective A_3AR agonists.

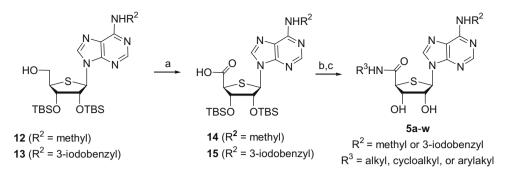

2. Results and discussion

The target nucleoside **5** was synthesized from D-gulonic acid γ -lactone, as shown in Scheme 1.


D-Gulonic acid γ-lactone was smoothly converted to the glycosyl donor **6** according to our previously published procedure.⁶ Condensation of **6** with 6-chloropurine in the presence of TMSOTF afforded the 6-chloropurine derivative **7** (53%) and its α-anomer (5.4%).⁸ The anomeric configuration of **7** was easily confirmed by an NOE effect between 1'-H and 4'-H. Irradiation on 1'-H of compound **6** gave NOE effect on its 4'-H, indicating β-anomer, but no NOE effect was observed on the same experiment in the case of its α-anomer.⁸ Treatment of **7** with methyl amine and 3-iodobenzylamine gave the *N*⁶-methyladenine derivative **8** and

^{*} Corresponding author. Tel.: +82 2 3277 3466; fax: +82 2 3277 2851. *E-mail address:* lakjeong@ewha.ac.kr (L.S. Jeong).

^{0968-0896/\$ -} see front matter @ 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2009.10.011



Scheme 1. Reagents and conditions: (a) 6-chloropurine, TMSOTF, CICH₂CH₂Cl, rt to 80 °C; (b) R²NH₂, Et₃N, EtOH, rt; (c) 80% AcOH, 70 °C; (d) TBSOTF, pyridine, 50 °C; (e) NaOMe, MeOH.

 N^6 -(3-iodobenzyl)adenine derivative **9**, respectively. For the conversion of 4'-hydroxymethyl group into various 5'-uronamides, the 2',3'-isopropylidene group was first changed to the 2',3'-di-O-TBS group, because the removal of the 2',3'-isopropylidene group at the final step resulted in the deglycosylation. Treatment of **8** and **9** with 80% acetic acid followed by protection of the resulting diol with the TBS group yielded **10** and **11**, respectively. Removal of the benzoyl group in **10** and **11** with sodium methoxide gave the 4'-hydroxymethyl derivatives **12** and **13**, respectively.

Scheme 2. Reagents: (a) PDC, DMF; (b) R³NH₂, EDC, HOBt, DIPEA, CH₂Cl₂; (c) TBAF, THF.

Treatment of **12** and **13** with PDC in DMF afforded the carboxylic acid derivatives **14** and **15**, respectively (Scheme 2). Coupling of the acids **14** and **15** with various primary amines in the presence of EDC and HOBt yielded various 5'-uronamides **5a–w** after the removal of the TBS group.

Radioligand binding assay was performed using adherent CHO (Chinese hamster ovary) cells stably transfected with cDNA encoding the human ARs.⁹ Bindings at the human ARs were carried out using [³H]R-PIA for A₁AR, [³H]CGS21680 for A_{2A}AR, and [¹²⁵I]I-AB-MECA for A₃AR as radioligands. In cases of weak binding, the percent inhibition of radioligand binding to the human ARs was determined at 1 μ M. Percent activation (inhibition of adenylate cyclase in comparison to the full agonist CI-IB-MECA, **1**) of the human A₃AR was determined at 1 μ M.

Most of the synthesized compounds showed very high binding affinity at the human A₃AR with high selectivity in comparison to other subtypes (Table 1). When compared with the 4'-oxonucleoside, IB-MECA (2) (K_i = 1.4 nM), the corresponding 4'-thionucleoside, thio-IB-MECA (5h) exhibited higher binding affinity at the human A₃AR (K_i = 0.25 nM) as well as higher selectivity over other subtypes, indicating that thio-IB-MECA (**5h**) has the potential to be developed as a clinical candidate as IB-MECA (2). A similar trend was observed between Cl-IB-MECA (1) ($K_i = 1.0 \text{ nM}$) and thio-Cl-IB-MECA (**3**) ($K_i = 0.38$ nM). However, thio-IB-MECA (**5h**) was found to be less selective (81- vs 508-fold) for the human A3AR in comparison to at the human A_1AR than thio-Cl-IB-MECA (3). This result indicated that substitution of the 2-H atom with more hydrophobic 2-Cl substituent increased the A₃ AR selectivity.¹⁰ It should be noted that thio-IB-MECA (5h) showed the best binding affinity at the human A₃AR among 4'-thionucleosides synthesized so far. This compound also showed very high binding affinity $(K_i = 1.86 \pm 0.36 \text{ nM})$ at the rat A₃AR. In the N⁶-methyladenine series, the binding affinity at the human A₃AR of the synthesized 5'-uronamides was dependent on the 5'-N substitution in the following order: ethyl = cyclopentyl > cyclobutyl > cyclopropylmethyl > methyl > cyclopropyl > 3-iodobenzyl, indicating that alkyl and cycloalkyl derivatives 5a-f showed better binding affinity ($K_i = 0.97 - 2.16 \text{ nM}$) than arylalkyl derivative **5g** $(K_i = 15.6 \text{ nM})$. A similar trend was observed in the N⁶-(3-iodobenzyl)adenine series, except that the N^6 -(3-iodobenzyl)adenine derivatives showed slightly better binding affinity at the human A₃AR and generally were more selective versus the human A₁AR than the *N*⁶-methyladenine derivatives.

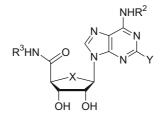
The most potent and selective compound **5h** was a full agonist in an assay of human A_3 adenosine receptor-mediated inhibition of cyclic AMP in transfected CHO cells, as previously observed for compounds **1–4**.

In summary, we have established SARs of bioisosteric 4'-thio analogues of potent and selective A_3AR agonist, IB-MECA (2). From this study, thio-IB-MECA (5h) was discovered as being among the most potent $A_3 AR$ agonists and more potent than IB-MECA (2). It

was also revealed that small alkyl or cycloalkyl substituents on the 5'-uronamide were essential for optimal binding affinity. Bulky substituents on the 5'-uronamide, such as cyclohexyl and 2-methylbenzyl, were tolerated, but less potent in A_3AR binding. We believe that compound **5h** has promise to be developed as a clinically useful agent.

3. Experimental section

¹H NMR spectra (CDCl₃, CD₃OD, or DMSO- d_6) were recorded on Varian Unity Inova 400 MHz. Chemical shifts were reported in ppm units with TMS as the internal standard. ¹³C NMR spectra (CDCl₃, CD₃OD, or DMSO- d_6) were recorded on Varian Unity Inova 100 MHz. Analytical thin-layer chromatography (TLC) was performed on Merck Silica Gel 60F-254 glass plates. Optical rotations were determined on Jasco III in methanol. UV spectra were recorded on U-3000 made by Histachi in methanol. Elementary analyses were measured on EA1110. The crude products were purified using a Silica Gel 60 (230–400 mesh, Merck). Reagents were purchased from Aldrich Chemical Company. All the anhydrous solvents were distilled over CaH₂ or P₂O₅ or Na/benzophenone prior to the reaction.


3.1. Benzoic acid (3a*S*,4*R*,6*R*,6*aR*)-6-(6-chloro-purin-9-yl)-2,2dimethyl-tetrahydro-thieno[3,4-*d*][1,3]dioxol-4-ylmethyl ester (7)⁸

To a suspension of 6-chloropurine (3.36 g, 21.69 mmol) in a solution of dry CH₃CN (20 mL) and 1,2-dichloroethane (10 mL) were added Et₃N (2.19 g, 21.69 mmol) and TMSOTf (9.64 g, 43.38 mmol), and the mixture was stirred at room temperature until the solution was clear. A solution of sulfoxide 6 (3.36 g, 10.85 mmol) in dry 1,2-dichloroethane (10 mL) was added to the resulting solution in one shot at room temperature. An additional amount of Et₃N (2.19 g, 21.69 mmol) was added to the reaction mixture to initiate the Pummerer reaction. The reaction mixture was stirred under reflux at 80 °C for 4 d, during which time the initially formed N-3 isomer was converted to N-9 isomer. The reaction mixture was partitioned between EtOAc and aqueous saturated NaHCO₃ solution, and the organic layer was washed with brine, dried (MgSO₄), filtered and evaporated. The residue was purified by flash silica gel column chromatography (hexane/ EtOAc = 5:1) to give 7 (2.57 g, 53%), whose spectral data were identical with those of authentic sample.⁸

3.2. General procedure for the preparation of the N^6 -substituted nucleosides 8 and 9

To a solution of **7** in anhydrous EtOH (20 mL/mmol) were added triethylamine (3.0 equiv) and appropriate amine (1.2 equiv). After being stirred at room temperature for 24 h, the reaction mixture was evaporated. The residue was purified by silica gel column

Potency of 4'-thioadenosine-5'-uronamide derivatives **5a-w** at human A₁, A_{2A}, and A₃ARs and maximal agonist effects at human A₃ARs expressed in CHO cells^a

Compound no.	R ²	R ³	$K_{\rm i}$ (hA ₁ AR) nM ^a or % inhibition at 1 μ M	\textit{K}_{i} (hA_{2A}AR) nMa or % inhibition at 1 μM	\textit{K}_{i} (hA_3AR) nMa or % inhibition at 1 μM
1 (X = O, Y = Cl)	3-Iodobenzyl	Methyl	222 ± 22	5360 ± 2470	1.4 ± 0.3
2 (X = O, Y = H)	3-Iodobenzyl	Methyl	51	2900	1.0
3 (X = S, Y = Cl)	3-Iodobenzyl	Methyl	193 ± 46	223 ± 36	0.38 ± 0.07
4 (X = S, Y = Cl)	Methyl	Methyl	1330 ± 240	20%	0.28 ± 0.09
5a (X = S, Y = H)	Methyl	Methyl	69.5 ± 5.2	35 ± 8%	1.19 ± 0.23
5b (X = S, Y = H)	Methyl	Ethyl	4.83 ± 0.20	20%	0.97 ± 0.23
5c (X = S, Y = H)	Methyl	Cyclopropyl	6.58 ± 0.60	161 ± 16	2.16 ± 0.24
5d (X = S, Y = H)	Methyl	Cyclopropylmethyl	33.1 ± 1.6	38 ± 5%	1.35 ± 0.08
5e (X = S, Y = H)	Methyl	Cyclobutyl	6.27 ± 0.50	108 ± 18	1.04 ± 0.05
5f (X = S, Y = H)	Methyl	Cyclopentyl	48.6 ± 14.2	45 ± 1%	0.97 ± 0.07
5g(X = S, Y = H)	Methyl	3-Iodobenzyl	24 ± 1%	27 ± 10%	15.6 ± 5.6
5h (X = S, Y = H)	3-Iodobenzyl	Methyl	20.2 ± 2.9	475 ± 144	0.25 ± 0.06
5i (X = S, Y = H)	3-Iodobenzyl	Ethyl	5.4 ± 0.3	57.6 ± 6.9	0.42 ± 0.22
5j (X = S, Y = H)	3-Iodobenzyl	Cyclopropyl	9.27 ± 0.83	15.2 ± 2.6	3.03 ± 0.23
5k (X = S, Y = H)	3-Iodobenzyl	Cyclopropylmethyl	159 ± 40	1600 ± 80	2.16 ± 0.29
51 (X = S, Y = H)	3-Iodobenzyl	Cyclobutyl	23.6 ± 4.2	122 ± 62	1.17 ± 0.16
5m (X = S, Y = H)	3-Iodobenzyl	Cyclohexyl	28 ± 14%	24 ± 7%	35.4 ± 10.5
5n (X = S, Y = H)	3-Iodobenzyl	3-Fluorobenzyl	25 ± 4%	35 ± 8%	61.1 ± 17.6
50 (X = S, Y = H)	3-Iodobenzyl	3-Chlorobenzyl	25 ± 3%	44 ± 1%	144 ± 33
5p (X = S, Y = H)	3-Iodobenzyl	2-Methylbenzyl	18 ± 5%	26 ± 10%	31.0 ± 7.1
5q (X = S, Y = H)	3-Iodobenzyl	3-Methylbenzyl	4070 ± 560	31 ± 1%	94.9 ± 37.3
5r (X = S, Y = H)	3-Iodobenzyl	4-Methylbenzyl	15 ± 3%	37 ± 0%	135 ± 55
5s (X = S, Y = H)	3-Iodobenzyl	2-Methoxybenzyl	34 ± 1%	28 ± 9%	97.0 ± 51.2
5t (X = S, Y = H)	3-Iodobenzyl	2-Ethoxybenzyl	12 ± 7%	23 ± 8%	113 ± 2
5u (X = S, Y = H)	3-Iodobenzyl	α-Naphthylmethyl	20 ± 6%	20 ± 8%	1200
5v (X = S, Y = H)	3-Iodobenzyl	2-Phenylethyl	20%	11%	433 ± 141
5w (X = S, Y = H)	3-Iodobenzyl	1,1-Diphenylethyl	17 ± 0%	38 ± 8%	116 ± 48

^a All AR experiments were performed using adherent CHO cells stably transfected with cDNA encoding the human or rat ARs. Binding was carried out as described in ref. 6 using as radioligand [³H]R-PIA or [³H]NECA at the human A₁AR and [³H]CGS 21680 at the human A_{2A}AR. Values from the present study are expressed as mean ± s.e.m., n = 3-5.

chromatography (hexane/ethyl acetate = 1:1) to give the N^6 -substituted nucleosides **8** and **9**.

3.2.1. 6-Methylamino-9-[(5'-O-benzoyl-2',3'-O-isopropylidene)-4'-thio-β-D-ribofuranosyl]purine (8)

Compound **8** was prepared using methylamine-HCI: yield 74%; white foam; UV (MeOH) λ_{max} 271 nm (pH 7); ¹H NMR (CDCl₃) δ 1.40 (s, 3H, CH₃), 1.68 (s, 3H, CH₃), 3.10 (d, 3H, *J* = 3.0 Hz, N-CH₃), 4.12 (td, 1H, *J* = 2.7, 7.8 Hz, 4'-H), 4.60 (dd, 1H, *J* = 6.7, 11.4 Hz, BzOCHH), 4.63 (dd, 1H, J = 7.8, 11.5 Hz, BzOCHH), 4.99 (dd, 1H, *J* = 2.9, 5.6 Hz, 3'-H), 5.03 (dd, 1H, *J* = 1.9, 5.6 Hz, 2'-H), 6.01 (d, 1H, *J* = 1.9 Hz, 1'-H), 6.31 (br s, 1H, NH), 7.37–7.88 (m, 5H, Ph), 8.46 (s, 1H, H-8), 8.57 (s, 1H, H-2); FAB-MS *m/z* 442 (M⁺+1). Anal. Calcd for C₂₁H₂₃N₅O₄S: C, 57.13; H, 5.25; N, 15.86; S, 7.26. Found: C, 57.20; H, 5.28; N, 15.75; S, 7.32.

3.2.2. $6-(3-10do-benzylamino)-9-[(5'-O-benzoyl-2',3'-O-isopro-pylidene)-4'-thio-\beta-D-ribofuranosyl]purine (9)$

Compound **9** was prepared using 3-iodo-benzylamine: yield 88%; white foam; UV (MeOH) λ_{max} 272 nm (pH 7); ¹H NMR (CDCl₃) δ 1.23 (s, 3H, CH₃), 1.37 (s, 3H, CH₃), 4.06 (td, 1H, *J* = 2.4, 7.3 Hz, 4'-H), 4.46 (dd, 1H, *J* = 6.8, 11.4 Hz, BZOCHH), 4.53 (dd, 1H, *J* = 2.7, 11.4 Hz, BZOCHH), 4.73 (d, 2H, *J* = 5.8 Hz, N-CH₂), 4.89 (dd, 1H, *J* = 2.4, 5.6 Hz, 3'-H), 5.02 (dd, 1H, *J* = 2.0, 5.6 Hz, 2'-H), 5.96 (s, 1H, 1'-H), 6.59 (br s, 1H, NH), 7.11–7.84 (m, 9H, aromatic H), 8.52 (s, 1H, H-8), 8.58 (s, 1H, H-2); FAB-MS *m/z* 644 (M⁺+1). Anal. Calcd for C₂₇H₂₆IN₅O₄S: C, 50.40; H, 4.07; N, 10.88; S, 4.98. Found: C, 50.33; H, 4.21; N, 10.90; S, 4.88.

3.3. General procedure for the preparation of the 4'-hydroxymethyl analogues 12 and 13

A solution of per mmol of N^6 -substituted nucleosides (8 and 9) in 80% aqueous AcOH solution (30 mL) was stirred at 70 °C for 12 h. The solvent was removed under reduced pressure and the mixture was neutralized with methanolic ammonia. After evaporation, the residue was purified by silica gel column chromatography (CH₂Cl₂/MeOH = 10:1) to give diol as a white foam.

To a stirred solution of per mmol of diol in dry pyridine (20 mL) was added a solution of TBDMSOTf (5.0 equiv) dropwise and the reaction mixture was stirred at 50 °C for 5 h. The mixture was partitioned between CH_2CI_2 and H_2O and the organic layer was washed with water, aqueous NaHCO₃ solution, water, brine, dried over anhydrous MgSO₄, and evaporated. The crude disilyl ether was used in the next step without further purification.

To a stirred solution of per mmol of disilyl ether in anhydrous methanol (30 mL) was added sodium methoxide (1.5 equiv) and the mixture was stirred at room temperature for 4 h. After being neutralized with glacial acetic acid, the mixture was evaporated. The resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate = 1:1) to gave 4'-hydroxymethyl analogues **12** and **13**, respectively.

3.3.1. 9-[(2',3'-Bis-*tert*-butyl-dimethyl-silanyloxy-5'-hydroxymethyl)-6-methylamino-4'-thio-β-D-ribofuranosyl]purine (12)

Yield 63%; white solid; UV (MeOH) λ_{max} 270 nm (pH 7); ¹H NMR (CDCl₃) δ 0.01 (m, 12H, 4 × Si–CH₃), 0.60 (s, 9H, C(CH₃)₃), 0.85 (s, 9H, C(CH₃)₃), 3.10 (br s, 3H, N–CH₃), 3.20 (dd, 1H, *J* = 5.6, 11.7 Hz, 4'-H), 4.20 (m, 1H, 3'-H), 4.45 (dd, 1H, *J* = 5.8, 11.7 Hz, HOCHH), 4.75 (m, 1H, 2'-H), 4.87 (dd, 1H, *J* = 6.3, 11.7 Hz, HOCHH), 5.43 (d, 1H, *J* = 4.6 Hz, 1'-H), 5.65 (br s, 1H, OH), 8.00 (s, 1H, H-2), 8.03 (br s, 1H, NH), 8.23 (s, 1H, H-8); FAB-MS *m*/*z* 526 (M⁺+1). Anal. Calcd for C₂₃H₄₃N₅O₃SSi₂: C, 52.53; H, 8.24; N, 13.32; S, 6.10. Found: C, 52.40; H, 8.35; N, 13.22; S, 6.14.

3.3.2. 9-[(2',3'-Bis-*tert*-butyl-dimethyl-silanyloxy-5'-hydroxymethyl)-4'-thio-β-p-ribofuranosyl]-6-(3-iodobenzylamino)purine (13)

Yield 82%; white solid; UV (MeOH) λ_{max} 270 nm (pH 7); ¹H NMR (CDCl₃) δ 0.01 (m, 12H, 4 × Si–CH₃), 0.62 (s, 9H, C(CH₃)₃), 0.83 (s, 9H, C(CH₃)₃), 3.27 (dd, 1H, *J* = 5.6, 11.7 Hz, 2-H), 3.74 (m, 1H, HOCHH), 3.86 (m, 1H, HOCHH), 4.14 (dd, 1H, *J* = 5.7, 11.5 Hz, 3'-H), 4.63 (br s, 2H, N–CH₂), 5.20 (dd, 1H, *J* = 6.3, 11.9 Hz, 2'-H), 5.60 (d, 1H, *J* = 4.6 Hz, 1'-H), 5.93 (br s, 1H, OH), 6.93 (t, 1H, *J* = 7.7 Hz, aromatic H), 7.13 (s, 1H, NH), 7.58 (d, 1H, *J* = 7.5 Hz, aromatic H), 7.60 (d, 1H, *J* = 7.8 Hz, aromatic H), 7.67 (s, 1H, aromatic H), 8.01 (s, 1H, H-2), 8.28 (s, 1H, H-8); FAB-MS *m/z* 728 (M⁺). Anal. Calcd for C₂₉H₄₆IN₅O₃SSi₂: C, 47.86; H, 6.37; N, 9.62; S, 4.41. Found: C, 48.02; H, 6.43; N, 9.65; S, 4.39.

3.4. General procedure for the preparation of the *N*⁶-substituted-4'-thioadenosine-5'-uronamides 5a–w

To a stirred solution of 4'-hydroxymethyl analogue (1 mmol, **12** and **13**) in dry DMF (10 mL) was added pyridinium dichromate (10.0 equiv) and the reaction mixture was stirred at room temperature for 20 h. Water (50 mL) was added to the reaction mixture, and stirred at room temperature for 1 h. The precipitate was filtered and the filter cake was washed with water many times and dried under high vacuum to give the acid (**14** and **15**) as a brownish solid, which was used in the next step without further purification.

To a solution of **14** and **15** (1 mmol) in $CH_2Cl_2(20 \text{ mL})$ were added EDC (1.5 equiv), HOBt (1.5 equiv), appropriate amine (1.5 equiv), and DIPEA (3.0 equiv) and the mixture was stirred at room temperature for 15 h. The reaction mixture was evaporated and the residue was purified by a silica gel column chromatography (hexane/EtOAc = 10:1–5:1) to give the corresponding silyl amide as a white foam. To a stirred solution of silyl amide (1 mmol) in THF (5 mL) was added TBAF (2.5 equiv) and the reaction mixture was evaporated and the resulting residue was purified by silica gel column chromatography (CH₂Cl₂/MeOH = 10:1) to give **5a–w** as white solids.

3.4.1. *N*⁶-Methyl-9-(5′-methylaminocarbonyl-4′-thio-β-D-ribofuranosyl)adenine (5a)

Compound **5a** was prepared using methylamine-HCl: yield 70%; white solid; $[\alpha]_{2}^{25}$ -24.0 (*c* 0.13, MeOH); UV (MeOH) λ_{max} 270 nm (pH 7); ¹H NMR (DMSO-*d*₆) δ 2.78 (d, 3H, *J* = 4.0 Hz, N–CH₃), 2.90 (d, 3H, *J* = 4.5 Hz, N–CH₃), 3.76 (d, 1H, *J* = 4.2 Hz, 4'-H), 4.35 (dd, 1H, *J* = 4.6, 8.0 Hz, 3'-H), 4.52 (dd, 1H, *J* = 4.8, 8.5 Hz, 2'-H), 5.42 (d, 1H, *J* = 5.4 Hz, exchangeable with D₂O, OH), 5.70 (d, 1H, *J* = 5.1 Hz, exchangeable with D₂O, OH), 5.80 (d, 1H, *J* = 5.4 Hz, 1'-H), 7.98 (s, 1H, H-2), 8.32 (br q, 2H, exchangeable with D₂O, NH, NH), 8.54 (s, 1H, H-8); ¹³C NMR (DMSO-*d*₆) δ 51.0, 55.3, 64.3, 70.2, 75.4, 78.2, 118.5, 139.9, 149.5, 150.3, 152.5, 174.4; FAB-MS *m/z* 325 (M⁺+1). Anal. Calcd for C₁₂H₁₆N₆O₃S: C, 44.44; H, 4.97; N, 25.91; S, 9.89. Found: C, 44.52; H, 5.03; N, 25.98; S, 9.86.

3.4.2. 9-(5'-Ethylaminocarbonyl-4'-thio-β-D-ribofuranosyl)-*N*⁶-methyladenine (5b)

Compound **5b** was prepared using ethylamine-HCl: yield 65%; white solid; $[\alpha]_{2}^{25}$ -48.2 (*c* 0.15, MeOH); UV (MeOH) λ_{max} 270 nm (pH 7); ¹H NMR (DMSO-*d*₆) δ 1.07 (t, 3H, *J* = 7.2 Hz, CH₂CH₃), 2.55 (d, 3H, *J* = 4.5 Hz, N–CH₃), 3.11 (m, 2H, N–CH₂), 3.76 (d, 1H, *J* = 4.0 Hz, 4'-H), 4.04 (dd, 1H, *J* = 4.0, 7.5 Hz, 3'-H), 4.48 (dd, 1H, *J* = 5.5, 8.0 Hz, 2'-H), 5.54 (d, 1H, *J* = 5.0 Hz, exchangeable with D₂O, OH), 5.68 (d, 1H, *J* = 5.2 Hz, exchangeable with D₂O, OH), 5.80 (d, 1H, *J* = 5.5 Hz, 1'-H), 8.05 (s, 1H, H-2), 8.30 (br s, 2H, exchangeable with D₂O, NH, NH), 8.53 (s, 1H, H-8); ¹³C NMR (DMSO-*d*₆) δ 24.3, 48.9, 50.2, 61.3, 73.2, 74.4, 78.5, 116.3, 140.5, 150.8, 151.5, 152.5, 173.4; FAB-MS *m/z* 339 (M⁺+1). Anal. Calcd

8008

for $C_{13}H_{18}N_6O_3S$: C, 46.14; H, 5.36; N, 24.84; S, 9.48. Found: C, 46.25; H, 5.30; N, 25.00; S, 9.56.

3.4.3. 9-(5'-Cyclopropylaminocarbonyl-4'-thio- β -D-ribofuranosyl)- N^6 -methyladenine (5c)

Compound **5c** was prepared using cyclopropyl amine: yield 61%; white solid; $[\alpha]_D^{25} - 15.8$ (*c* 0.15, MeOH); UV (MeOH) λ_{max} 269.0 nm (pH 7); ¹H NMR (DMSO-*d*₆) δ 0.04 (m, 2H, cyclopropyl-CH₂), 0.27 (m, 2H, cyclopropyl-CH₂), 2.65 (m, 1H, NCH), 2.93 (d, 3H, *J* = 4.5 Hz, N–CH₃), 3.65 (d, 1H, *J* = 4.0 Hz, 4'-H), 4.45 (dd, 1H, *J* = 4.5, 8.0 Hz, 3'-H), 4.52 (dd, 1H, *J* = 5.0, 8.5 Hz, 2'-H), 5.40 (d, 1H, *J* = 4.0 Hz, exchangeable with D₂O, OH), 5.59 (d, 1H, *J* = 4.8 Hz, exchangeable with D₂O, OH), 5.85 (d, 1H, *J* = 7.8 Hz, 1'-H), 8.05 (s, 1H, H-2), 8.35 (br s, 1H, exchangeable with D₂O, NH), 8.57 (s, 1H, H-8); ¹³C NMR (DMSO-*d*₆) δ 6.1, 6.8, 24.0, 48.5, 50.6, 58.4, 75.4, 78.3, 114.8, 148.3, 150.2, 152.5, 155.3, 174.5; FAB-MS *m*/*z* 351 (M⁺+1). Anal. Calcd for C₁₄H₁₈N₆O₃S: C, 47.99; H, 5.18; N, 23.98; S, 9.15. Found: C, 48.12; H, 5.25; N, 24.05; S, 9.23.

3.4.4. 9-(5'-Cyclopropylmethylaminocarbonyl-4'-thio- β -D-ribo-furanosyl)- N^6 -methyladenine (5d)

Compound **5d** was prepared using cyclopropyl methylamine-HCl: yield 68%; white solid; $[\alpha]_D^{2^-} - 15.8 (c \ 0.15, MeOH); UV (MeOH) <math>\lambda_{max}$ 270 nm (pH 7); ¹H NMR (DMSO- d_6) δ 0.05 (m, 2H, cyclopropyl-CH₂), 0.35 (m, 2H, cyclopropyl-CH₂), 0.78 (m, 1H, cyclopropyl-CH), 2.93 (d, 3H, *J* = 4.0 Hz, N–CH₃), 3.03 (t, 2H, *J* = 4.5, 7.8 Hz, N–CH₂), 3.77 (d, 1H, *J* = 4.0 Hz, 4'-H), 4.27 (dd, 1H, *J* = 4.5, 9.0 Hz, 3'-H), 4.45 (dd, 1H, *J* = 4.6, 8.8 Hz, 2'-H), 5.46 (d, 1H, *J* = 4.3 Hz, exchangeable with D₂O, OH), 5.68 (d, 1H, *J* = 4.8 Hz, exchangeable with D₂O, OH), 5.77 (d, 1H, *J* = 7.8 Hz, 1'-H), 8.12 (s, 1H, H-2), 8.34 (br s, 1H, exchangeable with D₂O, NH), 8.53 (s, 1H, H-8); ¹³C NMR (CD₃OD) δ 2.5, 2.7, 10.8, 43.2, 46.3, 58.3, 60.5, 72.3, 75.6, 120.5, 148.7, 150.1, 153.4, 156.5, 173.5; FAB-MS *m*/*z* 365 (M⁺+1). Anal. Calcd for C₁₅H₂₀N₆O₃S: C, 49.44; H, 5.53; N, 23.06; S, 8.80. Found: C, 49.40; H, 5.55; N, 22.98; S, 8.87.

3.4.5. 9-(5'-Cyclobutylaminocarbonyl-4'-thio- β -D-ribofuranosyl)- N^6 -methyladenine (5e)

Compound **5e** was prepared using cyclobutylamine: yield 59%; white solid; $[\alpha]_D^{25} - 24.0$ (*c* 0.10, MeOH); UV (MeOH) λ_{max} 270 nm (pH 7); ¹H NMR (DMSO-*d*₆) δ 1.71 (m, 2H, cyclobutyl-CH₂), 1.96 (m, 2H, cyclobutyl-CH₂), 2.25 (m, 2H, cyclobutyl-CH₂), 2.98 (d, 3H, *J* = 4.5 Hz, N–CH₃), 3.84 (m, 1H, cyclopropyl-CH), 4.01 (d, 1H, *J* = 4.0 Hz, 4'-H), 4.47 (dd, 1H, *J* = 4.7, 8.8 Hz, 3'-H), 4.54 (dd, 1H, *J* = 4.5, 8.0 Hz, 2'-H), 5.63 (d, 1H, *J* = 4.5 Hz, exchangeable with D₂O, OH), 5.83 (d, 1H, *J* = 4.8 Hz, exchangeable with D₂O, OH), 5.90 (d, 1H, *J* = 8.0 Hz, 1'-H), 8.21 (s, 1H, H-2), 8.34 (br s, 1H, exchangeable with D₂O, NH), 8.53 (s, 1H, H-8); ¹³C NMR (CD₃OD) δ 16.3, 32.5, 33.2, 35.3, 40.3, 42.8, 65.4, 75.3, 76.5, 135.4, 145.3, 147.8, 153.4, 155.0, 175.4; FAB-MS *m*/*z* 365 (M⁺+1). Anal. Calcd for C₁₅H₂₀N₆O₃S: C, 49.44; H, 5.53; N, 23.06; S, 8.80. Found: C, 49.51; H, 5.49; N, 23.10; S, 8.78.

3.4.6. 9-(5'-Cyclopentylaminocarbonyl-4'-thio- β -D-ribofuranosyl)- N^6 -methyladenine (5f)

Compound **5f** was prepared using cyclopentylamine: yield 65%; white solid; $[\alpha]_D^{25} - 13.8$ (*c* 0.13, MeOH); UV (MeOH) λ_{max} 269 nm (pH 7); ¹H NMR (DMSO-*d*₆) δ 1.30 (m, 4H, cyclopentyl-CH₂ × 2), 1.59 (m, 4H, cyclopentyl-CH₂ × 2), 2.95 (d, 3H, *J* = 4.0 Hz, N–CH₃), 3.53 (m, 1H, NCH), 3.87 (d, 1H, *J* = 4.0 Hz, 4'-H), 4.07 (dd, 1H, *J* = 4.5, 8.0 Hz, 3'-H), 4.54 (dd, 1H, *J* = 5.0, 8.8 Hz, 2'-H), 5.55 (d, 1H, *J* = 4.0 Hz, exchangeable with D₂O, OH), 5.82 (d, 1H, *J* = 7.8 Hz, 1'-H), 8.25 (s,

1H, H-2), 8.33 (br s, 1H, exchangeable with D₂O, NH), 8.43 (br s, 1H, *J* = 4.5 Hz, exchangeable with D₂O, NH), 8.53 (s, 1H, H-8); ¹³C NMR (CD₃OD) δ 23.4, 24.5, 31.7, 32.5, 38.3, 48.5, 48.6, 65.3, 74.5, 80.4, 129.3, 145.3, 148.5, 153.0, 155.4, 175.2; FAB-MS *m*/*z* 379(M⁺+1). Anal. Calcd for C₁₆H₂₂N₆O₃S: C, 50.78; H, 5.86; N, 22.21; S, 8.47. Found: C, 50.75; H, 5.53; N, 22.45; S, 8.68.

3.4.7. 9-[(5'-(3-lodo-benzylaminocarbonyl)-4'-thio- β -D-ribofuranosyl)]-N⁶-methyladenine (5g)

Compound **5g** was prepared using 3-iodo-benzylamine: yield 54%; white solid; $[\alpha]_D^{25}$ –23.0 (*c* 0.10, MeOH); UV (MeOH) λ_{max} 270 nm (pH 7); ¹H NMR (DMSO-*d*₆) δ 2.94 (d, 3H, *J* = 4.5 Hz, N-CH₃), 3.87 (d, 1H, *J* = 4.3 Hz, 4'-H), 4.25 (dd, 1H, *J* = 4.4, 8.8 Hz, 3'-H), 4.56 (dd, 1H, *J* = 4.9, 8.8 Hz, 2'-H), 4.68 (d, 2H, *J* = 3.5 Hz, NH₂), 5.56 (d, 1H, *J* = 4.0 Hz, exchangeable with D₂O, OH), 5.80 (d, 1H, *J* = 4.8 Hz, exchangeable with D₂O, OH), 5.80 (d, 1H, *J* = 4.8 Hz, exchangeable with D₂O, OH), 5.82 (d, 1H, *J* = 7.8 Hz, 1'-H), 7.14–7.76 (m, 4H, aromatic H), 7.98 (br s, 1H, exchangeable with D₂O, NH), 8.25 (s, 1H, H-2), 8.53 (s, 1H, H-8); ¹³C NMR (CD₃OD) δ 45.3, 50.1, 53.3, 65.4, 78.8, 85.4, 99.4, 125.3, 127.5, 128.4, 130.2, 135.0, 144.2, 145.3, 148.5, 152.3, 156.8, 173.5; FAB-MS *m*/*z* 527 (M⁺+1). Anal. Calcd for C₁₈H₁₉IN₆O₃S: C, 41.07; H, 3.64; N, 15.97; S, 6.09. Found: C, 41.35; H, 3.66; N, 16.12; S, 6.24.

3.4.8. N^{6} -(3-Iodo-benzyl)-9-(5'-methylaminocarbonyl-4'-thio- β -p-ribofuranosyl)adenine (5h)

Compound **5h** was prepared using methylamine-HCl: yield 53%; white solid; $[\alpha]_{D}^{25} -20.5$ (*c* 0.15, MeOH); UV (MeOH) λ_{max} 270 nm (pH 7); ¹H NMR (DMSO-*d*₆) δ 2.70 (d, 3H, *J* = 4.0 Hz, N–CH₃), 3.82 (d, 1H, *J* = 4.5 Hz, 4'-H), 4.37 (br dd, 1H, *J* = 4.5, 8.4 Hz, 3'-H), 4.57 (m, 1H, 2'-H), 4.65 (d, 2H, *J* = 5.7 Hz, N–CH₂), 5.62 (d, 1H, *J* = 5.5 Hz, exchangeable with D₂O, OH), 5.80 (d, 1H, *J* = 5.1 Hz, exchangeable with D₂O, OH), 5.80 (d, 1H, *J* = 5.1 Hz, exchangeable with D₂O, OH), 5.88 (d, 1H, *J* = 7.6 Hz, aromatic H), 7.60 (d, 1H, *J* = 7.8 Hz, aromatic H), 7.73 (s, 1H, aromatic H), 8.26 (br s, 1H, H-2), 8.54 (s, 1H, H-8), 8.55 (br s, 1H, exchangeable with D₂O, NH); ¹³C NMR (DMSO-*d*₆) δ 42.0, 51.5, 60.3, 64.5, 76.0, 78.2, 118.8, 126.4, 133.5, 135.3, 136.0, 140.3, 141.5, 149.9, 150.4, 153.0, 154.7, 170.3; FAB-MS *m*/*z* 527 (M⁺+1). Anal. Calcd for C₁₈H₁₉IN₆O₃S: C, 41.07; H, 3.64; N, 15.97; S, 6.09. Found: C, 41.35; H, 3.66; N, 16.12; S, 6.24.

3.4.9. 9-(5'-Ethylaminocarbonyl-4-thio-β-D-ribofuranosyl)-N⁶-(3-iodo-benzyl)adenine (5i)

Compound **5i** was prepared using ethylamine-HCl: yield 66%; white solid; $[\alpha]_{D}^{20}$ -45.6 (*c* 0.15, MeOH); UV (MeOH) λ_{max} 273.0 nm (pH 7); ¹H NMR (DMSO-*d*₆) δ 1.09 (t, 3H, *J* = 7.0 Hz, CH₂CH₃), 3.19 (q, 2H, *J* = 6.0 Hz, CH₂CH₃), 3.82 (d, 1H, *J* = 4.0 Hz, 4'-H), 4.38 (d, 1H, *J* = 4.5 Hz, 3'-H), 4.59 (d, 1H, *J* = 3.6 Hz, 2'-H), 4.67 (d, 2H, *J* = 4.5 Hz, N-CH₂), 5.60 (d, 1H, *J* = 5.0 Hz, exchangeable with D₂O, OH), 5.77 (d, 1H, *J* = 4.8 Hz, exchangeable with D₂O, OH), 5.88 (d, 1H, *J* = 5.0 Hz, 1'-H), 7.12 (t, 1H, *J* = 8.0 Hz, aromatic H), 7.38 (d, 1H, *J* = 7.6 Hz, aromatic H), 7.60 (d, 1H, *J* = 7.6 Hz, aromatic H), 7.73 (s, 1H, aromatic H), 8.25 (s, 1H, H-2), 8.50 (br s, 1H, exchangeable with D₂O, NH), 8.55 (s, 1H, H-8); ¹³C NMR (CD₃OD) δ 15.4, 35.3, 44.5, 54.4, 68.0, 79.1, 80.1, 94.5, 120.3, 125.8, 128.5, 130.5, 135.3, 140.4, 142.7, 151.4, 155.5, 172.3, 174.5; FAB-MS *m/z* 541 (M⁺+1). Anal. Calcd for C₁₉H₂₁IN₆O₃S: C, 42.23; H, 3.92; N, 15.55; S, 5.93. Found: C, 42.51; H, 3.95; N, 15.73; S, 5.95.

3.4.10. 9-(5'-Cyclopropylaminocarbonyl-4'-thio- β -D-ribofuranosyl)- N^{6} -(3-iodo-benzyl)adenine (5j)

Compound **5***j* was prepared using cyclopropyl amine: yield 62%; white solid; $[\alpha]_D^{20} - 35.8$ (*c* 0.15, MeOH); UV (MeOH) λ_{max} 272.0 nm (pH 7); ¹H NMR (DMSO-*d*₆) δ 0.48 (br s, 2H, cyclopropyl-CH₂), 0.72 (m, 2H, cyclopropyl-CH₂), 2.54 (m, 1H, NH), 3.80 (d, 1H, *J* = 4.3 Hz,

4'-H), 4.18 (dd, 1H, *J* = 4.0, 8.5 Hz, 3'-H), 4.42 (m, 1H, 2'-H), 4.70 (br s, 2H, N–CH₂), 5.63 (d, 1H, *J* = 5.5 Hz, exchangeable with D₂O, OH), 5.83 (d, 1H, *J* = 5.0 Hz, exchangeable with D₂O, OH), 5.90 (d, 1H, *J* = 5.4 Hz, 1'-H), 7.13 (t, 1H, *J* = 7.8 Hz, aromatic H), 7.35 (d, 1H, *J* = 7.6 Hz, aromatic H), 7.60 (d, 1H, *J* = 7.8 Hz, aromatic H), 7.73 (s, 1H, aromatic H), 8.27 (br s, 1H, H-2), 8.58 (s, 1H, H-8), 8.59 (br s, 1H, exchangeable with D₂O, NH); ¹³C NMR (DMSO-*d*₆) δ 8.4, 10.5, 24.5, 50.5, 64.3, 66.8, 77.0, 80.4, 116.5, 127.4, 133.5, 135.4, 135.9, 140.3, 141.5, 148.5, 150.3, 152.9, 153.5, 171.4; FAB-MS *m*/*z* 553 (M⁺+1). Anal. Calcd for C₂₀H₂₁IN₆O₃S: C, 43.49; H, 3.83; N, 15.21; S, 5.80. Found: C, 43.54; H, 3.92; N, 15.28; S, 5.85.

3.4.11. 9-(5'-Cyclopropylmethylaminocarbonyl-4'-thio- β -D-ribo-furanosyl)- N^{6} -(3-iodobenzyl)adenine (5k)

Compound 5k was prepared using cyclopropylmethyl amine-HCl: yield 61%; white solid; $[\alpha]_{D}^{20}$ –14.8 (*c* 0.15, MeOH); UV (MeOH) λ_{max} 274.0 nm (pH 7); ¹H NMR (DMSO- d_6) δ 0.18 (m, 2H, cyclopropyl-CH₂), 0.23 (m, 2H, cyclopropyl-CH₂), 0.75 (m, 1H, cyclopropyl-CH), 2.54 (m, 1H, NH), 2.87 (t, 2H, J = 3.8 Hz, N-CH₂), 3.67 (d, 1H, J = 4.2 Hz, 4'-H), 4.19 (dd, 1H, J = 4.0, 8.7 Hz, 3'-H), 4.42 (m, 1H, 2'-H), 4.47 (br s, 2H, N-CH2-cyclopropyl), 5.41 (d, 1H, I = 5.0 Hz, exchangeable with D₂O, OH), 5.59 (d, 1H, I = 4.8 Hz, exchangeable with D₂O, OH), 5.70 (d, 1H, J = 5.3 Hz, 1'-H), 6.92 (t, 1H, *J* = 7.6 Hz, aromatic H), 7.18 (d, 1H, *J* = 7.6 Hz, aromatic H), 7.40 (d, 1H, J = 7.8 Hz, aromatic H), 7.53 (s, 1H, aromatic H), 8.05 (br s, 1H, H-2), 8.33 (s, 1H, H-8), 8.43 (br s, 1H, exchangeable with D₂O, NH); ¹³C NMR (DMSO- $d_{6) \delta 2.3}$, 3.2, 13.4, 23.8, 54.3, 63.5, 67.0, 77.4, 81.0, 116.4, 126.3, 132.1, 133.4, 135.2, 139.8, 140.2, 147.5, 150.1, 151.9, 153.4, 171.8; FAB-MS m/z 567 (M⁺+1). Anal. Calcd for C₂₁H₂₃IN₆O₃S: C, 44.53; H, 4.09; N, 14.84; S, 5.66. Found: C, 44.60; H, 4.12; N, 14.95; S, 5.62.

3.4.12. 9-(5'-Cyclobutylaminocarbonyl-4'-thio- β -D-ribofuranosyl)- N^6 -(3-iodobenzyl)adenine (51)

Compound 51 was prepared using cyclobutyl amine: yield 53%; white solid; $[\alpha]_{D}^{20}$ –15.3 (*c* 0.10, MeOH); UV (MeOH) λ_{max} 270 nm (pH 7); ¹H NMR (DMSO- d_6) δ 1.71 (m, 2H, cyclobutyl-CH₂), 1.96 (m, 2H, cyclobutyl-CH₂), 2.25 (m, 2H, cyclobutyl-CH₂), 3.84 (d, 1H, J = 4.0 Hz, 4'-H), 4.30 (m, 1H, NCH), 4.41 (dd, 1H, J = 4.5, 8.7 Hz, 3'-H), 4.61 (m, 1H, 2'-H), 4.70 (br s, 2H, N-CH₂), 5.63 (d, 1H, I = 5.5 Hz, exchangeable with D₂O, OH), 5.83 (d, 1H, I = 5.0 Hz, exchangeable with D₂O, OH), 5.90 (d, 1H, J = 5.4 Hz, 1'-H), 7.15 (t, 1H, *J* = 8.0 Hz, aromatic H), 7.41 (d, 1H, *J* = 7.6 Hz, aromatic H), 7.62 (d, 1H, J = 7.8 Hz, aromatic H), 7.76 (s, 1H, aromatic H), 8.28 (br s, 1H, H-2), 8.57 (s, 1H, H-8), 8.72 (br s, 1H, exchangeable with D₂O, NH); ¹³C NMR (DMSO- d_6) δ 20.4, 35.3, 37.2, 50.5, 54.8, 64.2, 66.5, 78.0, 79.5, 116.4, 126.5, 132.7, 135.3, 135.8, 141.7, 142.3, 148.4, 151.3, 153.0, 154.5, 172.0; FAB-MS m/z 567 (M⁺+1). Anal. Calcd for C₂₁H₂₃IN₆O₃S: C, 44.53; H, 4.09; N, 14.84; S, 5.66. Found: C, 44.55; H, 4.12; N, 14.96; S, 5.70.

3.4.13. 9-(5'-Cyclohexylaminocarbonyl-4'-thio- β -D-ribofuranosyl)-N⁶-(3-iodobenzyl)adenine (5m)

Compound **5m** was prepared using cyclohexyl amine: yield 68%; white solid; $[\alpha]_D^{20} - 25.4$ (*c* 0.13, MeOH); UV (MeOH) λ_{max} 272 nm (pH 7); ¹H NMR (DMSO-*d*₆) δ 1.41–1.82 (m, 10H, cyclohexyl-CH₂), 3.65 (m, 1H, cyclohexyl-CH), 3.83 (d, 1H, *J* = 4.5 Hz, 4'-H), 4.45 (dd, 1H, *J* = 4.4, 9.0 Hz, 3'-H), 4.75 (m, 1H, 2'-H), 4.82 (br s, 2H, N–CH₂), 5.65 (d, 1H, *J* = 5.5 Hz, exchangeable with D₂O, OH), 5.85 (d, 1H, *J* = 5.0 Hz, exchangeable with D₂O, OH), 5.85 (d, 1H, *J* = 5.0 Hz, exchangeable with D₂O, OH), 5.95 (d, 1H, *J* = 7.5 Hz, aromatic H), 7.43 (d, 1H, *J* = 8.0 Hz, aromatic H), 7.65 (d, 1H, *J* = 7.8 Hz, aromatic H), 7.79 (s, 1H, aromatic H), 8.25 (br s, 1H, H-2), 8.54 (s, 1H, H-8), 8.56 (br s, 1H, exchangeable with D₂O, NH); ¹³C NMR (DMSO-*d*₆) δ 20.5, 22.4, 30.5, 35.4, 36.8, 46.3, 55.6, 64.4, 66.9, 77.5, 79.4, 117.5, 128.4, 133.5, 134.0, 135.6, 141.6, 142.1, 148.5, 152.1,

153.5, 154.4, 172.8; FAB-MS m/z 595 (M⁺+1). Anal. Calcd for C₂₃H₂₇IN₆O₃S: C, 46.47; H, 4.58; N, 14.14; S, 5.39. Found: C, 46.55; H, 4.46; N, 14.25; S, 5.50.

3.4.14. 9-[5'-(3-Fluoro-benzylaminocarbonyl-4'-thio- β -D-ribofuranosyl)]- N^6 -(3-iodobenzyl)adenine (5n)

Compound **5n** was prepared using 3-fluoro-benzylamine: yield 59%; white solid; $[\alpha]_D^{20} - 40.1$ (*c* 0.10, MeOH); UV (MeOH) λ_{max} 272 nm (pH 7); ¹H NMR (DMSO-*d*₆) δ 3.79 (d, 1H, *J* = 4.0 Hz, 4'-H), 4.28 (m, 3H, 3'-H, N-CH₂), 4.50 (d, 1H, *J* = 4.0 Hz, 2'-H), 4.62 (d, 2H, *J* = 4.4 Hz, N-CH₂), 5.54 (d, 1H, *J* = 5.6 Hz, exchangeable with D₂O, OH), 5.67 (d, 1H, *J* = 4.8 Hz, exchangeable with D₂O, OH), 5.67 (d, 1H, *J* = 4.8 Hz, exchangeable with D₂O, OH), 5.67 (d, 1H, *J* = 4.8 Hz, exchangeable with D₂O, OH), 5.78 (d, 1H, *J* = 5.2 Hz, 1'-H), 6.92–7.58 (m, 8H, aromatic H), 8.34 (s, 1H, H-2), 8.53 (s, 1H, H-8), 8.91 (br s, 1H, exchangeable with D₂O, NH), 9.03 (br s, 1H, exchangeable with D₂O, NH); ¹³C NMR (CD₃OD) δ 50.3, 52.4, 54.3, 60.4, 77.4, 78.5, 101.3, 114.3, 115.4, 116.8, 125.7, 125.9, 128.4, 130.5, 135.0, 140.3, 142.1, 145.8, 150.2, 155.31, 158.2, 160.5, 164.8, 173.5; FAB-MS *m*/*z* 621 (M⁺+1). Anal. Calcd for C₂₄H₂₂FIN₆O₃S: C, 46.46; H, 3.57; N, 13.55; S, 5.17. Found: C, 46.55; H, 3.46; N, 13.65; S, 5.26.

3.4.15. 9- $[5'-(3-Chloro-benzylaminocarbonyl-4'-thio-\beta-D-ribofur-anosyl)]-N^{6}-(3-iodobenzyl)adenine (50)$

Compound **50** was prepared using 3-chloro-benzylamine: yield 68%; white solid; $[\alpha]_{D}^{20} - 25.4$ (*c* 0.13, MeOH); UV (MeOH) λ_{max} 273 nm (pH 7); ¹H NMR (DMSO-*d*₆) δ 3.78 (d, 1H, *J* = 3.8 Hz, 4'-H), 4.26 (m, 3H, 3'-H, N-CH₂), 4.49 (m, 3H, N-CH₂), 5.52 (d, 1H, *J* = 5.0 Hz, exchangeable with D₂O, OH), 5.67 (d, 1H, *J* = 4.8 Hz, exchangeable with D₂O, OH), 5.77 (d, 1H, *J* = 5.2 Hz, 1'-H), 6.94–7.58 (m, 8H, aromatic H), 8.03 (s, 1H, H-2), 8.37 (s, 1H, H-8), 8.38 (br s, 1H, exchangeable with D₂O, NH), 9.02 (br s, 1H, exchangeable with D₂O, NH), 9.02 (br s, 1H, exchangeable with D₂O, NH), 9.02 (br s, 1H, exchangeable with D₂O, NH); ¹³C NMR (CD₃OD) δ 51.4, 52.5, 54.0, 61.3, 78.1, 79.8, 102.3, 114.8, 115.6, 117.2, 125.9, 128.0, 136.3, 138.4, 140.0, 141.2, 142.0, 148.3, 149.5, 150.2, 153.4, 157.2, 158.4, 174.0; FAB-MS *m*/*z* 637 (M⁺+1). Anal. Calcd for C₂₄H₂₂ClIN₆O₃S: C, 45.26; H, 3.48; N, 13.20; S, 5.03. Found: C, 45.46; H, 3.46; N, 13.25; S, 5.26.

3.4.16. N^6 -(3-lodo-benzyl)-9-[5'-(2-methyl-benzylaminocarbonyl-4'-thio- β -p-ribofuranosyl)]adenine (5p)

Compound **5p** was prepared using 2-methyl-benzylamine: yield 60%; white solid; $[\alpha]_D^{20} - 43.0 (c 0.10, MeOH); UV (MeOH) <math>\lambda_{max}$ 274 nm (pH 7); ¹H NMR (DMSO-*d*₆) δ 2.32 (s, 3H, CH₃), 3.98 (d, 1H, *J* = 2.7 Hz, 4'-H), 4.40 (m, 3H, 3'-H, N-CH₂), 4.69 (m, 3H, 2'-H, N-CH₂), 5.68 (d, 1H, *J* = 5.0 Hz, exchangeable with D₂O, OH), 5.85 (d, 1H, *J* = 4.8 Hz, exchangeable with D₂O, OH), 5.94 (d, 1H, *J* = 5.0 Hz, 1'-H), 7.13-7.76 (m, 8H, aromatic H), 8.11 (s, 1H, H-2), 8.54 (s, 1H, H-8), 8.96 (br s, 1H, exchangeable with D₂O, NH); ¹³C NMR (CD₃OD) δ 24.8, 49.8, 50.3, 52.8, 56.3, 68.4, 78.0, 80.3, 98.6, 102.4, 115.8, 120.3, 125.6, 135.4, 137.6, 139.8, 140.4, 142.5, 146.4, 148.1, 151.3, 154.5, 156.7, 158.4, 173.8; FAB-MS *m/z* 617 (M⁺⁺1). Anal. Calcd for C₂₅H₂₅IN₆O₃S: C, 48.71; H, 4.09; N, 13.63; S, 5.20. Found: C, 48.88; H, 4.14; N, 13.82; S, 5.26.

3.4.17. N^6 -(3-lodo-benzyl)-9-[5'-(3-methyl-benzylaminocarbonyl-4'-thio- β -D-ribofuranosyl)]adenine (5q)

Compound **5q** was prepared using 3-methyl-benzylamine: yield 58%; white solid; $[\alpha]_D^{20} - 33.5$ (*c* 0.13, MeOH); UV (MeOH) λ_{max} 274 nm (pH 7); ¹H NMR (DMSO-*d*₆) δ 2.31 (s, 3H, CH₃), 3.96 (d, 1H, *J* = 2.0 Hz, 4'-H), 4.40 (d, 2H, *J* = 8.0 Hz, N–CH₂), 4.45 (dd, 1H, *J* = 5.2, 7.8 Hz, 3'-H), 4.68 (m, 3H, 2'-H, N–CH₂), 5.69 (d, 1H, *J* = 5.0 Hz, exchangeable with D₂O, OH), 5.84 (d, 1H, *J* = 4.8 Hz, exchangeable with D₂O, OH), 5.94 (d, 1H, *J* = 5.0 Hz, 1'-H), 7.09–7.76 (m, 8H, aromatic H), 8.17 (s, 1H, H-2), 8.53 (s, 1H, H-8), 8.54 (br s, 1H, exchangeable with D₂O, NH), 8.96 (br s, 1H, exchangeable with D₂O, NH); ¹³C NMR (CD₃OD) δ 23.5, 50.0, 50.4, 52.8, 56.4, 68.4, 78.1, 80.3, 98.6, 102.4, 115.9, 120.3, 125.6, 135.4, 136.5, 140.0, 140.5, 142.5, 146.5, 148.2, 151.3, 154.6, 156.7, 158.5, 174.0; FAB-MS m/z 617 (M⁺+1). Anal. Calcd for C₂₅H₂₅IN₆O₃S: C, 48.71; H, 4.09; N, 13.63; S, 5.20. Found: C, 48.85; H, 4.13; N, 13.62; S, 5.15.

3.4.18. N^6 -(3-lodo-benzyl)-9-[5'-(4-methyl-benzylaminocarbonyl-4'-thio- β -D-ribofuranosyl)]adenine (5r)

Compound **5r** was prepared using 4-methyl-benzylamine: yield 60%; white solid; $[\alpha]_D^{20} - 38.1$ (*c* 0.15, MeOH); UV (MeOH) λ_{max} 273 nm (pH 7); ¹H NMR (DMSO-*d*₆) δ 2.31 (s, 3H, CH₃), 3.95 (d, 1H, *J* = 2.5 Hz, 4'-H), 4.39 (d, 2H, *J* = 8.0 Hz, N–CH₂), 4.44 (br s, 1H, 3'-H), 4.68 (br s, 3H, 2'-H, N–CH₂), 5.69 (br s, 1H, exchangeable with D₂O, OH), 5.82 (br s, 1H, exchangeable with D₂O, OH), 5.82 (br s, 1H, exchangeable with D₂O, OH), 5.82 (br s, 1H, exchangeable with D₂O, OH), 5.95 (d, 1H, *J* = 4.8 Hz, 1'-H), 7.13–7.76 (m, 8H, aromatic H), 8.16 (s, 1H, H-2), 8.53 (s, 1H, H-8), 8.54 (br s, 1H, exchangeable with D₂O, NH), 9.13 (br s, 1H, exchangeable with D₂O, NH); ¹³C NMR (CD₃OD) δ 20.9, 49.8, 50.5, 53.4, 56.5, 67.9, 78.4, 80.5, 98.9, 102.7, 116.3, 120.4, 125.6, 135.5, 136.7, 140.5, 140.9, 142.5, 146.4, 148.2, 151.4, 154.6, 156.8, 158.5, 173.9; FAB-MS *m*/*z* 617 (M⁺+1). Anal. Calcd for C₂₅H₂₅IN₆O₃S: C, 48.71; H, 4.09; N, 13.63; S, 5.20. Found: C, 48.79; H, 4.15; N, 13.55; S, 5.18.

3.4.19. N^6 -(3-lodo-benzyl)-9-[5'-(2-methoxy-benzylaminocarbon-yl-4'-thio- β -p-ribofuranosyl)]adenine (5s)

Compound **5s** was prepared using 2-methoxy-benzylamine: yield 72%; white solid; $[\alpha]_D^{20} - 30.2$ (*c* 0.10, MeOH); UV (MeOH) λ_{max} 270 nm (pH 7); ¹H NMR (DMSO-*d*₆) δ 3.83 (s, 3H, OCH₃), 3.98 (d, 1H, *J* = 2.5 Hz, 4'-H), 4.38 (m, 3H, 3'-H, N-CH₂), 4.69 (m, 3H, 2'-H, N-CH₂), 5.69 (d, 1H, *J* = 5.5 Hz, exchangeable with D₂O, OH), 5.82 (d, 1H, *J* = 4.8 Hz, exchangeable with D₂O, OH), 5.94 (d, 1H, *J* = 5.0 Hz, 1'-H), 6.94–7.61 (m, 8H, aromatic H), 8.15 (s, 1H, H-2), 8.53 (br s, 1H, exchangeable with D₂O, NH), 8.54 (s, 1H, H-8), 8.97 (br s, 1H, exchangeable with D₂O, NH); ¹³C NMR (CD₃OD) δ 49.8, 50.4, 52.8, 56.3, 57.8, 68.0, 78.4, 80.9, 98.5, 102.8, 115.8, 120.5, 125.6, 135.8, 137.6, 139.8, 140.5, 142.7, 146.4, 148.1, 151.8, 153.5, 156.9, 158.3, 173.9; FAB-MS *m*/*z* 633 (M⁺+1). Anal. Calcd for C₂₅H₂₅IN₆O₄S: C, 48.48; H, 3.98; N, 13.29; S, 5.07. Found: C, 48.65; H, 4.04; N, 13.42; S, 5.01.

3.4.20. 9-[5'-(2-Ethoxy-benzylaminocarbonyl-4'-thio- β -D-ribofuranosyl)]-N⁶-(3-iodobenzyl)adenine (5t)

Compound **5t** was prepared using 2-ethoxy-benzylamine: yield 63%; white solid; $[\alpha]_D^{20} - 35.8$ (*c* 0.10, MeOH); UV (MeOH) λ_{max} 270 nm (pH 7); ¹H NMR (DMSO-*d*₆) δ 1.36 (t, 3H, *J* = 4.2 Hz, OCH₂CH₃), 4.09 (m, 2H, OCH₂CH₃), 3.98 (d, 1H, *J* = 2.5 Hz, 4'-H), 4.38 (m, 3H, 3'-H, N-CH₂), 4.70 (m, 3H, 2'-H, N-CH₂), 5.69 (d, 1H, *J* = 5.5 Hz, exchangeable with D₂O, OH), 5.83 (d, 1H, *J* = 4.8 Hz, exchangeable with D₂O, OH), 5.95 (d, 1H, *H*-2), 8.53 (br s, 1H, exchangeable with D₂O, NH), 8.54 (s, 1H, H-2), 8.53 (br s, 1H, exchangeable with D₂O, NH); ¹³C NMR (CD₃OD) δ 23.8, 48.2, 51.3, 52.8, 57.8, 65.2, 67.3, 78.4, 81.0, 98.6, 103.4, 116.4, 120.1, 124.5, 135.7, 137.8, 139.8, 141.3, 142.9, 146.5, 148.3, 152.1, 153.6, 155.4, 158.4, 170.1; FAB-MS *m*/*z* 647 (M⁺+1). Anal. Calcd for C₂₆H₂₇IN₆O₄S: C, 48.30; H, 4.21; N, 13.00; S, 4.96. Found: C, 48.35; H, 4.24; N, 13.13; S, 5.04.

3.4.21. N^6 -(3-lodo-benzyl)-9-[5'-(1-naphthylmethylaminocarbonyl-4'-thio- β -p-ribofuranosyl)]adenine (5u)

Compound **5u** was prepared using 1-naphthyl-methylamine: yield 57%; white solid; $[\alpha]_D^{20} - 13.5$ (*c* 0.15, MeOH); UV (MeOH) λ_{max} 273 nm (pH 7); ¹H NMR (DMSO-*d*₆) δ 3.97 (d, 1H, *J* = 2.5 Hz, 4'-H), 4.47 (d, 2H, *J* = 8.4 Hz, N–CH₂), 4.68 (br s, 1H, 3'-H), 4.92 (br s, 3H, 2'-H, N–CH₂), 5.66 (br s, 1H, exchangeable with D₂O, OH), 5.82 (br s, 1H, exchangeable with D₂O, OH), 5.93 (d, 1H, *J* = 4.8 Hz, 1'-H), 7.10–7.98 (m, 11H, aromatic H), 8.10 (s, 1H, H-2), 8.53 (s, 1H, H-8), 8.54 (br s, 1H, exchangeable with D₂O, NH), 9.09 (br s, 1H, exchangeable with D₂O, NH); ¹³C NMR (CD₃OD) δ 45.3, 46.5,

55.3, 60.4, 73.8, 89.1, 98.4, 121.2, 122.4, 122.5, 124.1, 124.8, 126.3, 127.0, 127.8, 128.1, 129.2, 132.4, 133.5, 135.4, 136.0, 144.8, 145.5, 147.8, 152.0, 154.4, 156.8, 174.4; FAB-MS m/z 653 (M⁺+1). Anal. Calcd for C₂₈H₂₅IN₆O₃S: C, 51.54; H, 3.86; N, 12.88; S, 4.91. Found: C, 51.68; H, 3.92; N, 12.92; S, 4.90.

3.4.22. N^6 -(3-Iodo-benzyl)-9-[5'-(2-phenetylaminocarbonyl-4'-thio- β -p-ribofuranosyl)]adenine (5v)

Compound **5v** was prepared using 2-phenylethylamine: yield 59%; white solid; $[\alpha]_D^{20} - 45.0$ (*c* 0.15, MeOH); UV (MeOH) λ_{max} 270 nm (pH 7); ¹H NMR (DMSO-*d*₆) δ 2.65 (t, 2H, *J* = 2.5 Hz, NCH₂CH₂), 3.54 (m, 2H, NCH₂CH₂), 3.71 (d, 1H, *J* = 4.0 Hz, 4'-H), 4.23 (br s, 1H, 3'-H), 4.48 (br s, 1H, 2'-H), 4.55 (d, 2H, *J* = 8.0 Hz, N-CH₂), 5.51 (br s, 1H, exchangeable with D₂O, OH), 5.65 (br s, 1H, exchangeable with D₂O, OH), 5.65 (br s, 1H, exchangeable with D₂O, OH), 5.77 (d, 1H, *J* = 5.2 Hz, 1'-H), 6.98–7.61 (m, 9H, aromatic H), 8.09 (s, 1H, H-2), 8.38 (s, 1H, H-8), 8.39 (br s, 1H, exchangeable with D₂O, NH), 8.57 (br s, 1H, exchangeable with D₂O, NH), 8.57 (br s, 1H, exchangeable with D₂O, NH), 8.57 (br s, 1H, exchangeable with D₂O, NH), 13°C NMR (CD₃OD) δ 37.3, 44.5, 45.3, 56.0, 60.3, 74.2, 79.8, 97.3, 123.1, 123.4, 124.5, 125.3, 126.4, 126.8, 127.1, 128.4, 129.4, 136.2, 137.1, 144.3, 145.2, 147.1, 147.8, 154.2, 174.5; FAB-MS *m*/*z* 617 (M⁺+1). Anal. Calcd for C₂₅H₂₅IN₆O₃S: C, 48.71; H, 4.09; N, 13.63; S, 5.20. Found: C, 48.79; H, 4.15; N, 13.55; S, 5.18.

3.4.23. 9- $[5'-(3,3-Dipheny|propy|aminocarbony|-4'-thio-\beta-D-ribofuranosyl]-N^6-(3-iodobenzyl)adenine (5w)$

Compound **5w** was prepared using 3,3-diphenylpropylamine: yield 72%; white solid; $[\alpha]_{D}^{20}$ –25.6 (*c* 0.32, MeOH); UV (MeOH) λ_{max} 274 nm (pH 7); ¹H NMR (DMSO-d₆) δ 2.27 (m, 2H, NCH₂CH₂CH), 3.10 (m, 2H, NCH₂CH₂CH), 3.87 (d, 1H, J = 4.0 Hz, 4'-H), 4.07 (t, 1H, J = 8.0 Hz, NCH₂CH₂CH), 4.41 (dd, 1H, J = 3.6, 7.4 Hz, 3'-H), 4.64 (m, 1H, 2'-H), 4.69 (d, 2H, I = 5.7 Hz, N-CH₂), 5.64 (d, 1H, I = 5.6 Hz, exchangeable with D₂O, OH), 5.83 (d, 1H, I = 5.6 Hz, exchangeable with D₂O, OH), 5.93 (d, 2H, *I* = 4.2 Hz, 1'-H), 7.13-7.76 (m, 14H, aromatic H), 8.20 (s, 1H, H-2), 8.54 (s, 1H, H-8), 8.55 (br s, 1H, exchangeable with D₂O, NH), 8.62 (br d, 1H, J = 6.1 Hz, exchangeable with D₂O, NH); ¹³C NMR (CD₃OD) δ 34.5, 35.3, 40.6, 45.5, 60.1, 73.4, 79.1, 80.4, 97.1, 112.3, 120.5, 126.0, 128.4, 129.3, 129.5, 129.7, 129.9, 132.7, 135.3, 141.5, 143.0, 144.3, 147.8, 152.4, 155.7, 174.8; FAB-MS *m/z* 707 (M⁺+1). Anal. Calcd for C₃₂H₃₁IN₆O₃S: C, 54.39; H, 4.42; N, 11.89; S, 4.54. Found: C, 54.48; H, 4.45; N, 11.75; S, 4.64.

Acknowledgments

This work was supported by the grant from the World Class University (WCU) Project from Ministry of Education and Science, Korea (R31-2008-000-10010-0) and Seoul R; BD Program, Korea (10541). K.A.J. and Z.G. acknowledge support from the NIDDK Intramural Research Program of the National Institutes of Health.

References and notes

- (a) Olah, M. E.; Stiles, G. L. Pharmacol. Ther. 2000, 85, 55; (b) Liang, B. T.; Jacobson, K. A. Proc. Natl. Acad. Sci. 1998, 95, 6995.
- (a) Jacobson, K. A.; Gao, Z.-G. Nat. Rev. Drug Disc. 2006, 5, 247; (b) Klotz, K.-N. Naunyn-Schmiedeberg's Arch. Pharmacol. 2000, 362, 382; (c) Baraldi, P. G.; Cacciari, B.; Romagnoli, R.; Merighi, S.; Varani, K.; Borea, P. A.; Spalluto, G. Med. Res. Rev. 2000, 20, 103.
- Kim, H. O.; Ji, X.-d.; Siddiqi, S. M.; Olah, M. E.; Stiles, G. L.; Jacobson, K. A. J. Med. Chem. 1994, 37, 3614.
- Gallo-Rodriguez, C.; Ji, X.-d.; Melman, N.; Siegman, B. D.; Sanders, L. H.; Orlina, J.; Fischer, B.; Pu, Q.; Olah, M. E. J. Med. Chem. **1994**, 37, 636.
- Fishman, P.; Madi, L.; Bar-Yehuda, S.; Barer, F.; Del Valle, L.; Khalili, K. Oncogene 2002, 21, 4060.
- (a) Jeong, L. S.; Jin, D. Z.; Kim, H. O.; Shin, D. H.; Moon, H. R.; Gunaga, P.; Chun, M. W.; Kim, Y.-C.; Melman, N.; Gao, Z.-G.; Jacobson, K. A. J. Med. Chem. 2003, 46, 3775; (b) Jeong, L. S.; Lee, H. W.; Jacobson, K. A.; Kim, H. O.; Shin, D. H.; Lee, J. A.; Gao, Z.-G.; Lu, C.; Duong, H. T.; Gunaga, P.; Lee, S. K.; Jin, D. Z.; Chun, M. W.; Moon, H. R. J. Med. Chem. 2006, 49, 273.

- (a) Lee, E. J.; Min, H. Y.; Chung, H. J.; Park, E. J.; Shin, D. H.; Jeong, L. S.; Lee, S. K. Biochem. Pharmacol. 2005, 70, 918; (b) Chung, H.; Jung, J.-Y.; Cho, S.-D.; Hong, K.-A.; Kim, H.-J.; Shin, D.-H.; Kim, H.; Kim, H. O.; Lee, H. W.; Jeong, L. S.; Gong, K. Mol. Cancer Ther. 2006, 5, 685.
- Jeong, L. S.; Lee, H. W.; Kim, H. O.; Jung, J. Y.; Gao, Z.-G.; Duong, H. T.; Rao, S.; Jacobson, K. A.; Shin, D. H.; Lee, J. A.; Gunaga, P.; Lee, S. K.; Jin, D. Z.; Chun, M. W. Bioorg. Med. Chem. 2006, 14, 4718.
- (a) Gao, Z.-G.; Kim, S. K.; Biadatti, T.; Chen, W.; Lee, K.; Barak, D.; Kim, S. G.; Johnson, C. R.; Jacobson, K. A. J. Med. Chem. 2002, 45, 4471; (b) Gao, Z.-G.;

Blaustein, J. B.; Gross, A. S.; Melman, N.; Jacobson, K. A. *Biochem. Pharmacol.* **2003**, *65*, 1675; (c) Gao, Z.-G.; Jeong, L. S.; Moon, H. R.; Kim, H. O.; Choi, W. J.; Shin, D. H.; Elhalem, E.; Comin, M. J.; Melman, N.; Mamedova, L.; Gross, A. S.; Rodriguez, J. B.; Jacobson, K. A. *Biochem. Pharmacol.* **2004**, *67*, 893.

 Melman, A.; Gao, Z.-G.; Kumar, D.; Wan, T. C.; Gizewski, E.; Auchampach, J. A.; Jacobson, K. A. Bioorg. Med. Chem. Lett. 2008, 18, 2813.