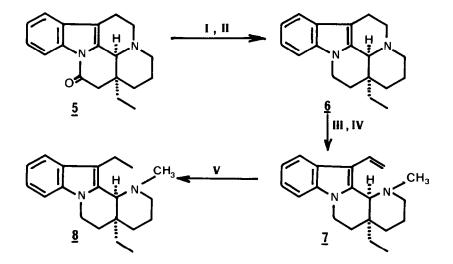

STRUCTURE OF GONIOMITINE, A NEW TYPE OF INDOLE ALKALOID

L. Randriambola, J.-C. Quirion, C. Kan-Fan and H.-P. Husson

Institut de Chimie des Substances Naturelles, C.N.R.S., 91190 Gif-sur-Yvette (France)

<u>Abstract</u> The structure <u>1</u> proposed for goniomitine, an indole alkaloid isolated from the root bark of <u>Gonioma malagasy</u> (Apocynaceae), was inferred from an analysis of its MS, ${}^{1}H$ and ${}^{13}C$ NMR spectral data. A biogenetic scheme is proposed to account for the formation of 1 from vincadifformine <u>9</u>.

Further work in the studies of the alkaloids of the genus <u>Conioma</u> (Apocynaceae)¹ has resulted in the isolation of goniomitine <u>1</u> from the root bark of <u>G. malagasy</u>². Following a classical extraction and purification method, goniomitine <u>1</u>³ was isolated

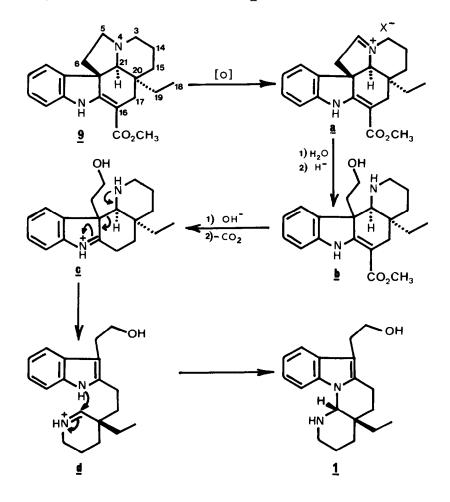


as a crystalline compound : m.p. 150°C (ether-methanol) ; $[\alpha]_D^{20}$: -80° (CHCl₃, c : 0.9). The molecular formula $C_{19}H_{26}N_2O$ was determined from its microanalysis and high resolution MS (exact mass M⁺ 298.2080, calcd 298.2045). The spectroscopic properties of 1 revealed an indolic chromophore : λ_{max} (EtOH) 228 and 291nm, and OH and NH groups ν_{max} (neat) 3200 and 3450cm⁻¹. Chemical evidence for the latter functionalities was provided by the formation of an N-acetyl derivative 2 upon treatment of 1 with Ac₂O in MeOH and of an N,O-diacetyl derivative 3 with Ac₂O in pyridine⁴.

Proton NMR at 400MHz showed clearly the presence of an ethyl group borne at a quaternary carbon centre (δ 0.86, t, 3H, J = 7Hz; δ 1.20, m, 1H, J = 7Hz; δ 1.56, m, 1H, J = 7Hz) and a hydroxyethyl moiety (δ 3.0, t, 2H; δ 3.81, t, 2H) of tryptophol type as observed earlier for the alkaloid guettardine⁵. Of special interest was a ¹H NMR singlet at δ 4.86ppm for the C-21 proton.

The presence of the tryptophol moiety was confirmed by comparison of the 13 C NMR data for the natural product with those of analogues (see Table).

The chemical and physical properties summarised above led us to propose tentatively two possible structures 1 and 4 for the new alkaloid. The presence of eburnane type alkaloids in the same plant⁶ prompted us to embark at first on the partial synthesis of 4 from vincamone 5. LiAlH₄ reduction of 5 followed by treatment of the resultant carbinol-


Reagents : (1) LiAlH₄, THF, \triangle , 3h (11) HCOOH, \triangle , 12h (111) ICH₃, CH₃OH, \triangle , 12h (1V) AgOH, CH₃OH ; CH₂OH-CH₂OH, 140°C, 15min (V) H₂, Pd/C 10%, CH₃OH, 12h.

amine with refluxing HCOOH afforded 6 (86%). Hoffmann degradation of 6 methiodide led to the formation of the expected vinyl group of 7 (20% from 6). We encountered problems in the hydration of the double bond⁷, which led us to prepare the desoxy analogue $\frac{1}{2}$ instead, in order to compare the ¹H and ¹³C NMR spectra of this series of indolic compounds. It became clear that the hypothetical formula 4 could on no account represent the structure of goniomitine. Indeed the key C-21 proton NMR signal of 7 and 8 ($\delta \sim 2.90$) is at higher field than observed for goniomitine ($\delta = 4.86$). An examination of the ¹³C NMR spectra of 7, 8 and goniomitine also exhibited appreciable differences (see Table). It was thus clear that formula 1 should be considered as the structure of the new alkaloid⁸. A detailed examination of the $^{-13}$ C NMR spectrum of 1 revealed that characteristic assignments could be made which took account of the proposed structure (see Table and Ref. 3). Important similarities were apparent between the spectrum of 1 and the spectra of tryptophol and guettardine⁵. Nearly identical chemical shifts for C-5, C-6, C-7, C-8, C-9, C-10, C-11 and C-13 were observed. A shielding (2.25ppm) of C-12 in 1 may be due to the substitution of the indole nitrogen. The resonance of C-21 at δ 71.1ppm is in contrast with C-21 of 7 and 8 (\sim 64ppm) and is in good agreement with an aminal function⁹.

	C-2	C-5	C-6	C-7	C-8	C-9	C-10	C-11	C-12	C-13	C-21
Goniomitine 1	132.6	62.6	27.8	106.8	129.3	118.0	120.8	119.9	108.8	135.5	<u>71.1</u>
Guettardine	135.6	62.6	27.7	108.9	128.0	118.3	121,6	119.1	111.1	136.5	
Tryptophol		62.5	28.5	111.9	127.4	118.7	121.9	119.2	111.3	136.4	
Compound 7	136.0			114.1	126.2	120.4	121.8	120.5	109.7	137.6	63.9
Compound <u>8</u>	132.6		17.7	126.9	128.6	119.0	121.2	119.0	109.5	137.8	64.6

TABLE. ¹³C NMR Chemical Shift Values (δ) in CDCl₃

Further support for structure $\underline{1}$ for goniomitine is obtained by the plausible biogenesis depicted in the Scheme. Goniomitine $\underline{1}$ may be derived from the Aspidosperma

skeleton of vincadifformine 9 by simple oxidative fission of the C-5, N-4 bond (9 + a + b) followed by decarboxylation (b + c), retro-Mannich reaction (c + d) and finally nucleophilic attack of the indole nitrogen on the resultant iminium ion (d + 1). The fact that Aspidosperma-eburnane alkaloids co-occur with goniomitine in the same plant⁶ reinforces our structural and biogenetic proposals¹¹.

In conclusion, we have isolated from <u>Gonioma malagasy</u> goniomitine, a new alkaloid for which we are proposing structure <u>1</u>. Previous work on <u>G. kamassi</u>¹⁰ from South Africa² noted the isolation of alkaloids of unknown structure whose molecular weights were identical to those of goniomine and goniomitine. No data are available to draw a conclusion about the identity of alkaloids of the two plant species.

References and Notes

- 1 First paper in this series : A. Chiaroni, L. Randriambola, C. Riche and H.-P. Husson, J. Am. Chem. Soc., 1980, 102, 5920.
- 2 The plant grows in the South-West part of Madagascar. The genus <u>Gonioma</u> comprises only two species ; the other one, <u>G. kamassi</u>, is found in South Africa¹⁰. It is interesting to note the geographic distribution of this genus in relationship with the theory of plate tectonics.
- 4 Satisfactory IR, UV, ¹H and ¹³C NMR spectra, HR MS or microanalyses were obtained for all compounds described.
- 5 M.H. Brillanceau, C. Kan-Fan and H.-P. Husson, <u>Tetrahedron Lett</u>., 1984, <u>25</u>, 2767.
- 6 L. Randriambola and H.-P. Husson, unpublished results.
- 7 Hydroboration and epoxidation reactions led to complex mixtures.
- 8 We were unable to obtain an X-ray analysis of goniomitine due to the unsuitable nature of the crystals. We thank MIIe A. Chiaroni for her efforts.
- 9 For compound 3 the ${}^{13}C$ -21 resonance is shielded to δ 60.8ppm and the C-21 ${}^{1}H$ singlet is deshielded to 5.46ppm with respect to 1.
- 10 R. Kaschnitz and G. Spiteller, Monatsh. Chem., 1965, 96, 909.
- 11 The absolute configuration as depicted in $\underline{1}$ is that of the Aspidosperma-Eburnane alkaloids found in the same plant⁶.

(Received in France 17 February 1987)

2126