organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

A low-temperature polymorph of *m*-quinquephenyl

Ligia R. Gomes,^a R. Alan Howie,^b John Nicolson Low,^{b*} Ana S. M. C. Rodrigues^c and Luís M. N. B. F. Santos^c

^aREQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169 007 Porto, Portugal, ^bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and ^cCentro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169 007 Porto, Portugal Correspondence e-mail: jnlow111@gmail.com

Received 31 October 2012 Accepted 9 November 2012 Online 13 November 2012

A low-temperature polymorph of 1,1':3',1":3"',1"'':3"'',1"'''quinquephenyl (m-quinquephenyl), C₃₀H₂₂, crystallizes in the space group $P2_1/c$ with two molecules in the asymmetric unit. The crystal is a three-component nonmerohedral twin. A previously reported room-temperature polymorph [Rabideau, Sygula, Dhar & Fronczek (1993). Chem. Commun. pp. 1795-1797] also crystallizes with two molecules in the asymmetric unit in the space group $P\overline{1}$. The unit-cell volume for the lowtemperature polymorph is 4120.5 (4) $Å^3$, almost twice that of the room-temperature polymorph which is 2102.3 (6) $Å^3$. The molecules in both structures adopt a U-shaped conformation with similar geometric parameters. The structural packing is similar in both compounds, with the molecules lying in layers which stack perpendicular to the longest unit-cell axis. The molecules pack alternately in the layers and in the stacked columns. In both polymorphs, the only interactions between the molecules which can stabilize the packing are very weak $C-H\cdots\pi$ interactions.

Comment

Polyphenyls are used in technological industries, either directly (*e.g.* as dyes, thermal printing materials or coolants) or as starting materials for functionalized derivatives that are incorporated in, for instance, nonspreading lubricants, emulsifiers, optical brighteners, crop protection products and plastics. In spite of this, experimental data for the thermochemical parameters of these compounds that would permit inferences to be made concerning not only their relative stability, but also structure/molecular energetics relationships or thermophysical properties, are scarce.

In the course of a thermochemical study of polyphenylenes, particularly with regard to the effect of isomerization on the fusion temperatures, heat capacities, enthalpies of formation

and enthalpies of vaporization, *m*-quinquephenyl, (I), has been synthesized, following a similar procedure to that used for a previously optimized Suzuki-Miyaura cross-coupling reaction (Suzuki, 2011; Miyaura, 2002) for polyphenyl compounds (Lima et al., 2011). A search of the literature revealed that (I) had already been structurally characterized by X-ray diffraction at room temperature (283-303 K; Rabideau et al., 1993). Nevertheless, it is well known that isomers belonging to the parent series of *p*-polyphenyl oligomers [n(phenyl) = 3-4]undergo solid-phase transitions (Baker et al., 1990, and references therein). Those transitions are characterized by an order/disorder phase change, from twisted (at lower temperatures) to planar (when heated) (Delugeard et al., 1976; Baudour et al., 1978), so the question of whether a phase transition would occur in the *m*-quinquephenyl isomer was raised, driving interest in the structural characterization of the compound at low temperatures. Furthermore, the identification and characterization of the polymorphic forms is essential to an accurate interpretation of, for instance, experimental calorimetric results.

The low-temperature (LT) measurement, performed at 150 K, revealed that (I) crystallizes in the space group $P2_1/c$ with a unit-cell volume of 4120.5 (4) $Å^3$, and with two molecules (LTA and LTB) in the asymmetric unit (Fig. 1). These data show that the structure at low temperature is a polymorph of the earlier structure of (I) found by Rabideau et al. (1993) in a room-temperature (RT) determination (R = 0.052). At RT, (I) crystallizes in the space group $P\overline{1}$ with a unit-cell volume of 2102.3 (6) $Å^3$, and with two molecules in the asymmetric unit (RTA and RTB; Fig. 2). The RT unit-cell dimensions are: a = 7.7620(6), b = 13.618(2) and c =21.623 (5) Å, and $\alpha = 80.58$ (2), $\beta = 85.26$ (1) and $\gamma =$ 89.71 (1)°. As can be seen from the crystal data table for the LT structure, there is a rough relationship between the unitcell dimensions for each compound: $a'(RT) \simeq b(LT), b' \simeq a$, $c' \simeq c/2, \alpha' \simeq (180 - \beta)^{\circ}$, and β' and γ' are quite close to 90°, so swapping the a and b axes and doubling c effectively changes the RT cell to the LT cell.

The *m*-polyphenyls might be expected to adopt a zigzag conformation in order to minimize steric repulsion between the phenyl groups, but in both the LT and RT crystal structures of (I) the U-shaped conformation is preferred. Theoretical calculations made earlier using MM2/87 (Rabideau *et al.*, 1993) showed that there is no apparent energetic restraint preventing the zigzag conformation in favour of the U-shaped

C53A

C528

C428

C41

C33F

C42E

C418

СЗЗВ

C34B

C32B

C35B

C32A

C35A

(a)

C569

C446

C458

C55F

C44B

C45P

C51B

C438

C46B

C518

C439

C468

Molecules (a) LTA and (b) LTB of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

conformation. The calculations were indicative that both conformers and their intermediate geometries are energetically similar, with torsion barriers of about 5 kJ mol⁻¹. All molecules have a very similar geometry. The dihedral angles between successive rings along the chain (Table 1) show that they lie within the same angular range and show similar trends. The results of a least-squares fit of the 30 C atoms using *PLATON* MOLFIT with quaternion transformation (Mackay, 1984; Spek, 2009) for the molecules in pairs are given in Table 2. Columns 3 and 5 provide values for the root-mean-square (r.m.s.) distance between equivalent (overlapping/ superimposed) atoms in the fitted molecules. These give rise to values for the molecular isometricity index, defined as $I_i(n^*) = |[\Sigma(\Delta R_i)^2/n]^{1/2} - 1| \times 100$ for n = 30 (Kálmán *et al.*, 1993),

C15B

C268

C25E

C14A

C11A

C156

C16F

C26A

C25

C13A

C128

220

C24A

C14B

C118

C21B

C24B

C13B

C12E

C22B

C23B

C31B

C368

C236

C318

C36F

Molecules (a) RTA and (b) RTB of (I), taken from Rabideau *et al.* (1993), showing the atom-numbering scheme. The spheres are of arbitrary size.

(b)

given in columns 4 and 6 of Table 2. The r.m.s. bond-length and bond-angle differences between equivalent bonds and angles within each pair of molecules are also given in Table 2. As a consequence of the arbitrary choice of asymmetric unit, molecules A and B are mirror images of one another, as shown by the need to invert one of them to optimize the fit with the other. The MOLFIT parameters and the dihedral angles are indicative that the molecules have very similar conformations, as can be best viewed in the plots of the fitted molecules given in Fig. 3.

The values in Table 3 are consistent with the molecules in each bimolecular asymmetric unit being related to one another by a noncrystallographic glide plane, which ensures the invariance of the z coordinates for each pair of molecules; for the RT structure it is an *a*-glide parallel to (010), while for

Figure 3

Molecular overlay diagrams for all six possible combinations of the molecules of the two structures. Black denotes the RT structure and lighter shading the LT one.

the LT structure it is a b-glide parallel to (100). Thus, in both structures, the molecules in the asymmetric unit sit above one

Figure 4

A view of the packing of the molecules in the unit cell of the RT form of (I), viewed along the *a* axis. H atoms have been omitted for clarity. Molecules labelled with an asterisk (*) are at the symmetry position (-x + 1, -y + 1, -z + 1).

A view of the packing of the molecules in the unit cell of the RT form of (I), viewed along the *b* axis. H atoms have been omitted for clarity. Molecules labelled with an asterisk (*) are at the symmetry position (-x + 1, -y + 1, -z + 1).

another, with a fractional separation of 0.5 along the b or aaxis and an offset of 0.25 along the a or b axis for the LT and RT structures, respectively. As shown in Figs. 4 and 5, the unit cell of the RT structure contains two layers of molecules centred on $z = \frac{1}{4}$ and $\frac{3}{4}$ and related to one another by the operation of crystallographic centres of symmetry, which is the only relationship between neighbouring layers as they are stacked in the c direction. The situation in the LT structure is more complex. As shown in Figs. 6 and 7, the unit cell of the LT structure encompasses four layers of molecules centred on $z = \frac{1}{8}, \frac{3}{8}, \frac{5}{8}$ and $\frac{7}{8}$. The layers at $z = \frac{1}{8}$ and $\frac{3}{8}$ are related to one another by the operation of crystallographic twofold screw axes, and the same is true for the layers at $z = \frac{5}{8}$ and $\frac{7}{8}$. The layers at $z = \frac{1}{8}$ and $\frac{5}{8}$ are related by the operation of crystallographic c-glide planes and the same is true for the layers at z $=\frac{3}{8}$ and $\frac{7}{8}$. Pairs of layers are now, of course, centred on $z=\frac{1}{4}$ and $\frac{3}{4}$ and are related to one another, as they are stacked in the c direction, by the operation of crystallographic centres of inversion, together with the operation of the crystallographic *c*-glide planes already mentioned.

There are no π - π interactions in the structures. Table 4 gives details of distances and angles for the most relevant close contacts between molecules. These values are indicative that

Figure 6

A view of the packing of the molecules in the unit cell of the LT form of (I), viewed along the *b* axis. H atoms have been omitted for clarity. Molecules labelled with an asterisk (*), hash (#), ampersand (&), plus sign (+) or dollar sign (\$) are at the symmetry positions $(-x + 1, -y + 1, -z + 1), (-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}), (x, -y + \frac{3}{2}, z + \frac{1}{2}), (-x + 1, y - \frac{1}{2}, -z + \frac{1}{2})$ or $(x, -y + \frac{1}{2}, z + \frac{1}{2})$, respectively.

Figure 7

A view of the packing of the molecules in the unit cell of the LT form of (I), viewed along the *a* axis. H atoms have been omitted for clarity. Molecules labelled with an asterisk (*), hash (#), ampersand (&), plus sign (+) or dollar sign (\$) are at the symmetry positions $(-x + 1, -y + 1, -z + 1), (-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}), (x, -y + \frac{3}{2}, z + \frac{1}{2}), (-x + 1, y - \frac{1}{2}, -z + \frac{1}{2})$ or $(x, -y + \frac{1}{2}, z + \frac{1}{2})$, respectively.

the contacts are too weak and may not be considered as significant C-H··· π interactions. Comparison of the values between polymorphs, for corresponding contacts, suggests that they are stronger in the LT polymorph. The packing motifs, molecular conformations and mutual orientations of the molecules are very similar in the two structures. Nevertheless, the LT polymorph appears to have a more efficient packing than the RT one, as suggested by the volume allocated per molecule in the LT structure (approximately 10 Å^3 less). This fact is obviously reflected in macroscopic terms by the slight differences in the values for the densities, of 1.233 (calculated) and 1.209 Mg m⁻³ (measured) (Rabideau *et al.*, 1993) in the LT and RT structures, respectively. Roughly speaking, for organic compounds, the linear thermal expansion coefficient is less than 0.0001 K⁻¹, which would give a density of about 1.19 Mg m^{-3} for the LT polymorph at room temperature, considering the temperature difference of 140 K between the measurements. The differences found in the densities may be attributed mainly to the thermal expansion of the compound, drawing attention to the role that entropy may play in the formation of the polymorphs.

This kind of polymorphism contrasts with that shown by the homologous p-quinquephenyl. The phase transitions in *p*-polyphenyls are well established for the case of *p*-terphenyl and *p*-quaterphenyl. Those transitions are accompanied by a change in the crystal structure (space group $P\overline{1}$ before the transition and space group $P2_1/n$ after the phase transition) associated with an energy change (heat of transition), and therefore a change in the absolute heat capacity of the compound, at the temperature of transition. The structure of the parent *p*-quinquephenyl has not been determined at low temperatures, but Saito et al. (2000) have suggested, based on the measurement of heat capacity excess with temperature, that the parent *p*-quinquephenyl would have a twist phase transition at about 264 K, similar to what is observed in the *p*-polyphenyls (n = 3, 4). In the case of *p*-quaterphenyl, on the basis of the available structural data [p-quaterphenyl at 283– 303 K (R = 0.045; Delugeard *et al.*, 1976) and *p*-quaterphenyl at 110 K (R = 0.104; Baudour *et al.*, 1978)], it appears that the individual molecules have significantly different conformations in the high-temperature phase (virtually planar and centrosymmetric) and low-temperature phase (nonplanar and noncentrosymmetric). Furthermore, they each have entirely different supramolecular structures. In the case of the HT form, there are four potential but very weak $C-H\cdots\pi$ interactions $(H \cdots Cg \text{ distances in the range 2.83-2.97 Å, with angles at H of 130-137°}) stabilizing the supramolecular structure. In the case of the LT form, there are ten potential <math>C-H\cdots\pi$ interactions $(H\cdots Cg \text{ distances of 2.69-2.97 Å})$ and angles at H of 126-144°, of which eight have angles at H greater than 139°) which stabilize the packing. This is the converse of the situation for the HT and LT forms of *m*-quinquephenyl presented here, where the impact of $C-H\cdots\pi$ interactions on the supramolecular structures is minimal compared with the *p*-isomer. Also, apart from the change in torsion angles for the outer phenyl rings in molecule LTB, the molecular geometry is virtually unaffected. These differences may help to understand the effect of isomerization on some of the physical properties of the polyphenyls, such as melting points, or enthalpies of formation or vaporization.

Due to the simplicity of the elemental composition of polyphenyls, the only possible stabilization mechanism of their supramolecular structures is through the contribution of weak $C-H \cdots \pi$ and/or $\pi - \pi$ interactions, thus making them good models for the study of the impact of these interactions on molecular geometry, packing or molecular motion constraints, parameters that will be reflected in their physical properties. As far as the *p*-polyphenyls are concerned, the phase change from low to high temperature leads to a reduction in the interactions and the molecular motion becomes less constrained. This may explain the high heat capacity of these compounds, which makes them good candidates for use as coolants. The molecular motion, symmetry and higher number of $C-H\cdots\pi$ interactions which the *p*-oligomers establish in relation to the *m*-oligomers may explain the higher melting points of the former. Despite that, our comparative analysis of two *m*-quinquephenyl polymorphs has highlighted the role of weak close contacts on cell volume and densities.

Experimental

m-Quinquephenyl was synthesized using the Suzuki–Miyaura aryl cross-coupling method by adapting the procedure described in the literature (Miyaura & Suzuki, 1995; Liu *et al.*, 2006). The compound was synthesized by the reaction of a mixture of 1,3-dibromobenzene (3 mmol), 3-boronic acid (11 mmol), $Pd(OAc)_2$ (0.1 mmol) and K_2CO_3 (15 mmol) in distilled water (15 ml), toluene (30 ml) and ethanol (10 ml). The mixture was stirred under a nitrogen atmosphere for approximately 10 h at 350 K. The product was purified by recrystallization from methanol and by sublimation under reduced pressure (<10 Pa). The purity of the compound was checked by gas

Table 1

Dihedral angles (°) between adjacent planes.

The angles are measured from the ring containing atom C11 (ring 1) through to that containing C51 (ring 5) in all molecules.

Rings	LTA	LTB	RTA	RTB
1–2	36.28 (11)	35.30 (12)	36.25 (9)	36.11 (9)
2-3	32.11 (11)	33.91 (11)	32.22 (8)	34.39 (8)
3–4	31.54 (11)	30.89 (12)	30.67 (8)	30.51 (9)
4–5	34.16 (12)	37.07 (13)	35.68 (10)	35.68 (10)

chromatography, using an HP 4890 apparatus equipped with an HP-5 column [crosslinked, 5% diphenyl and 95% dimethylpolysiloxane, showing a % (m/m) purity greater than 99.8%]. The relative atomic masses used were those recommended by the IUPAC Commission in 2007 (Wieser & Berglund, 2009). Crystals suitable for X-ray diffraction were obtained by recrystallization by evaporation from a solution in methanol–acetone (3:1 v/v).

Crystal data

$C_{30}H_{22}$	V = 4120.5 (4) Å ³
$M_r = 382.48$	Z = 8
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 13.5740(7) Å	$\mu = 0.07 \text{ mm}^{-1}$
b = 7.1809 (4) Å	$T = 150 { m K}$
c = 42.833 (2) Å	$0.30 \times 0.08 \times 0.02 \text{ mm}$
$\beta = 99.274 \ (4)^{\circ}$	

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\rm min} = 0.979, T_{\rm max} = 0.999$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	543 parameters
$wR(F^2) = 0.155$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
8453 reflections	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

H atoms were treated as riding, with aromatic C-H = 0.95 Å and $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$. The positions of the H atoms were calculated and checked on a difference map during the refinement.

The crystal was a three-component nonmerohedral twin and was refined using an HKLF 5 reflection file (Sheldrick, 2008) with BASF values of 0.246 (2) and 0.0491 (3). This was discovered after an initial attempt at refinement gave a high R factor and the TwinRotMat option in *PLATON* (Spek, 2009) revealed the existence of three twin

Table 2

MOLFIT parameters for overlays of all combinations of molecules from both polymorphs.

28626 measured reflections

 $R_{\rm int} = 0.042$

8455 independent reflections

6424 reflections with $I > 2\sigma(I)$

An asterisk (*) denotes an inverted molecule.

Molecule Molecule R.m.s. fit Isometricity R.m.s. fit Isometricity R.m.s. fit of R.m.s. fit of Fit rotation (weighted) (Å) index (weighted) (unit weights) (Å) bond lengths (Å) index (unit) angles (°) angle (°) LTA* LTB 0.044 95.6 0.038 96.2 0.0045 0.297 179.68 0.0042 0.270 RTA* RTB 0.053 94.7 0.049 95.1 179.79 LTA* RTA 0.036 96.4 0.032 96.8 0.0065 0.353 89.91 179.69 LTA RTB 0.063 93.7 0.060 94.0 0.0066 0.332 LTB RTA 0.037 96.3 0.036 96.4 0.0072 0.316 -179.72LTB* RTB 0.061 93.9 0.054 94.6 0.0076 0.292 -90.58

Table 3

Coordinates of	the centroids of	f the molecules	in the a	symmetric	units of
the LT and RT	forms of (I).				

Molecule	x	у	z	Δx	Δy	Δz
LTA	0.6876	0.7492	0.1196			
LTB	0.9459	0.2502	0.1187	0.2583	0.4990	0.0009
RTA	0.3231	0.1872	0.2602			
RT <i>B</i>	0.8220	0.4447	0.2655	0.4989	0.2575	0.0053

domains. The TwinRotMat option was used to generate the HKLF 5 reflection file from the original data, which had been integrated initially as a nontwinned data set.

The $\overline{202}$, $20\overline{2}$, 200, $\overline{2}00$, $\overline{2}04$ and 102 reflections were omitted as they were obscured by the beam stop.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) and *OSCAIL* (McArdle *et al.*, 2004); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors are grateful to the Fundação para a Ciência e Tecnologia (FCT), Lisbon, Portugal, and to FEDER for financial support to the Centro de Investigação em Química, University of Porto. ASMCR acknowledges financial support from FCT and the European Social Fund (ESF) under the Community Support Framework (CSF) for the award of PhD Research Grant No. SFRH/BD/81261/2011.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN3153). Services for accessing these data are described at the back of the journal.

References

Baker, K. N., Fratini, A. V. & Adams, W. W. (1990). *Polymer*, **31**, 1623–1631. Baudour, J.-L., Délugeard, Y. & Rivet, P. (1978). *Acta Cryst.* B**34**, 625–628. Bruker (2004). *APEX, SAINT* and *SADABS*. Bruker AXS Inc., Madison,

Wisconsin, USA. Delugeard, Y., Desuche, J. & Baudour, J. L. (1976). Acta Cryst. B32, 702-705.

- Kálmán, A., Párkányi, L. & Argay, G. (1993). Acta Cryst. B49, 1039–1049.
- Lima, C. F. R. A. C., Rodriguez-Borges, J. E. & Santos, L. M. N. B. F. (2011). *Tetrahedron*, **67**, 689–697.
- Liu, L. Y., Zhang, Y. & Xin, B. (2006). J. Org. Chem. 71, 3994-3997.
- Mackay, A. L. (1984). Acta Cryst. A40, 165-166.
- McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 303-309.
- Miyaura, N. (2002). Top. Curr. Chem. 219, 11-59.
- Miyaura, A. & Suzuki, A. (1995). Chem. Rev. 95, 2457-2483.

Table 4Short contacts (Å, °) between molecules.

Cg is the centre of gravity of the ring containing the indicated atom.

Polymorph	С	Н	Ring (pivot atom)	Symmetry operator for ring	C-H	$H \cdot \cdot \cdot Cg$	$C \cdot \cdot \cdot Cg$	Angle at H
LT	C53B	H53B	Cg (C51A)	x, y, z	0.95	2.96	3.801 (3)	149
LT	C25B	H25B	Cg(C21A)	x + 1, y - 1, z	0.95	2.91	3.521 (3)	123
LT	C15A	H15A	Cg(C11B)	x - 1, y + 1, z	0.95	3.00	3.451 (3)	111
LT	C46A	H46A	Cg (C31B)	x, y, z	0.95	2.95	3.354 (2)	107
LT	C46B	H46 <i>B</i>	Cg (C31A)	x, y - 1, z	0.95	3.00	3.319 (3)	101
RT	C53B	H53 <i>B</i>	Cg (C51 A)	x, y - 1, z	0.97	3.03	3.867	145
RT	C25B	H25B	Cg(C21A)	x + 1, y + 1, z	1.03	2.97	3.606	122
RT	C15A	H15A	Cg(C11B)	x - 1, y - 1, z	0.95	3.12	3.503	107
RT	C46A	H46A	Cg(C31B)	x. v. z	1.00	2.97	3.404	107
RT	C46B	H46B	Cg (C31 A)	x + 1, y, z	0.99	3.06	3.346	98

Rabideau, P. W., Sygula, A., Dhar, R. K. & Fronczek, F. (1993). Chem. Commun. pp. 1795–1797.

Saito, K., Yamamura, Y. & Sorai, M. (2000). Bull. Chem. Soc. Jpn, **73**, 2713–2718.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Suzuki, A. (2011). Angew. Chem. Int. Ed. 50, 6722-6737.

Wieser, M. E. & Berglund, M. (2009). Pure Appl. Chem. 81, 2131-2156.

supplementary materials

Acta Cryst. (2012). C68, 0492-0497 [doi:10.1107/S0108270112046392]

A low-temperature polymorph of *m*-quinquephenyl

Ligia R. Gomes, R. Alan Howie, John Nicolson Low, Ana S. M. C. Rodrigues and Luís M. N. B. F. Santos

1,1':3',1":3",1":3"',1""-quinquephenyl

Crystal data

C₃₀H₂₂ $M_r = 382.48$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 13.5740 (7) Å b = 7.1809 (4) Å c = 42.833 (2) Å $\beta = 99.274$ (4)° V = 4120.5 (4) Å³ Z = 8

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.33 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\min} = 0.979, T_{\max} = 0.999$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.155$ S = 1.028453 reflections 543 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 1616 $D_x = 1.233 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 28626 reflections $\theta = 2.9-26.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 150 KNeedle, colourless $0.30 \times 0.08 \times 0.02 \text{ mm}$

28626 measured reflections 8455 independent reflections 6424 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 26.5^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = -17 \rightarrow 16$ $k = -9 \rightarrow 9$ $l = -53 \rightarrow 15$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0988P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.22$ e Å⁻³ $\Delta\rho_{min} = -0.27$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ х v Ζ C11A 0.42665 (17) 0.7263 (3) 0.15232 (5) 0.0275 (5) C12A 0.51917 (18) 0.7150 (4) 0.17196 (5) 0.0339 (6) H12A 0.5753 0.6695 0.1636 0.041* 0.0409 (6) C13A 0.5304(2)0.7688 (4) 0.20333 (6) H13A 0.5937 0.2164 0.049* 0.7587 C14A 0.4496(2)0.8374(4)0.21572 (6) 0.0419(7)H14A 0.4576 0.8785 0.2371 0.050* C15A 0.3572(2)0.8456(4)0.19677 (5) 0.0396 (6) 0.048* H15A 0.3011 0.8894 0.2053 C16A 0.34562 (18) 0.7908 (3) 0.16549(5)0.0324 (5) 0.039* H16A 0.2815 0.7970 0.1528 C21A 0.41579 (16) 0.6744(3)0.11825 (5) 0.0253(5)C22A 0.49255 (16) 0.7142(3)0.10122 (5) 0.0261 (5) H22A 0.031* 0.5506 0.7761 0.1116 0.48663 (16) C23A 0.6657 (3) 0.06951 (5) 0.0259(5)C24A 0.39996 (17) 0.5785 (3) 0.05429 (5) 0.0306(5)0.037* H24A 0.3941 0.5452 0.0326 C25A 0.32251 (17) 0.5406(3)0.07084(5)0.0325(5)H25A 0.2636 0.4818 0.0604 0.039* C26A 0.33005 (17) 0.5873(3)0.10237(5)0.0291 (5) H₂₆A 0.2764 0.5600 0.1134 0.035* C31A 0.57269(17) 0.7040(3)0.05304(5)0.0271 (5) C32A 0.66903 (16) 0.6970 (3) 0.06998 (5) 0.0243(5)0.029* H32A 0.6626 0.0917 0.6777 C33A 0.75358 (17) 0.7381 (3) 0.05658(5)0.0261 (5) C34A 0.73898 (19) 0.7850(3) 0.02437 (5) 0.0309 (5) H34A 0.7948 0.8152 0.0145 0.037* C35A 0.6439(2)0.7877 (4) 0.00687 (5) 0.0363 (6) H35A 0.6352 0.8170 -0.01500.044* C36A 0.56147 (18) 0.7482(4)0.02089(5)0.0325 (6) H36A 0.4967 0.7512 0.0086 0.039* C41A 0.85465 (17) 0.7337(3)0.07602(5)0.0248(5)C42A 0.86803 (17) 0.7796 (3) 0.10822 (5) 0.0254(5)0.030* H42A 0.8116 0.8152 0.1174 C43A 0.96152 (17) 0.7749(3)0.12728(5)0.0265(5)C44A 1.04363 (17) 0.7258 (3) 0.11342 (5) 0.0309(5)0.037* H44A 1.1082 0.7238 0.1259

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C45A	1.03228 (18)	0.6799 (4)	0.08169 (5)	0.0336 (6)
H45A	1.0890	0.6464	0.0725	0.040*
C46A	0.93914 (18)	0.6825 (3)	0.06326 (5)	0.0309 (5)
H46A	0.9323	0.6489	0.0416	0.037*
C51A	0.97332 (17)	0.8216 (3)	0.16150 (5)	0.0285 (5)
C52A	0.91403 (18)	0.9567 (4)	0.17280 (5)	0.0329 (5)
H52A	0.8646	1.0196	0.1584	0.039*
C53A	0.9262 (2)	1.0006 (4)	0.20470 (5)	0.0421 (7)
H53A	0.8852	1.0930	0.2120	0.051*
C54A	0.9979 (2)	0.9097 (4)	0.22598 (6)	0.0436(7)
H54A	1.0062	0.9393	0.2479	0.052*
C55A	1.0573 (2)	0.7761 (4)	0.21525 (5)	0.0398 (6)
H55A	1.1070	0.7143	0.2298	0.048*
C56A	1.04489 (18)	0.7315 (4)	0.18329 (5)	0.0337 (6)
H56A	1.0858	0.6382	0.1762	0.040*
C11B	1.23715 (18)	0.2329 (3)	0.15439 (5)	0.0304 (5)
C12B	1.16226 (19)	0.2218 (3)	0.17298 (5)	0.0337 (6)
H12B	1.0981	0.1773	0.1639	0.040*
C13B	1.1797 (2)	0.2747 (4)	0.20446 (5)	0.0418 (7)
H13B	1.1277	0.2659	0.2168	0.050*
C14B	1.2732 (2)	0.3407 (4)	0.21809 (6)	0.0465 (7)
H14B	1.2849	0.3792	0.2396	0.056*
C15B	1.3488 (2)	0.3497 (4)	0.20014 (6)	0.0464 (7)
H15B	1.4130	0.3928	0.2094	0.056*
C16B	1.33127 (19)	0.2963(4)	0.16878 (6)	0.0385 (6)
H16B	1.3841	0.3027	0.1567	0.046*
C21B	1 21749 (17)	0.1790(3)	0.12044 (5)	0.0278(5)
C22B	1.21719(17) 1.12411(17)	0.2146(3)	0.12011(5) 0.10239(5)	0.0270(5)
H22B	1.0748	0.2758	0.1121	0.033*
C23B	1 10068 (17)	0.1635 (3)	0.07061(5)	0.0276 (5)
C24B	1 17384 (19)	0.0753(3)	0.07660(5)	0.0335 (6)
H24B	1 1597	0.0389	0.0350	0.040*
C25B	1 26747 (19)	0.0403(4)	0.07411 (6)	0.0351 (6)
H25B	1 3169	-0.0201	0.0643	0.042*
C26B	1 28958 (18)	0.0201	0.10552 (5)	0.0329(5)
H26B	1 3542	0.0689	0.1171	0.032*
C31B	0.99907(18)	0.2009(3)	0.05315(5)	0.029
C32B	0.91739(17)	0.2009(3)	0.05319(5) 0.06889(5)	0.0250(5)
H32B	0.9279	0.1582	0.00005	0.0259 (5)
C33B	0.9279 0.82084 (18)	0.2366 (3)	0.0503	0.031 0.0285(5)
C34B	0.82664(10)	0.2366(3)	0.03441(5) 0.02240(5)	0.0265 (5)
H34R	0.7415	0.2004 (3)	0.02240 (3)	0.0530(0)
C35B	0.8863 (2)	0.2897(4)	0.0110 0.00617(5)	0.049
H35B	0.8754	0.3206	-0.0157	0.048*
C36B	0.8754	0.3200 0.2493(4)	0.0197	0.046
H36R	1 0354	0.2493(4)	0.02077(3)	0.0303 (0)
C41B	0.73715(17)	0 2329 (3)	0 07294 (5)	0 0283 (5)
C42B	0.75414(17)	0.2525(3) 0.2748(3)	0.07294(5) 0.10511(5)	0.0203(5)
U42B	0.8198	0.3068	0 1149	0.0275 (3)
11741	0.0170	0.5000	0.1177	0.055

C43B	0.67802 (17)	0.2713 (3)	0.12340 (5)	0.0300 (5)
C44B	0.58204 (19)	0.2254 (4)	0.10854 (6)	0.0375 (6)
H44B	0.5288	0.2225	0.1205	0.045*
C45B	0.56377 (19)	0.1843 (4)	0.07672 (6)	0.0396 (6)
H45B	0.4979	0.1538	0.0669	0.048*
C46B	0.63964 (18)	0.1867 (4)	0.05895 (5)	0.0342 (6)
H46B	0.6259	0.1569	0.0371	0.041*
C51B	0.69879 (17)	0.3198 (4)	0.15763 (5)	0.0311 (5)
C52B	0.76721 (18)	0.4578 (4)	0.16903 (5)	0.0331 (6)
H52B	0.8021	0.5211	0.1547	0.040*
C53B	0.7855 (2)	0.5049 (4)	0.20080 (5)	0.0415 (6)
H53B	0.8321	0.6003	0.2080	0.050*
C54B	0.7358 (2)	0.4127 (4)	0.22196 (6)	0.0470 (7)
H54B	0.7477	0.4449	0.2438	0.056*
C55B	0.6686 (2)	0.2728 (4)	0.21110 (6)	0.0477 (7)
H55B	0.6347	0.2085	0.2256	0.057*
C56B	0.6506 (2)	0.2261 (4)	0.17936 (6)	0.0405 (6)
H56B	0.6048	0.1291	0.1723	0.049*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C11A	0.0309 (12)	0.0237 (13)	0.0284 (11)	-0.0015 (10)	0.0065 (9)	0.0036 (9)
C12A	0.0314 (13)	0.0375 (15)	0.0325 (12)	-0.0010 (11)	0.0042 (10)	0.0000 (11)
C13A	0.0428 (15)	0.0443 (17)	0.0331 (13)	-0.0040 (13)	-0.0011 (11)	-0.0004 (11)
C14A	0.0567 (17)	0.0425 (17)	0.0272 (12)	-0.0016 (14)	0.0094 (12)	-0.0011 (11)
C15A	0.0484 (15)	0.0392 (16)	0.0348 (13)	0.0080 (13)	0.0177 (11)	0.0064 (11)
C16A	0.0335 (13)	0.0297 (14)	0.0342 (12)	0.0018 (11)	0.0064 (10)	0.0067 (10)
C21A	0.0249 (11)	0.0191 (12)	0.0305 (11)	0.0018 (9)	0.0004 (9)	0.0034 (9)
C22A	0.0239 (11)	0.0240 (13)	0.0290 (11)	0.0006 (10)	-0.0002 (9)	-0.0001 (9)
C23A	0.0277 (12)	0.0209 (12)	0.0270 (11)	0.0035 (10)	-0.0014 (9)	0.0013 (9)
C24A	0.0336 (13)	0.0265 (13)	0.0286 (11)	0.0009 (10)	-0.0041 (9)	-0.0014 (10)
C25A	0.0268 (12)	0.0269 (13)	0.0405 (13)	-0.0013 (10)	-0.0048 (10)	0.0000 (10)
C26A	0.0262 (11)	0.0248 (13)	0.0353 (12)	0.0006 (10)	0.0021 (9)	0.0050 (10)
C31A	0.0345 (12)	0.0223 (12)	0.0233 (10)	0.0005 (10)	0.0014 (9)	-0.0034 (9)
C32A	0.0340 (12)	0.0220 (12)	0.0168 (9)	0.0017 (10)	0.0037 (8)	0.0003 (8)
C33A	0.0373 (13)	0.0199 (12)	0.0221 (10)	0.0022 (10)	0.0080 (9)	0.0005 (8)
C34A	0.0445 (14)	0.0295 (14)	0.0206 (10)	0.0008 (11)	0.0107 (10)	-0.0007 (9)
C35A	0.0534 (15)	0.0365 (16)	0.0185 (11)	0.0011 (13)	0.0043 (10)	0.0009 (10)
C36A	0.0382 (13)	0.0340 (14)	0.0222 (11)	0.0008 (11)	-0.0046 (9)	0.0005 (9)
C41A	0.0329 (12)	0.0191 (12)	0.0240 (10)	0.0005 (10)	0.0094 (9)	0.0032 (8)
C42A	0.0302 (11)	0.0224 (12)	0.0249 (10)	0.0006 (10)	0.0088 (9)	0.0031 (9)
C43A	0.0310 (12)	0.0218 (12)	0.0269 (11)	-0.0013 (10)	0.0052 (9)	0.0032 (9)
C44A	0.0254 (11)	0.0325 (14)	0.0346 (12)	-0.0008 (11)	0.0041 (9)	0.0019 (10)
C45A	0.0322 (13)	0.0345 (14)	0.0376 (13)	0.0029 (11)	0.0161 (10)	0.0011 (11)
C46A	0.0405 (14)	0.0277 (13)	0.0278 (11)	-0.0008 (11)	0.0154 (10)	-0.0001 (10)
C51A	0.0268 (11)	0.0282 (13)	0.0300 (11)	-0.0040 (10)	0.0035 (9)	0.0015 (10)
C52A	0.0326 (13)	0.0360 (15)	0.0291 (12)	0.0054 (11)	0.0020 (9)	-0.0015 (10)
C53A	0.0434 (15)	0.0498 (18)	0.0330 (13)	0.0016 (13)	0.0055 (11)	-0.0103 (12)
C54A	0.0519 (16)	0.0514 (18)	0.0258 (12)	-0.0068 (14)	0.0010 (11)	-0.0051 (11)

C55A	0.0390 (14)	0.0443 (17)	0.0323 (12)	-0.0024 (13)	-0.0056 (11)	0.0062 (11)	
C56A	0.0333 (13)	0.0313 (14)	0.0354 (12)	-0.0008 (11)	0.0022 (10)	0.0021 (10)	
C11B	0.0323 (12)	0.0234 (13)	0.0348 (12)	-0.0012 (10)	0.0030 (10)	0.0081 (10)	
C12B	0.0356 (13)	0.0303 (14)	0.0343 (12)	0.0030 (11)	0.0033 (10)	0.0018 (10)	
C13B	0.0531 (16)	0.0390 (17)	0.0328 (13)	0.0066 (13)	0.0049 (12)	0.0049 (11)	
C14B	0.069 (2)	0.0340 (16)	0.0307 (13)	0.0040 (14)	-0.0096 (13)	0.0015 (11)	
C15B	0.0513 (17)	0.0342 (16)	0.0470 (15)	-0.0056 (14)	-0.0120 (12)	0.0093 (12)	
C16B	0.0375 (14)	0.0322 (15)	0.0433 (14)	-0.0026 (12)	-0.0014 (11)	0.0108 (11)	
C21B	0.0308 (12)	0.0206 (12)	0.0336 (12)	-0.0035 (10)	0.0097 (9)	0.0065 (9)	
C22B	0.0323 (12)	0.0224 (13)	0.0288 (11)	-0.0011 (10)	0.0106 (9)	0.0020 (9)	
C23B	0.0353 (13)	0.0213 (12)	0.0283 (11)	-0.0022 (10)	0.0112 (9)	0.0011 (9)	
C24B	0.0460 (14)	0.0239 (13)	0.0343 (12)	-0.0038 (11)	0.0176 (11)	0.0008 (10)	
C25B	0.0393 (14)	0.0256 (14)	0.0454 (14)	0.0043 (11)	0.0215 (11)	0.0066 (11)	
C26B	0.0302 (12)	0.0256 (14)	0.0449 (14)	0.0016 (11)	0.0121 (10)	0.0072 (10)	
C31B	0.0416 (13)	0.0201 (12)	0.0249 (11)	-0.0017 (10)	0.0083 (9)	-0.0007 (9)	
C32B	0.0359 (12)	0.0207 (12)	0.0197 (10)	-0.0023 (10)	0.0003 (9)	0.0018 (8)	
C33B	0.0368 (13)	0.0199 (12)	0.0269 (11)	-0.0018 (10)	-0.0004 (9)	-0.0022 (9)	
C34B	0.0478 (15)	0.0308 (15)	0.0246 (11)	-0.0001 (12)	-0.0050 (10)	-0.0012 (10)	
C35B	0.0599 (17)	0.0397 (17)	0.0201 (11)	-0.0001 (13)	0.0023 (11)	-0.0003 (10)	
C36B	0.0523 (16)	0.0337 (15)	0.0251 (11)	-0.0008 (12)	0.0113 (11)	-0.0014 (10)	
C41B	0.0321 (12)	0.0186 (12)	0.0312 (11)	0.0019 (10)	-0.0042 (9)	0.0035 (9)	
C42B	0.0267 (11)	0.0226 (13)	0.0313 (11)	0.0012 (10)	0.0006 (9)	0.0024 (9)	
C43B	0.0293 (12)	0.0219 (13)	0.0380 (12)	0.0010 (10)	0.0031 (10)	0.0033 (10)	
C44B	0.0276 (12)	0.0273 (14)	0.0579 (16)	0.0022 (11)	0.0074 (11)	0.0018 (11)	
C45B	0.0261 (13)	0.0309 (15)	0.0566 (16)	-0.0004 (11)	-0.0094 (11)	-0.0031 (12)	
C46B	0.0330 (13)	0.0285 (14)	0.0370 (13)	0.0028 (11)	-0.0069 (10)	-0.0018 (10)	
C51B	0.0282 (12)	0.0288 (14)	0.0381 (12)	0.0048 (11)	0.0109 (10)	0.0047 (10)	
C52B	0.0326 (13)	0.0359 (15)	0.0318 (12)	0.0023 (11)	0.0087 (10)	0.0035 (10)	
C53B	0.0414 (15)	0.0477 (17)	0.0358 (13)	0.0022 (13)	0.0074 (11)	-0.0030 (11)	
C54B	0.0562 (17)	0.0526 (19)	0.0347 (13)	0.0138 (15)	0.0149 (12)	0.0055 (13)	
C55B	0.0569 (18)	0.0451 (18)	0.0478 (15)	0.0113 (15)	0.0284 (14)	0.0117 (13)	
C56B	0.0411 (15)	0.0351 (16)	0.0501 (15)	0.0030 (12)	0.0216 (12)	0.0061 (12)	

Geometric parameters (Å, °)

C11A—C16A	1.394 (3)	C11B—C12B	1.391 (3)
C11A-C12A	1.397 (3)	C11B—C16B	1.402 (3)
C11A-C21A	1.490 (3)	C11B—C21B	1.487 (3)
C12A—C13A	1.383 (3)	C12B—C13B	1.384 (3)
C12A—H12A	0.9500	C12B—H12B	0.9500
C13A—C14A	1.384 (4)	C13B—C14B	1.393 (4)
C13A—H13A	0.9500	C13B—H13B	0.9500
C14A—C15A	1.381 (4)	C14B—C15B	1.379 (4)
C14A—H14A	0.9500	C14B—H14B	0.9500
C15A—C16A	1.381 (3)	C15B—C16B	1.380 (4)
C15A—H15A	0.9500	C15B—H15B	0.9500
C16A—H16A	0.9500	C16B—H16B	0.9500
C21A—C22A	1.394 (3)	C21B—C22B	1.398 (3)
C21A—C26A	1.398 (3)	C21B—C26B	1.398 (3)
C22A—C23A	1.392 (3)	C22B—C23B	1.396 (3)

C22A—H22A	0.9500	C22B—H22B	0.9500
C23A—C24A	1.398 (3)	C23B—C24B	1.393 (3)
C23A—C31A	1.484 (3)	C23B—C31B	1.484 (3)
C24A—C25A	1.386 (3)	C24B—C25B	1.390 (3)
C24A—H24A	0.9500	C24B—H24B	0.9500
C25A—C26A	1.379 (3)	C25B—C26B	1.382 (3)
C25A—H25A	0.9500	C25B—H25B	0.9500
C26A—H26A	0.9500	C26B—H26B	0.9500
C31A—C32A	1.391 (3)	C31B—C32B	1.388 (3)
C31A—C36A	1.397 (3)	C31B—C36B	1.404 (3)
C32A—C33A	1.395 (3)	C32B—C33B	1.391 (3)
C32A—H32A	0.9500	C32B—H32B	0.9500
C33A—C34A	1.403 (3)	C33B—C34B	1.400 (3)
C33A—C41A	1.486 (3)	C33B—C41B	1.487 (3)
C34A—C35A	1.384 (3)	C34B—C35B	1.380 (4)
C34A—H34A	0.9500	C34B—H34B	0.9500
C_{35A} C_{36A}	1 382 (3)	C35B-C36B	1.374(4)
C35A—H35A	0.9500	C35B—H35B	0.9500
C36A_H36A	0.9500	C36B—H36B	0.9500
	1,307(3)	C41B C42B	1.303(3)
C41A C42A	1.397(3) 1.401(3)	$C_{41B} = C_{42B}$	1.393(3) 1.402(3)
C42A $C42A$	1.401(3) 1 305 (3)	C42P $C43P$	1.402(3)
$C_{42A} = C_{43A}$	0.0500	C42B = C43B	0.0500
C42A - H42A	0.9300	C42D— $C42DC42D$ — $C44D$	0.9300
C43A = C51A	1.390(3)	C43D - C44D	1.394(3)
C44A = C45A	1.467(3) 1.282(2)	C43B - C31B	1.469(3)
C44A—C45A	1.383 (3)	C44B—C43B	1.577(5)
C44A—H44A	0.9500	C44B—H44B	0.9500
C45A—C46A	1.379(3)	C45B - C46B	1.376 (4)
C45A—H45A	0.9500	C45B—H45B	0.9500
C46A—H46A	0.9500	C40B—H40B	0.9500
C51A—C56A	1.393 (3)	C51B—C52B	1.392 (3)
C51A—C52A	1.396 (3)	C51B—C56B	1.394 (3)
C52A—C53A	1.386 (3)	C52B—C53B	1.385 (3)
С52А—Н52А	0.9500	C52B—H52B	0.9500
C53A—C54A	1.385 (4)	C53B—C54B	1.383 (4)
С53А—Н53А	0.9500	C53B—H53B	0.9500
C54A—C55A	1.379 (4)	C54B—C55B	1.386 (4)
C54A—H54A	0.9500	C54B—H54B	0.9500
C55A—C56A	1.389 (3)	C55B—C56B	1.383 (4)
C55A—H55A	0.9500	C55B—H55B	0.9500
С56А—Н56А	0.9500	C56B—H56B	0.9500
C16A—C11A—C12A	117.9 (2)	C12B—C11B—C16B	117.7 (2)
C16A—C11A—C21A	121.3 (2)	C12B—C11B—C21B	120.8 (2)
C12A—C11A—C21A	120.8 (2)	C16B—C11B—C21B	121.4 (2)
C13A—C12A—C11A	121.1 (2)	C13B—C12B—C11B	121.1 (2)
C13A—C12A—H12A	119.5	C13B—C12B—H12B	119.5
C11A—C12A—H12A	119.5	C11B—C12B—H12B	119.5
C12A—C13A—C14A	120.1 (2)	C12B—C13B—C14B	120.2 (3)

~			0145 0145 TT145	
C12A-	C13AH13A	119.9	C12B—C13B—H13B	119.9
C14A-	C13AH13A	119.9	C14B—C13B—H13B	119.9
C15A-	C14AC13A	119.4 (2)	C15B—C14B—C13B	119.5 (2)
C15A-	C14AH14A	120.3	C15B—C14B—H14B	120.3
C13A-	C14AH14A	120.3	C13B—C14B—H14B	120.3
C16A-	C15AC14A	120.6 (2)	C14B—C15B—C16B	120.2 (3)
C16A-	C15AH15A	119.7	C14B—C15B—H15B	119.9
C14A-	C15AH15A	119.7	C16B—C15B—H15B	119.9
C15A-	C16AC11A	120.9 (2)	C15B—C16B—C11B	121.3 (2)
C15A-	C16AH16A	119.5	C15B—C16B—H16B	119.3
C11A-	C16AH16A	119.5	C11B—C16B—H16B	119.3
C22A-		118.09 (19)	C22B—C21B—C26B	117.9 (2)
C22A-		119.79 (19)	C22B—C21B—C11B	119.8 (2)
C26A-		122.12 (19)	C26B—C21B—C11B	122.3 (2)
C23A-		121.9 (2)	C23B—C22B—C21B	122.3 (2)
C23A-		119.0	C23B—C22B—H22B	118.8
C21A-		119.0	C21B—C22B—H22B	118.8
C22A-		118.6 (2)	C24B— $C23B$ — $C22B$	118.3 (2)
C22A-	-C23A-C31A	119.44 (19)	C_{24B} C_{23B} C_{31B}	122.3(2)
C24A-	$-C^{23A}$ $-C^{31A}$	121 94 (19)	C_{22B} C_{23B} C_{31B}	11940(19)
C25A =	-C24A-C23A	1200(2)	$C_{25B} = C_{24B} = C_{23B}$	120.2(2)
$C25A_{-}$	-C24A $-H24A$	120.0 (2)	$C_{25B} = C_{24B} = H_{24B}$	110.9
$C^{23}\Lambda_{-}$	-C24A $H24A$	120.0	$C_{23B} = C_{24B} = H_{24B}$	119.9
C_{25}	C_{2}	120.0 120.7(2)	$C_{25B} = C_{25B} = C_{24B}$	119.9 120.8(2)
C26A	-C25A - C24A	120.7 (2)	$C_{20} = C_{23} = C_{24} = C$	120.8 (2)
$C_{20}A^{-}$	-C25A - H25A	119.7	$C_{20} = C_{23} = H_{23} = H_{23}$	119.0
$C_{24}A = C_{25}A$	-C25A-I125A	119.7 120.7(2)	$C_{24}D = C_{25}D = \Pi_{25}D$	119.0
C25A = C25A	$-C_{20}A - C_{21}A$	120.7 (2)	C_{25B} C_{20B} C_{21B} C_{25B} C_{26B} U_{26B}	120.3 (2)
$C_{23}A = C_{21}A$	$-C_{20}A$ $H_{20}A$	119.7	$C_{23}B = C_{20}B = H_{20}B$	119.8
C21A-	$-C_{20}A$ $-H_{20}A$	117.9 (2)	C_{21B} C_{20B} C_{21B} C_{24B}	117.5 (2)
C32A-	-C31A-C30A	117.8(2)	C_{32B} C_{31B} C_{30B}	117.5 (2)
C32A-	-C3IA-C23A	119.41 (17)	C_{32B} C_{31B} C_{23B}	119.94 (18)
C36A-	-C3TAC23A	122.8 (2)	C_{30B} C_{31B} C_{23B}	122.5 (2)
C3IA-	-C32A-C33A	122.98 (18)	C31B—C32B—C33B	122.97 (19)
C3IA-		118.5	C31B—C32B—H32B	118.5
C33A-		118.5	C33B—C32B—H32B	118.5
C32A-	C33AC34A	117.4 (2)	C32B—C33B—C34B	117.8 (2)
C32A-	C33AC41A	120.76 (17)	C32B—C33B—C41B	120.25 (18)
C34A-	C33AC41A	121.83 (19)	C34B—C33B—C41B	121.9 (2)
C35A-	C34AC33A	120.5 (2)	C35B—C34B—C33B	120.0 (2)
C35A-	C34AH34A	119.8	C35B—C34B—H34B	120.0
C33A-	C34AH34A	119.8	C33B—C34B—H34B	120.0
C36A-	C35AC34A	120.77 (19)	C36B—C35B—C34B	121.3 (2)
C36A-	—С35А—Н35А	119.6	C36B—C35B—H35B	119.3
C34A-	—С35А—Н35А	119.6	C34B—C35B—H35B	119.3
C35A-	C36AC31A	120.5 (2)	C35B—C36B—C31B	120.3 (2)
C35A-	—С36А—Н36А	119.8	C35B—C36B—H36B	119.9
C31A-	—С36А—Н36А	119.8	C31B—C36B—H36B	119.9
C46A-	C41AC42A	117.6 (2)	C42B—C41B—C46B	117.9 (2)
C46A-	C41AC33A	121.90 (18)	C42B—C41B—C33B	120.3 (2)

G40A G41A G22A	100 52 (10)	CICD CILD CLID	101 72 (10)
C42A—C41A—C33A	120.53 (18)	C46B—C41B—C33B	121.73 (19)
C43A—C42A—C41A	122.1 (2)	C41B—C42B—C43B	122.2 (2)
C43A—C42A—H42A	118.9	C41B—C42B—H42B	118.9
C41A—C42A—H42A	118.9	C43B—C42B—H42B	118.9
C44A—C43A—C42A	118.21 (19)	C42B—C43B—C44B	118.0 (2)
C44A—C43A—C51A	120.8 (2)	C42B—C43B—C51B	120.6 (2)
C42A—C43A—C51A	121.01 (19)	C44B—C43B—C51B	121.3 (2)
C45A—C44A—C43A	120.7 (2)	C45B—C44B—C43B	120.6 (2)
C45A—C44A—H44A	119.7	C45B—C44B—H44B	119.7
C43A—C44A—H44A	119.7	C43B—C44B—H44B	119.7
C46A—C45A—C44A	120.4 (2)	C46B—C45B—C44B	120.9 (2)
C46A—C45A—H45A	119.8	C46B—C45B—H45B	119.6
C44A—C45A—H45A	119.8	C44B—C45B—H45B	119.6
C45A—C46A—C41A	121.0 (2)	C45B—C46B—C41B	120.4 (2)
C45A—C46A—H46A	119.5	C45B—C46B—H46B	119.8
C41A—C46A—H46A	119.5	C41B—C46B—H46B	119.8
C56A—C51A—C52A	118.0 (2)	C52B—C51B—C56B	117.9 (2)
C56A - C51A - C43A	120.5(2)	C52B $C51B$ $C43B$	121.5(2)
C52A - C51A - C43A	120.5(2) 121.5(2)	C_{56B} C_{51B} C_{43B}	121.3(2) 120.7(2)
C_{52A} C_{52A} C_{51A}	121.3(2) 121.1(2)	$C_{53B} = C_{52B} = C_{51B}$	120.7(2) 121.5(2)
$C_{53A} C_{52A} H_{52A}$	110.5	C53B C52B H52B	121.3 (2)
C_{51A} C_{52A} H_{52A}	119.5	C51B C52B H52B	119.2
$C_{51A} = C_{52A} = H_{52A}$	119.5 120.0(2)	C54D C52D C52D	119.2
$C_{54A} = C_{52A} = U_{52A}$	120.0 (2)	$C_{54B} = C_{53B} = C_{52B}$	119.8 (5)
C52A C52A H52A	120.0	C54B—C53B—H53B	120.1
C52A—C53A—H53A	120.0	C52B—C53B—H53B	120.1
C55A—C54A—C53A	119.7 (2)	C53B—C54B—C55B	119.4 (2)
С55А—С54А—Н54А	120.1	C53B—C54B—H54B	120.3
C53A—C54A—H54A	120.1	C55B—C54B—H54B	120.3
C54A—C55A—C56A	120.3 (2)	C56B—C55B—C54B	120.6 (2)
С54А—С55А—Н55А	119.9	C56B—C55B—H55B	119.7
С56А—С55А—Н55А	119.9	C54B—C55B—H55B	119.7
C55A—C56A—C51A	120.9 (2)	C55B—C56B—C51B	120.7 (3)
С55А—С56А—Н56А	119.5	C55B—C56B—H56B	119.6
C51A—C56A—H56A	119.5	C51B—C56B—H56B	119.6
C16A—C11A—C12A—C13A	-1.0 (4)	C16B—C11B—C12B—C13B	1.1 (4)
C21A—C11A—C12A—C13A	177.8 (2)	C21B—C11B—C12B—C13B	-178.9 (2)
C11A—C12A—C13A—C14A	-0.8 (4)	C11B—C12B—C13B—C14B	0.2 (4)
C12A—C13A—C14A—C15A	2.2 (4)	C12B—C13B—C14B—C15B	-1.2(4)
C13A—C14A—C15A—C16A	-1.7 (4)	C13B—C14B—C15B—C16B	1.0 (4)
C14A—C15A—C16A—C11A	-0.1 (4)	C14B—C15B—C16B—C11B	0.3 (4)
C12A—C11A—C16A—C15A	1.5 (4)	C12B—C11B—C16B—C15B	-1.3(4)
C21A—C11A—C16A—C15A	-177.4 (2)	C21B—C11B—C16B—C15B	178.7 (2)
C16A—C11A—C21A—C22A	142.8 (2)	C12B—C11B—C21B—C22B	35.2 (3)
C12A— $C11A$ — $C21A$ — $C22A$	-36.0(3)	C16B-C11B-C21B-C22B	-144.8(2)
C16A - C11A - C21A - C26A	-36.7(3)	C12B-C11B-C21B-C26B	-1447(2)
C12A - C11A - C21A - C26A	144 5 (2)	C16B— $C11B$ — $C21B$ — $C26B$	35 3 (3)
$C_{26A} = C_{21A} = C_{22A} = C_{23A}$	-15(3)	C_{26B} C_{21B} C_{22B} C_{23B} C_{23B}	13(3)
$C_{11A} - C_{21A} - C_{22A} - C_{23A}$	178 9 (2)	C11B-C21B-C22B-C23B	-1786(2)
	- / ~ / / /		·····(4)

C21A-		-C23A-	-C24A	1.5 (3)	C21B—C22B—C23B—C24B	-0.5 (3)
C21A-	C22A	-C23A-	-C31A	-177.2 (2)	C21B—C22B—C23B—C31B	178.3 (2)
C22A-	C23A	-C24A-	-C25A	-0.5 (3)	C22B—C23B—C24B—C25B	-0.1 (3)
C31A-	C23A	-C24A-	-C25A	178.1 (2)	C31B—C23B—C24B—C25B	-178.8 (2)
C23A-		-C25A-	-C26A	-0.3 (4)	C23B—C24B—C25B—C26B	-0.1 (4)
C24A-	-C25A-	-C26A-	-C21A	0.2 (4)	C24B—C25B—C26B—C21B	0.9 (4)
C22A-	-C21A-	-C26A-	-C25A	0.7 (3)	C22B—C21B—C26B—C25B	-1.4(3)
C11A-	-C21A	-C26A-	-C25A	-179.8 (2)	C11B—C21B—C26B—C25B	178.4 (2)
C22A-	-C23A	-C31A-	-C32A	32.0 (3)	C24B—C23B—C31B—C32B	145.9 (2)
C24A-	C23A	-C31A-	-C32A	-146.6 (2)	C22B—C23B—C31B—C32B	-32.8(3)
C22A-	C23A	-C31A-	-C36A	-147.7 (2)	C24B—C23B—C31B—C36B	-36.0(4)
C24A-	C23A	-C31A-	-C36A	33.7 (4)	C22B—C23B—C31B—C36B	145.3 (2)
C36A-	-C31A	-C32A-	-C33A	2.2 (3)	C36B—C31B—C32B—C33B	-1.6 (3)
C23A-	C31A	-C32A-	-C33A	-177.5 (2)	C23B—C31B—C32B—C33B	176.6 (2)
C31A-	C32A	-C33A-	-C34A	-1.2 (3)	C31B—C32B—C33B—C34B	0.9 (3)
C31A-	-C32A-	-C33A-	-C41A	178.2 (2)	C31B—C32B—C33B—C41B	-177.8 (2)
C32A-	-C33A	-C34A-	-C35A	-0.7 (3)	C32B—C33B—C34B—C35B	0.7 (4)
C41A-	-C33A-	-C34A-	-C35A	179.9 (2)	C41B—C33B—C34B—C35B	179.4 (2)
C33A-	-C34A	-C35A-	-C36A	1.4 (4)	C33B—C34B—C35B—C36B	-1.6 (4)
C34A-	-C35A-	-C36A-	-C31A	-0.3 (4)	C34B—C35B—C36B—C31B	0.9 (4)
C32A-	-C31A-	-C36A-	-C35A	-1.5 (4)	C32B—C31B—C36B—C35B	0.7 (3)
C23A-	C31A	-C36A-	-C35A	178.2 (2)	C23B—C31B—C36B—C35B	-177.4 (2)
C32A-	-C33A	-C41A-	-C46A	147.7 (2)	C32B—C33B—C41B—C42B	30.6 (3)
C34A-	-C33A	-C41A-	-C46A	-32.9 (3)	C34B—C33B—C41B—C42B	-148.1 (2)
C32A-	C33A	-C41A-	-C42A	-31.6 (3)	C32B—C33B—C41B—C46B	-149.1 (2)
C34A-	C33A	-C41A-	-C42A	147.7 (2)	C34B—C33B—C41B—C46B	32.3 (3)
C46A-	-C41A	-C42A-	-C43A	-0.2 (3)	C46B—C41B—C42B—C43B	0.2 (3)
C33A-	-C41A	-C42A-	-C43A	179.2 (2)	C33B—C41B—C42B—C43B	-179.4 (2)
C41A-	C42A	-C43A-	-C44A	1.1 (3)	C41B—C42B—C43B—C44B	-0.5 (4)
C41A-	C42A	-C43A-	-C51A	-179.1 (2)	C41B—C42B—C43B—C51B	-179.1 (2)
C42A-	-C43A	-C44A-	-C45A	-1.1 (3)	C42B—C43B—C44B—C45B	0.3 (4)
C51A-	C43A	-C44A-	-C45A	179.1 (2)	C51B—C43B—C44B—C45B	178.8 (2)
C43A-	C44A	-C45A-	-C46A	0.1 (4)	C43B—C44B—C45B—C46B	0.3 (4)
C44A-	C45A	-C46A-	-C41A	0.9 (4)	C44B—C45B—C46B—C41B	-0.6 (4)
C42A-	-C41A	-C46A-	-C45A	-0.8 (4)	C42B—C41B—C46B—C45B	0.3 (4)
C33A-	C41A	-C46A-	-C45A	179.8 (2)	C33B—C41B—C46B—C45B	179.9 (2)
C44A-	C43A	-C51A-	-C56A	-34.2 (3)	C42B—C43B—C51B—C52B	35.9 (3)
C42A-	C43A	-C51A-	-C56A	146.1 (2)	C44B—C43B—C51B—C52B	-142.6 (3)
C44A-	-C43A	-C51A-	-C52A	145.5 (2)	C42B—C43B—C51B—C56B	-143.4(2)
C42A-	C43A	-C51A-	-C52A	-34.3 (3)	C44B—C43B—C51B—C56B	38.1 (3)
C56A-	C51A	-C52A—	-C53A	0.3 (4)	C56B—C51B—C52B—C53B	-1.6 (4)
C43A-	C51A	-C52A-	-C53A	-179.4 (2)	C43B—C51B—C52B—C53B	179.1 (2)
C51A-	C52A	-C53A—	-C54A	-0.1 (4)	C51B—C52B—C53B—C54B	0.6 (4)
C52A-	C53A	-C54A-	-C55A	0.2 (4)	C52B—C53B—C54B—C55B	0.5 (4)
C53A-	C54A	-C55A—	-C56A	-0.5 (4)	C53B—C54B—C55B—C56B	-0.4 (4)
C54A-	C55A	-C56A—	-C51A	0.7 (4)	C54B—C55B—C56B—C51B	-0.6 (4)
C52A-	C51A	-C56A-	-C55A	-0.5 (4)	C52B—C51B—C56B—C55B	1.6 (4)
C43A-	C51A	-C56A-	-C55A	179.1 (2)	C43B—C51B—C56B—C55B	-179.0 (2)

Rings	LTA	LT <i>B</i>	RTA	RT <i>B</i>	
1–2	36.28 (11)	35.30 (12)	36.25 (9)	36.11 (9)	
2–3	32.11 (11)	33.91 (11)	32.22 (8)	34.39 (8)	
3–4	31.54 (11)	30.89 (12)	30.67 (8)	30.51 (9)	
4–5	34.16 (12)	37.07 (13)	35.68 (10)	35.68 (10)	

Dihedral angles (%) between adjacent planes

The angles are measured going from the ring containing atom C11 (ring 1) through to that containing C51 (ring 5) in all molecules.

MOLFIT parameters for overlays of all combinations of molecules from both polymorphs.

Molecule	Molecule	R.m.s. fit (wghtd) (Å)	Isometricity index (wghtd)	R.m.s. fit (unit weights) (Å)	Isometricity index (unit)	R.m.s. fit of bond lengths (Å)	R.m.s. fit of angles (°)	Fit Rotation Angle (°)
LTA*	LTB	0.044	95.6	0.038	96.2	0.0045	0.297	179.68
RTA*	RT <i>B</i>	0.053	94.7	0.049	95.1	0.0042	0.270	179.79
LTA*	RTA	0.036	96.4	0.032	96.8	0.0065	0.353	89.91
LTA	RT <i>B</i>	0.063	93.7	0.060	94.0	0.0066	0.332	179.69
LTB	RTA	0.037	96.3	0.036	96.4	0.0072	0.316	-179.72
LTB*	RT <i>B</i>	0.061	93.9	0.054	94.6	0.0076	0.292	-90.58

Note: * denotes an inverted molecule.

Coordinates of the centroids of the molecules in the asymmetric units of the LT and RT forms of (I).

Molecule	Х	У	Z	Δx	Δy	Δz	
LTA	0.6876	0.7492	0.1196				
LTB	0.9459	0.2502	0.1187	0.2583	0.4990	0.0009	
RTA	0.3231	0.1872	0.2602				
RT <i>B</i>	0.8220	0.4447	0.2655	0.4989	0.2575	0.0053	

Short contacts between molecules

Polymorph	С	Н	Ring (pivot atom)	Symmetry operator for ring	С—Н	H…Cg	C…Cg	Angle at H
LT	C53B	H53B	<i>Cg</i> (C51A)	x, y, z	0.95	2.96	3.801 (3)	149
LT	C25B	H25B	Cg(C21A)	x + 1, y - 1, z	0.95	2.91	3.521 (3)	123
LT	C15A	H15A	<i>Cg</i> (C11B)	x - 1, y + 1, z	0.95	3.00	3.451 (3)	111
LT	C46A	H46A	<i>Cg</i> (C31B)	x, y, z	0.95	2.95	3.354 (2)	107
LT	C46B	H46B	<i>Cg</i> (C31A)	x, y - 1, z	0.95	3.00	3.319 (3)	101
RT	C53B	H53B	<i>Cg</i> (C51A)	x, y - 1, z	0.97	3.03	3.867	145
RT	C25B	H25B	Cg(C21A)	x + 1, y + 1, z	1.03	2.97	3.606	122
RT	C15A	H15A	<i>Cg</i> (C11B)	x - 1, y - 1, z	0.95	3.12	3.503	107
RT	C46A	H46A	<i>Cg</i> (C31B)	x, y, z	1.00	2.97	3.404	107
RT	C46B	H46B	<i>Cg</i> (C31A)	x + 1, y, z	0.99	3.06	3.346	98

Cg is the centre of gravity of the ring containing the indicated atom.