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Electrochemical oxidation of triphenylphosphine in the presence of cyclic enol silyl ethers or enol esters gave 
2-oxocycloalkyltriphenylphosphonium salts, which underwent the Wittig reaction with aldehydes to afford 
(€)-2-al kylidenecycloal kan-I -ones. 

The triphenylphosphine radical cation [Ph,P+*] 21 generated 
by electrochemical oxidation of triphenylphosphine 1 reacts 
with electron-rich alkenes to form phosphonium salts with a 
P-C bond .2 2-Oxoalkylidene trip henylp hosp horanes 3 are 
valuable intermediates in Wittig alkenation reactions provid- 
ing enones and heterocyclic compounds .3 The preparation of 
acyclic 2-oxoalkyltriphenylphosphonium salts 4, the precursor 
of 3, is straightforward and may be accomplished by nucleo- 
philic substitution of a-haloketones with 1 (Scheme l).4 
However, 2-oxocycloalkyltriphenylphosphonium salts cannot 
be prepared in this way.5 An alternative approach to the cyclic 
phosphonium salts involves multi-step sequences, resulting in 
low overall yields of the desired products.6 
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In this communication we describe a new one-step synthesis 
of 2-oxocycloalkyltriphenylphosphonium tetrafluroborates 5 
based on the anodic oxidation of triphenylphosphine 1 in the 
presence of an enol silyl ether or enol esters (Scheme 2). 

Enol silyl ether 6 and two enol esters with five- to 
seven-membered rings, viz, enol phosphates 7 and enol 
acetates 8, were chosen, and their optimal electrolysis 
conditions were determined with the five-membered rings 
substrates 6a, 7a and 8a. The enol acetate 8a was the most 
efficient substrate. Table 1 summarizes the results of constant- 
current electrolysis (CCE) performed in an undivided cell 
under a dry nitrogen atmosphere. All the substrates were 
converted to 2-oxocycloalkyltriphenylphosphonium tetra- 
fluoroborate 5 . t  The CCE required 1 in excess over the enol 

T 5a: m.p. 228-230°C (from CH2C1,-diethyl ether); IR (KBr) 1723 
cm-l (C=O); lH NMR (CD3CN) 6 4.72-4.63 (lH, m, HCP+Ph3); 

28.1, 22.4. 
I3C NMR (CD3CN) 6 211.3 ( G O ) ,  44.6 (Jpc55.7 Hz, CP+Ph3), 39.9, 
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Table 2 Wittig reaction of 5 with aldehydes 11 

' 'n 
1 6 Y = SiMe3 5 

7 Y = P(O)(OEt)Z 
8 Y = COMe 5aR=H,n  = 1  

5 b R = H , n  = 2  
5 c R = H , n  =3 
5d R = Me, n = 1, (&/trans= 215) 
5e R = Me, n = 2, (single isomer) 

6 a R = H , n  = 1  8 a R = H , n  = 1  
7 a R = H , n  = 1  8bR=H,n  = 2  
7 b R = H , n  = 2  & R = H , n  = 3  

8 d R = M e , n = 1  
8eR=Me,n =2 

Me x 
8d'n = I  9 
8e'n = 2  

Scheme 2 
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Scheme 3 
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Table 1 Anodic oxidation of 1 in the presence of enol silyl ether 6 or 
enol esters 7 and 8" 

Run Compound (amount/mmol) Product Yield ( % ) b  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

6a (3.0) 
7a (3.0) 
7a (1.0) 
7b (3.0) 
8a (3.0) 
8a (1.5) 
8a (1.0) 
8b (3.0) 
8b (1.0) 

8d (1.0) 
8c (1.0) 

8e (1.0) 

5a 
5a 
5a 
5b 
5a 
5a 
5a 
5b 
5b 
5c 
5d 
5e 

11 
29 
51 ( 2 5 ) ~  
23 
47 
83 (45). 
96 
53 
93 
93 
92 
94 

Electrolysis conditions: CCE of PPh3 (3 mmol) in MeCN (40 ml) 
containing an enol silyl ether or an enol ester and LiBF, ( 0 . 2 ~ ) ;  
anode: glassy carbon plate, cathode: lead plate; electrolysis current: 
20 mA (current density, 1 mA cm-2). After 2 F per mol of 1 had been 
passed the reaction mixture was worked-up in a conventional 
manner.§ b Isolated yield based on 6, 7 and 8. Electrolysis was 
performed in air. 

~~ ~~ 

Product R1 R2 n Yield (%)" 

a Isolated yields, reaction conditions: 5,  11. CHzClz, NaOH. 

esters 7 and 8 (runs 3, 6 and 7). Water contamination during 
the electrolysis decreased the yield of 5 (runs 3 and 6). Under 
the conditions adopted in run 7, other enol acetates 8b-e were 
converted to the corresponding 2-oxoalkylphosphonium salts 
5b-e in excellent yields (runs 9-12) ,$ The phosphonium salt 5d 
derived from 8d was a 2 : 5 mixture of cis- and trans-isomers. 
whereas 5e was a single isomer for which the stereochemistry 
has yet to be assigned. However, no phosphonium salts were 
obtained from 1-acetoxy-2-methylcycloalkenes such as 8d' 
and e'.  The present method can also be applied to the 
synthesis of acyclic 2-oxoalkylphosphonium tetrafluoro- 
borates. Isopropenyl acetate 9 was converted to the 
2-oxoalkylphosphonium salt 10 in 94% yield. 

To estimate the validity of the 2-oxocycloalkylphosphonium 
salts 5 as a building block in synthetic organic chemistry, we 
examined their Wittig reactions with aldehydes 11 (Scheme 3). 
As shown in Table 2 the reactions proceeded as expected to 
afford the corresponding (E)-2-alkylidenecycloalkan-l-ones 
12.1 
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f i  The positions and the configurations of the double bonds in 
compounds 12a-e were established by comparison of their 1H NMR 
data with those of the authentic and related compounds reported in 
ref. 7. 
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