Communications to the Editor

Chem. Pharm. Bull. 32(11)4702—4705(1984)

NEW QUASSINOID GLYCOSIDES, YADANZIOSIDES A - H, FROM BRUCEA JAVANICA

Toshiro Sakaki, a Shin Yoshimura, a Masami Ishibashi, a Takahiko Tsuyuki, a Takeyoshi Takahashi, *, a Tadashi Honda, b and Toshihiro Nakanishi b Department of Chemistry, Fuculty of Science, The University of Tokyo, a Hongo, Bunkyo-ku, Tokyo 113, Japan, and Suntory Institute for Biomedical Research, b 1-1, Wakayamadai, Shimamotocho, Mishimagun, Osaka 618, Japan

Eight new antileukemic quassinoid glycosides, yadanziosides A - H (1 - 8) were isolated from seeds of *Brucea javanica* and their structures were determined by chemical transformation and spectral analysis.

KEYWORDS——bitter principle; antileukemic; quassinoid; glycoside; Simaroubaceae; *Brucea javanica*; 1H-NMR; 13C-NMR

As a continuation of studies on bitter principles of Simaroubaceous plants, glycosides in *Brucea javanica* (L.) MERR were investigated. This paper describes the structures of eight new quassinoid glycosides, some of which showed antileukemic activities against the murine P-388 lymphocytic leukemia.

The methanolic extract of defatted seeds of *B. javanica* was partitioned between dichloromethane and water. The organic layar, on evaporation, gave a residue, which was dissolved in hot methanol. After cooling, brusatol, 2) which precipitated as crystals, was filtered. The filtrate was evaporated in vacuo and subjected to separation by silica-gel column chromatography. After elution with benzene-ethyl acetate, elution with ethyl acetate-methanol afforded fractions containing crude glycosides. The combined fractions were separated by silica-gel chromatography (elution: lower layer of chloroform-methanol-water), and then either by partition chromatography on silicic acid (elution: chloroform-ethanol), a Lobar column Lichroprep RP-8 (elution: methanol-water), or Toyopearl HW-40S (elution: methanol) to give eight new glycosides, yadanziosides A (1; 0.01%), B (2; 0.002%), C (3; 0.001%), D (4; 0.001%), E (5; 0.002%), F (6; 0.001%), G (7; 0.01%), and H (8; 0.001%) together with known brusatol, 2) dehydrobrucein A, 3) brucein D, 4) brucein E, 4) bruceoside A, 5) bruceoside B, 5) and yadanziolide A.1)

Yadanzioside B ($\underline{2}$), mp 189-195°C; IR (KBr) 3425, 1735, and 1635 cm⁻¹; UV (EtOH) 255 nm, gave a peak at m/z 707 due to $[M+Na]^+$ in SI-MS, from which the molecular formula, $C_{32}H_{44}O_{16}$, was deduced, and was shown to be a hexoside from an appearance of a peak at m/z 522.2082 corresponding to $[M-C_6H_{10}O_5]^+$ in the EI-high resolution mass spectrum. $^1H-$ and $^{13}C-NMR$ spectra suggest that yadanzioside B ($\underline{2}$) must be a $\beta-D$ -glucoside of brucein A ($\underline{9}$). 3 , 6) Glycosylation shifts ($\Delta\delta$ +18.1 ppm and $\Delta\delta$ +1.9 ppm) of the signals due to C-3 and C-4 respectively were observed in the $^{13}C-NMR$, indicating that D-glucose is attached at C-3 of the aglycone. An anomeric proton was observed at δ 5.46 as a doublet (J=7.3 Hz) in the $^{1}H-NMR$

spectrum. On acid hydrolysis with 1M ${\rm H_2SO_4}$ -methanol, $\underline{2}$ gave brucein A ($\underline{9}$), and hydrolysis with HCl-methanol afforded methyl D-glucoside, which was identified by GLC after trimethylsilylation. Thus the structure of yadanzioside B ($\underline{2}$) was determined to be $3-O-\beta-D$ -glucosyl brucein A.

Yadanzioside A ($\underline{1}$), mp 200-204°C; IR (KBr) 3400, 1740, 1675, and 1625 cm⁻¹; UV (EtOH) 256 nm, was shown by SI-MS to be a glucoside with the same molecular formula as that of $\underline{2}$. Yadanzioside A ($\underline{1}$) was hydrolyzed with β -glucosidase at 37°C to give brucein A ($\underline{9}$). Since a doublet signal due to $C_{(4)}$ -CH₃ of the aglycone part of $\underline{1}$ was observed at δ 1.13 (J=6 Hz), the brucein A moiety isomerizes into a 3-keto-1-ene structure and forms the glycoside linkage through an oxygen atom on C-2. The structure of yadanzioside A ($\underline{1}$) was formulated as 2-0- β -D-glucosyl brucein A.

Yadanzioside C (3), mp 204-209°C; IR (KBr) 3445, 1740, 1680, and 1640 cm⁻¹; UV (EtOH) 221 and 254 nm, gave a peak at m/z 749 due to $[M+Na]^+$ in SI-MS, which corresponds to the molecular formula, $C_{34}H_{46}O_{17}$. On acid hydrolysis with 1M H_2SO_4 -methanol and with HCl-methanol, 3 afforded brucein C (10)^{3,6,7)} and methyl D-glucoside, respectively. Since a doublet signal due to $C_{(4)}$ -CH₃ was observed at δ 1.19 (J=6.7 Hz) in the 1H -NMR of 3, the structure of yadanzioside C (3) was determined to be $2-O-\beta-D$ -glucosyl brucein C.

Yadanzioside F ($\underline{6}$), mp 202-207°C; IR (KBr) 3450, 1740, 1680, and 1630 cm⁻¹; UV (EtOH) 256 nm, exhibited a peak at m/z 643 due to [M+H]⁺ in SI-MS, indicating the molecular formula $C_{29}H_{38}O_{16}$, and was hydrolyzed with β -glucosidase to give brucein B ($\underline{11}$).^{3,6} Since the $C_{(4)}$ -CH₃ of $\underline{6}$ was observed as a doublet signal at δ 1.15 (J=5 Hz), yadanzioside F ($\underline{6}$) was formulated as 2-O- β -D-glucosyl brucein B.

Yadanzioside G (7), mp 180-185°C; IR (KBr) 3450, 1740, 1685, and 1645 cm⁻¹; UV (EtOH) 222 and 253 nm, afforded a peak at m/z 791 due to [M+Na]⁺ in SI-MS, corresponding to the molecular formula, $C_{36}H_{48}O_{18}$, and was hydrolyzed with β -

glucosidase to give bruceantinol ($\underline{12}$). 3,7) In the 1 H-NMR spectrum of $\underline{7}$, a doublet signal due to $C_{(4)}$ -CH₃ was observed at δ 1.17 (J=6 Hz). The structure of yadan-zioside G ($\underline{7}$) was formulated as 2-0- β -D-glucosyl bruceantinol.

Yadanzioside D ($\underline{4}$), mp 207-212°C, exhibited the IR-absorption bands due to hydroxyl (3430 cm⁻¹) and δ -lactone (1745 cm⁻¹), but no UV absorption maximum characteristic of a conjugated carbonyl group. In the EI-MS of $\underline{4}$, a peak at m/z 480 due to an aglycone appeared and the ¹H-NMR spectrum suggests the presence of an acetoxyl group. On hydrolysis with β -glucosidase, $\underline{4}$ yielded the aglycone ($\underline{13}$), $C_{23}H_{30}O_{11}$, ¹H-NMR δ : 1.52, 1.55, 2.09, 3.78, 4.01, and 6.76; MS m/z: 482, 464, 446, 440, 422, and 404. The aglycone ($\underline{13}$) was oxidized with MnO₂ to give isobrucein B ($\underline{14}$). Since a doublet signal due to $C_{(1)}$ -H appeared at δ 4.01 ($J_{1,2}$ =8 Hz) in the ¹H-NMR of $\underline{13}$ and a glycosylation shift ($\Delta\delta$ +11.0 ppm) due to C-2 was observed in the ¹³C-NMR spectrum, the configuration of $C_{(2)}$ -OH of $\underline{13}$ was established to be α -equatorial and the glycoside linkage occurred through the C-2 oxygen atom. The structure of yadanzioside D ($\underline{4}$) was determined to be the β -D-glucoside of the allylic alcohol ($\underline{13}$) derived from isobrucein B ($\underline{14}$).

Yadanzioside E ($\underline{5}$), mp 190-195°C; IR (KBr) 3450, 1740, and 1645 cm⁻¹, possesses the molecular formula, $C_{32}H_{44}O_{16}$, deduced from a peak at m/z 707 due to [M+Na]⁺ in SI-MS and was hydrolyzed with β -glucosidase to afford an aglycone ($\underline{15}$), 1H -NMR δ : 1.54, 1.66, 2.14, 3.74, 4.02, 5.08, and 6.75. This was treated with MnO₂ to yield a keto alcohol ($\underline{16}$), 1H -NMR δ : 1.19, 1.94, 1.96, 2.19, 3.78, and 6.23; MS m/z: 520, 502, 484, 437, 420, 402, 388, 374, 345, and 315, the structure of which could be established by 1H -NMR and MS spectra. The structure of yadanzioside E ($\underline{5}$) was thus determined to be the β -D-glucoside of $\underline{15}$.

Yadanzioside H ($\underline{8}$), mp 180-185°C; IR (KBr) 3450, 1750, and 1640 cm⁻¹, has the molecular formula, $C_{32}H_{46}O_{16}$, deduced from a peak at m/z 709 due to [M+Na]⁺ in SI-MS and was hydrolyzed with β -glucosidase to give an aglycone ($\underline{17}$), 1 H-NMR δ : 0.94, 0.97, 1.52, 1.53, 3.80, 3.98, and 6.82, which on oxidation with MnO₂ afforded isobrucein A ($\underline{18}$). The position of the glycoside linkage was determined to be C-2 from the glycosylation shift ($\Delta\delta$ +11.0 ppm). Yadanzioside H ($\underline{8}$), on hydrogenation (10% Pd-C/EtOH), gave a dihydro derivative, which was identical with a

	Table 1. ² H-NMR Spectra (90MHz, C_5D_5N) ^a) of Yadanziosides A-H ($1-8$)									
	1	<u>2</u> b)	<u>3</u> b)	4	<u>5</u>	<u>6</u>	7	<u>8</u>		
1 – H	7.22s	3.25d(16)	7.29s	c)	c)	7.22s	7.25s	c)		
2-H	-	-	-	4.45m	4.42m	_	-	4.42m		
3-H	_	-	_	5.72brs	5.69brs	_	_	5.69brs		
15-H	6.84d(13)	6.9br	6.8br	6.78d(12)	6.76d(13)	6.76d(13)	6.81d(13)	6.82d(13)		
C(4)-Me	1.13d(6)	2.04d(1.2)	1.19d(6.7)	1.43brs	1.43brs	1.15d(5)	1.17d(6)	1.42brs		
C ₍₁₀₎ -Me	1.61s	1.71s	1.63s	1.43brs	1.43brs	1.63s	1.64s	1.42brs		
CO ₂ Me	3.84s	3.84s	3.73s	3.77s	3.72s	3.81s	3.89s	3.79s		
2'-H	c)	c)	6.77d(1.2)	_	5.82brs	-	6.06s	c)		
3'-Me	0.96d(6) 0.99d(6)	0.95d(6.7) 0.98d(6.7)	2.40brs	-	1.67s 2.14s	· _	2.26s	0.94d(6) 0.97d(6)		
4'-Me	-	-	1.41s 1.42s	-	-		1.42s 1.46s	-		
-OAc	_	-	-	2.09s	-	2.10s	1.95s	-		
Anomeric -H	c)	5.46d(7.3)	5.37d(7.0)	4.93d(8)	4.94d(6)	c)	c)	c)		

Table I. ¹H-NMR Spectra (90MHz, C₅D₅N)^a) of Yadanziosides A-H (1-8)

a) Coupling constants in Hz in parentheses. b) Measured at 400 MHz. c) Not measured.

Table II. 13 C-NMR Spectra (22.5 MHz, C_5D_5N) of Yadanziosides A-H (1-8)

1	12.5q, 17.9q, 52.3d, 62.3t, 129.6d, 148.8	68.4d, 7	1.3d, 73.4d,	73.7t, 74.5d	, 40.6d, , 75.9d,	41.3d, 78.3d,	43.3t, 78.7d,	43.8d, 82.6s,	46.6s, 83.5d,	50.4q, 102.0d,
---	---	----------	--------------	--------------	----------------------	------------------	------------------	------------------	------------------	-------------------

- 15.3q, 15.8q, 22.4q, 22.5q, 25.9d, 29.3t, 40.8s, 42.2d, 43.3d, 43.3t, 46.1s, 50.6d, 51,1t, 52.4q, 62.8t, 68.4d, 71.6d, 73.1d, 73.6t, 75.7d, 76.0d, 78.4d, 78.6d, 82.7s, 83.5d, 104.9d, 146.2s, 147.9s, 168.1s, 171.2s, 171.6s, 193.6s
- 3 12.6q, 15.6q, 18.0q, 28.9q, 28.9q, 30.0t, 39.7s, 40.5d, 41.4d, 43.8d, 46.7s, 50.3d, 52.4q, 62.4t, 68.4d, 71.3d, 73.2s, 73.6d, 73.8t, 74.7d, 76.1d, 78.6d, 79.0d, 82.6s, 83.5d, 102.0d, 112.9d, 129.3d, 149.2s, 166.5s, 168.2s, 168.3s, 171.2s, 194.5s
- 4 12.1q, 20.6q, 20.7q, 28.3t, 43.0d, 43.1d, 44.4s, 46.7s, 50.6d, 52.2q, 62.8t, 68.8d, 71.7d, 74.1t, 75.5d, 75.6d, 76.1d, 78.6d, 78.7d, 81.2d, 82.5s, 84.3d, 84.9d, 107.0d, 124.3d, 135.8s, 168.0s, 169.7s, 171.5s
- 5 12.1q, 20.2q, 20.8q, 27.0q, 28.3t, 42.9d, 43.1d, 44.4s, 46.7s, 50.6d, 52.2q, 62.7t, 68.2d, 71.6d, 74.1t, 75.6d, 75.7d, 76.0d, 78.5d, 78.6d, 81.2d, 82.5s, 84.2d, 84.8d, 106.9d, 116.0d, 124.3d, 135.9s, 158.2s, 165.3s, 168.2s, 171.4s
- 6 12.6q, 18.0q, 20.6q, 30.0t, 39.6s, 40.6d, 41.4d, 43.9d, 46.6s, 50.5q, 52.3d, 62.4t, 68.8d, 71.3d, 73.4d, 73.7t, 74.7d, 76.1d, 78.5d, 78.8d, 82.7s, 83.6d, 102.0d, 129.5d, 148.8s, 168.0s, 169.7s, 171.3s, 194.5s
- 7 12.5q, 14.5q, 18.0q, 21.4q, 25.8q, 26.4q, 30.1t, 39.6s, 40.4d, 41.4d, 43.9d, 46.6s, 50.2d, 52.6q, 62.4t, 68.7d, 71.4d, 73.4d, 73.7t, 74.6d, 76.0d, 78.4d, 78.8d, 82.3s, 82.6s, 83.5d 102.0d, 113.7d, 129.7d, 148.8s, 163.3s, 165.7s, 168.0s, 169.5s, 171.7s, 194.7s
- 8 12.1q, 20.7q, 22.4q, 25.5q, 25.8d, 28.3t, 43.1d, 43.1d, 43.3t, 44.4s, 46.7s, 50.8d, 52.2q, 62.8t, 68.4d, 71.6d, 74.1t, 75.5d, 75.7d, 76.1d, 78.6d, 78.7d, 81.2d, 82.5s, 84.3d, 84.9d, 107.0d, 124.3d, 135.8s, 168.2s, 171.4s, 171.6s

tetrahydro derivative of yadanzioside E ($\underline{5}$). Thus the structure of yadanzioside H ($\underline{8}$) was formulated as the β -D-glucoside of the allylic alcohol ($\underline{17}$) derived from isobrucein A ($\underline{18}$).

ACKNOWLEDGEMENT The authors wish to thank Mr. Hideo Naoki of Suntory Institute for Bioorganic Research for measurement of SI-MS.

REFERENCES

- 1) S. Yoshimura, T. Sakaki, M. Ishibashi, T. Tsuyuki, T. Takahashi, K. Matsushita, and T. Honda, the preceding paper.
- 2) K. Y. Sim, J. J. Sims, and T. A. Geissman, J. Org. Chem., 33, 429 (1968).
- 3) J. D. Phillipson and F. A. Darwish, Planta Med., 41, 209 (1981).
- 4) J. Polonsky, Z. Baskévitch, M. B. Das, and J. Müller, C. R. Acad. Sci., Ser. C, 267, 1346 (1968).
- 5) K. -H. Lee, Y. Imakura, Y. Sumida, R. -Y. Wu, and I. H. Hall, *J. Org. Chem.*, <u>44</u>, 2180 (1979).
- 6) J. Polonsky, Z. Baskévitch, A. Gaudemer, and B. C. Das, Experientia, 23, 424 (1967).
- 7) J. Polonsky, J. Varenne, T. Prangé, and C. Pascard, Tetrahedron Lett., 21, 1853 (1980).
- 8) S. M. Kupchan, R. W. Britton, J. A. Lacadie, M. F. Ziegler, and C. W. Siegel, J. Org. Chem., 40, 648 (1975).
- 9) C. Moretti, J. Polonsky, M. Vuilhorgne, and T. Prangé, Tetrahedron Lett., 23, 647 (1982).
- 10) J. Polonsky, Z. Baskévitch-Varon, and T. Sévenet, Experientia, 31, 1113 (1975).

(Received October 5, 1984)