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Synthetic peptides are in huge demand in expansfigrotential peptide mimi¢awvhich ma
have improved or comparable function as natural &digh these concernghenyl bearin
aromatic amino acids and peptides has extensivglioeed, because phenyl residue hégh
probability in forming stable secondary structuwejing to thepresence of an extra stabiliz
factor asteTt non-covalent interactions. Apart from phenyl begrbenzenoid aromatiaminc
acids, a few non-benzenoid aromatic derivativeh agtropolone and related compouads
also occurred in nature, but troponyl containingiremacids and peptides are vepgorly
understood. Tropolonyl derivatives also contairboayl functional group, which may plar
important role to provide stable conformation irptige. Herein we repothe synthesis, ai
conformational analysis of rationally desigmeglvunnaturald-amino acid froponyl aminoethy
glycine (Tr-aeg, which contains troponyl residue as side chaifflérible aminoethylglycin
(aeg amino acid backbone. We also demonstrate theofdl®ponyl carbonyl ofrr-aegresidu
in hydrogen bonding with adjacent amide NH of thwsibrid di/tri- peptides with NMRmethod
and DFT calculations. In futur&r-aeg amino acid would be a potential building bloirk
development of promisable peptide mimics.

2009 Elsevier Ltd. All rights reserved

OCorresponding author. Tel.: +91-674-230-4130; fedl-674-230-2436; e-mail: nagendrar@niser.ac.in



Introduction

Conformational analysis of a molecule defines tlgpet of
structural organization, which explain the funcibbehavior of

in development of synthetic aromatic amino acids @heir
peptides. In nature, non-benzenoid aromatic comg@such as

that moleculé. In case of macromolecules, the conformation oftropolone {) and related compounds are also available (Figure

building blocks has crucial role in controlling theverall
functionality of moleculeé. For an instance, the function of
protein and enzyme relay on favorable conformatidrtheir
building block such as amino acid residue. Thee sithain
functionality of that amino acid residue having bita
conformation is also responsible in modulation oh+tovalent
interactions for being functional respective pratenzymes:’
Due to variable side chain of amino acids resicagious non-
covalent interactions are present in functional tgiro and
enzymes. Among them, hydrogen bonding, one of riffgortant
non-covalent interactions, plays an important tolecquire the
well defined structural organization in protein/gmes®® To
improve the structural and functional propertiesns synthetic
peptide mimics have been synthesized from natmeluanatural
amino acids and nicely exploré®ome of these peptide mimics
have shown exceptional functional properties ancdenth
considered as therapeutics drug candidafer ideal peptide
mimic, the presence of following secondary struait@lements-
helices, turns and sheets are required in targaideeto adopt
protein-like conformations and folding pattéfhTo meet these
requirements, many unnatural synthetic peptidesn froon-
natural amino acid, including backbone expandednangicids
such asg-2" y-"* and s-amino acid®*® were synthesized and
studied extensively to find the interesting strually folding
behaviors. Some of these synthetic peptides havewrsh
promiseable folding behavior with significant sedary
structural elements. It is also learnt that the sstuent of
synthetic amino acidsf{, y- and s-amino acid) analogues also
play an important role in acquiring secondary dgtre by
restricting their allowed conformational space. Bonrinstances-
alanine peptide reportedly forms random structunesolution
phase, while sheet like packing in its solid stAtdowever, the
substituted ring constraingétamino acid analogues, containing
cycloalkane ring, also facilitate the formation hadlical type of
secondary structure formation in solid staténterestingly, the
synthetic peptides, even with four appropriate dess,
reportedly form stable secondary structures anébiinprotein-
protein interactions and other biological evefitS.Some of the
synthetic peptides have also shown high stabibityards enzyme
degradation at cellular level. Recently, many nsymthetic
aromatic amino acids have been synthesized by tiguisig of
chain propagating groups, amino and carboxyl gronpor with
aromatic frameworks to generate conformationallyst@ineds-
turn type of peptide foldamet5™® The structural analysis of
phenyl bearing aromatic, benzenoid, peptides ha=ated thatt

Tt non-covalent interactions provide extra stabgitie formation
of their secondary structure. So far many benzeroamnatic
compounds are known, but a very few of them haen hilized
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d-Amino acid
Trponyl aminoethyl glysine
(Tr-aeg)
Figure 1. Chemical structure of tropolong) (@nd troponyl amino acid
(Tr-aeg andTr-aegpeptide

Tr-aeg Peptide

1).% Tropolone related bioactive natural products /s
thuzaplicinol (hinokitiol)>* anda-manicil are studied in details.
Other tropolonyl derivatives including-hydroxy tropolone and
2-aminotropone analogues are also considered gsttdrugs
molecules® In addition, tropolone derivatives contain metal
chelating properties especially with Zn and Cu méaa. >+
Very recently, new electronic properties such astqor transfer
within tropolone 1) molecule have been observeda
intramolecular hydrogen bondi§*® Owing to many remarkable
features, the tropolone and related compounds wdudd
employed in synthetic peptides, to examine thefaramational
stability of their peptides. To expand the synihgbieptides
repertoire, we rationally designed akamino acid, troponyl
aminoethylglycine Tr-aeg, from tropolone and
aminoethylglycine deg oJamino acid backbone derivative
(Figure 1). In this report, we describe the synithes$ rationally
designed newlr-aeg amino acid where troponyl motif linked
covalently ataeg backbone. We also demonstrate the role of
troponyl carbonyl group offr-aeg in hydrogen bonding with
amide N-H of peptide containingr-aeg residue by NMR
techniques. So far, there is no such report, whiescribes the
role of troponyl carbonyl group in conformationdalsility of
peptidevia hydrogen bonding with adjacent amide N-H.

Results and discussions

The synthesis ofewly designed damino acid, Tr-aeg, was
planned from commercially available materials: tiome (1) and
ethylenediamine3) (Scheme 1). Herein, the hydroxyl functional
group of tropolonel) was derivatized into 2-tosyloxy tropolonyl
intermediate %) after treatment with tosylchloride by following
literature procedur&. And ethylenediamine3j was modified to
N-Boc-aminoethylglycinateaggd (4) backbone by using known
synthetic procedur&. Subsequently, the troponylation reactions
performed atN-atom of aeg backbone 4) by refluxing with
reactive tropolonyl tosylate intermediated, (under mild basic

Scheme 1. Synthesis offr-aegamino acid monomer
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e troponyl ring. Due to ring puckering, non-planariyaracter in
g \\ seven member closed ring compounds have also betirech
e D previously**** Our structural analysis results also reveal the
[ orientation of troponyl carbonyl group toward tBeend of Tr-
,.___‘/ aeg amino acid derivative 5§, not to the N'-end. After
1// ‘ Py *P v conformation analysis of derivativd the role of its troponyl
) /’ﬂ\(/\.?,{ -d/ 5 carbonyl group in peptide folding was planned tareine. That
e 4 = _,_‘L\--.-, is why, a few hybrid peptides, combination of swtit Tr-aeg
b 7 and naturabi-amino acid, planned to synthesize. The ester group
Mﬁ? of Tr-aeg derivative b), therefore, was hydrolyzed into
\,\ _\-/ carboxylic acid functionalizedr-aegderivative 6) by treatment

with ag. NaOH (2.0M) followed by neutralization witHCI
(scheme 1). This carboxylic acid functionalizedihive 6 was
coupled with amino group of methyl ester derivat¥dollowing
a-amino acids- L-phenylalanine (Phe), L-proline (Prand L-
conditions, in EN. After completion this reaction, mixture was isoleucine, under peptide coupling reagents, EDSVEBcheme
purified by column chromatographic method and then2). Thus hybrid dipeptide§/8/9 were achieved front and
characterized by NMR'/**C) and HRMS (ESI-Tof) analysis.t respective methyl ester derivative of Phe/Pro/lithwnoderate
These analytical data suggest the formation ofrdésiompound  Yield ca. 45%. For control studies, without conitagntroponyl
as Tr-aeg protected amino acid derivativeBocNH-Tr-aeg-  residue, dipeptidd0 (Boc-NH-Gly-Phe-COOMe) fromu-amino
COOEt,(5). The characterization data (NMR and HRMS spectrapcid derivatives:N-Boc-glycine acid and phenylalanine (Phe)
of newly synthesized compourfl are provided separately as ester amine. With silica gel column purification thned, purified
Supplementary Information (SI). Moreover, the singtystal X-  hybrid peptides 7/8/9/10) were characterized byH-/°C-
ray analysis was performed to crystalline solidrfoof Tr-aeg ~NMR/HRMS (ESI-Tof) techniques. The characterizatidata
derivative 5. Finally, X-ray studies confirm the chemical (NMR and HRMS spectra) are provided in Sl. Furthanen the
structure of5 and its ORTEP diagram is depicted in Figure 2 hybrid tri-peptide (1) was also prepared froffr-aeg derivative
whiles its crystal packing pattern is provided in $ray data of (6) and dipeptide 10) and then characterized by similar
5 as “cif’ file, are submitted to the Cambridge structuraltechniques. The characterization data tdfpeptide 11 are
database (CSD) with CCDC No. 975954. Our structsradlies  provided in SI. After successful synthesis and at@rizing of
demonstrate that troponyl ring @F-aeg derivative §) is non-  hybrid di-/tri-peptides, we planned to examine the role of
planar, possible owing to ring puckering. Tropnyrlwnyl  troponyl carbonyl group in hydrogen bonding withjeaent
substituent C(2)-O(3) o8, therefore, is not in same plane of amide N-H or carbamate N-H within peptidé¥8(9/11). Thus,
the conformational studies of hybrid peptides wessential. In
Scheme 2. Synthesis of hybrid Peptides this report, we used NMR methods to find most fabde
conformation and orientation of troponyl residuahivi peptide.
So that, 2D-NMR (COSY, NOESY, and HSQC) spectra of
synthesized hybrid peptide/8/9/11) were recorded, which are
N , provided in SI. In case of hybrid peptide the *H-'H COSY
/—/ <>/*OH ————» Peptides spectrum analysis assigns chemical skiftaf all protons, while
7-11) !
BocHN 0 'H-**C-HSQC spectrum analysis furnishes chemical sBjftof

Figure 2. ORTEP diagram o¥-aminoacid monomes

a-Aminoacid Ester
o EDC-HCI, EN,
DCM, 0°C-tt , 40%.

6
all CH/CH,/CH; type of carbons in peptidé After proton and

0 9 . -
'Sl \Ol\ C;‘/[ ! Carbon analysis'H-'H NOESY 2D NMR spectrum is used to
NA‘( -7 ~OMe N/\W extract non vicinal coupling protons partner in §@p 7. The
H O /~OMe

o] NOE analysis results show a spatial interactiotr@bonyl! ring
C(7)-H proton (t7H), phenyl (ortho) protons or bothith
NHBoc NHBoc . . . R . .
adjacent amide N-H of phenylalanine residue in lijpe 7.
7 8 Amazingly, no NOE interaction observes for_t7H protwith
(o}
N H ome 0 Tablel. Chemical shift value of amide NH and troponyl C=0
( OMe
/>/N -““l\\o BOCHNV\L'}' Entry Compound Carbamate Amide Troponyl
BocHN o H O N-H N-H  Carbonyl
10 (ppm) (ppm)  (c=0) group
9 (ppm)
1 5 5.6 no 181.7
2 7 55 7.7 182.5
Cfo H o 3 8 5.8 no 181.7
N 4 9 5.6 7.9 183.2
N/\H/ \/U\'," OMe 5 10 5.1 6.6 no tr-aeg
H 0 H O 6 11 5.5 7.9 182.7

BocHN 1 *Amide (i+1)th residue




carbamate N-H in dipeptidé In addition, the NOE interactions 8/11. Their results show that the troponyl residue protons Xt3H
of troponyl ring C(3)-H proton (t3H) with aminoethgrotons  of peptides &/11) have similar NOE interaction with aminoethyl
met/met, (yH/dH,) are noticeably observed. These 2D-NMR protons yH/8H, which also support similar kind of troponyl
analysis support the troponyl ring conformation geptide 7, carbonyl group conformation as ofli-peptide 7. After
where troponyl carbonyl group pointing to t8&end of peptide  conformational analysis, the role of troponyl canyogroup of
(7), not to theN'-end. Hence,tropnyl ring of peptide7 possibly  synthesized hybrid peptides in hydrogen bondingréxad with
has similar conformation axf Tr-aegderivative B). Similar sets adjacent amide NH by following NMR titration method
of 2D-NMR analysis completed within other hybridpgides  According to this method, the chemical shift (prot@sonance)

Amide N-H Boc N-H

' M IH-NMR in CDCI, + 40u1 DMSO—d,
M 'H-NMR in CDCl, + 35p1 DMSO—déA

I 'H-NMR in CDCI; + 251 DMSO—d, ‘
M M YA
1

‘—_I’jw 1 MH-NMR in CDCI, + 204l DMSO-d, 1

o il 'H-NMR in CDCI, + 151 DMSO—d,
| 'H-NMR in CDCI, + 10u1 DMSO—d, . ‘

'H-NMR in CDCI, + 5u1 DMSO—d, J\‘

I M ) "H-NMR in CDCl, A ‘

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
80 79 78 77 76 75 74 73 72 71 7.0 69 68 6.7f (6.6) 65 64 63 62 61 60 59 58 57 56 55 54 53 52
1 (ppm

"H-NMR in CDCI; + 30ul DMSO-d, ‘

Figure 3. DMSO-d6 titration profile of dipeptider)

e.o-A/i R e
5 7'8-. M

5.8 7.6
7.44
5.6 ]
7.2
5.4

7'0'_ 10 (controle)
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Chemical shift in & Jopm)
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o

Figure. 4 NMR titration profile: (A) Boc-NH at N’- end 08/7/8/9/10/11; (B) Adjacent amide NH at C'-end @f9/11/10
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of intramolecular hydrogen bonded proton (amide JNiHAi
CDCl; reportedly exhibit slight downfield/upfield shift
(deshielded/shielded region) or unchanged with eetal
addition of (DMSO-¢), which is strong hydrogen bond

Tetrahedron

NMR peak of hybrid peptid&/9/11, which is marginally higher
than that of8 (Tr-aeg-Prg and 5 (Tr-aeg. These significant
changes in*®C-NMR peak of hybrid peptide7/9/11 also
substantially suggest the involvement of tropongrbonyl

acceptor® Whereas the chemical shift of exposed or non{C=0) in hydrogen bonding, possibly with adjacemtide N-H

hydrogen bonded amide N-H protons exhibit significa
downfield shift (desheilded region) with sequentaldition of

DMSO-¢; to the same NMR sample, because of
bonding with strong hydrogen bond acceptor soN2MSO-d;.
We also performed similar NMR titration experimentsth
synthesized peptides, before that the chemical &)ifof amide
NH, The carbamate NH, and troponyl carbonyl (C=©didtri

(n+1). In further search of troponyl carbonyl gro@g=0)
participation in hydrogen bonding with amide adjgcé-H,

hydrogemnce again solvent dependéi@-NMR spectra of hybrid peptide

11 were recordedn following solvent systemaprotic polar
solvents CDGl (100%), DMSO-¢ (100%) and mixture of both
solvent CDCJ:DMSO-d; (3:1, 1:1). All these spectra are provide
in SI, while extended regions> (70-200 ppm) of*C-NMR

peptides 7-11) were extracted from their respective spectrumspectra of peptiddl is given in Figure 5, where the chemical

and given in table 1. Thereafter, a series of praipectra of
hybrid/control peptides7¢11) were recorded with volume wise
sequential addition of DMSOgsdsee Sl). For a representation,
herein only extended regions (5-8 ppm) of sequefiiaNMR
spectra of hybridli-peptide7 are depicted (Figure 3). Further in,
the NMR titration profiles as plot of chemical gh{ppm) vs

shift all carbonyl groups of that peptide are appda The
chemical shift of troponyl carbon peak (ca ~180 pfhybrid
peptidell is more desheilded in CDglin respect to DMSOl
which also indicates the formation of intramolecufeydrogen
bonding by troponyl carbonyl is better in CQ@1 comparison to
DMSO-d;. However the chemical shift of troponyl carbonyl

DMSO-d; volume (L) are generated for both carbamate NHcarbon NMR peak in mixture of solvent CRCIMSO-d; (3:1

(Figure 4A)/ amide NH (Figure 4B) of hybrid peptiddé and
other peptides&11). The titration profile of hybrid peptid@
indicates the significant downfield shift (deshialgl effect) in
cabamate N-H proton peald 6.5-5.67, Figure 4A), while very
little downfield shift (deshielding effect) in amd@d\-H peak §
7.8-7.74, Figure 4B). These NMR titration resulbs peptide 7
advocate that only amide N-H is involved in intrdecular
hydrogen bonding even though one carbamate N-hdgadble.
In case of control peptid#0, NMR titration profiles for both
carbamate (Figure 4A) and amide-NH (Figure 4B) shapid
downfield shift (deshielding effect) with sequehtiddition of
DMSO-d;, such a® +0.47 ppm (aprox) downfield shift of amide
N-H with addition of 40uL of DSO-g; (see Sl, Table S13). This
titration results clearly show that no intramoleczuhydrogen
bonding is formed in non-hybrid dipeptidd0f. The NMR
titration experimental results performed with othbybrid
peptides 8/9/11 with addition of DMSO-[Q in CDCkL NMR
sample. The NMR titration profiles for amide/carlzenN-H of
other hybrid peptides8/9/11 are provided in Figure 4. The
titration profiles for carbamte N-H 08/9/11 show a similar
shielding effect trend as of hybrid peptide 7 (Feg4A). The
titration profiles for amide N-H of peptide®/11 exhibit
desshielding effect (downfield shift) tendency imide NH of
9/11 as similar to dipeptidd (Figure 4B). Structurally hybrid
peptide 8) does not contain amide N-H so there is no amide N
titration profile observed. Overall the comaparatiNMR
titration studies of hybriddi/tri-peptide {/9/11) with control

and 1:1) are almost same as in DMSQhis would be possible
due to disturbance of intramolecular hydrogen bogdbetween
troponyl carbonyl and amide N-H, in CDCWith DMSO-d.
Because DMSO-dis also known as strong hydrogen bond
acceptor solvent and form strong intermolecular rbgdn
bonding with exposed amide N*¥iHowever the chemical shift
of *C-NMR peak (B 126.0 ppm) for Boc carbonyl group remain
same in both CDGland DMSO-d solvent (Figure 5). Hence the
results of *C-NMR studies further support the involvement of
troponyl carbonyl group in hydrogen bonding withidenN-H
aprotic polar solvent as CDCI

Troponyl carbonyl

H Il

: h M I

13C- NMR in DMSO-d, + CDCly (1:1)

L.

I !

G \
] im

‘ 13C- NMR in DMSO-d, + CDCl (1:3)
|

13C- NMR in DMSO-d,
|

Al "

13C- NMR in CDCly

LA

200 195 190 185 180 175 170

N Ao

165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 % 8 8 75
1 (ppm)

peptide10 are strongly suggested that only adjacent amide N- Figure5. **C-NMR of tripeptidell (Expanded region) in DMSO-d6 and

H’s, rather than carbamate Nidf 7/9/11 are only involved in
intramolecular hydrogen bonding. This intramolecuigdrogen
bonding participation by amide N-H of hybrid pegti¢/9/11)

may take place with troponyl carbonyl grouplefaegresidue of

CDCl

To end with, a DFT calculation was performed withe oof
hybrid dipeptided to acquire geometrically optimized structure in

peptide {/9/11), even though the presence of their carbamatgas phase by using with B97 TURBOMOIsBftware®* As

carbonyl group. In further the involvement of trogbcarbonyl
group of hybrid peptide were investigated in hydmodonding
with adjacent amide NH. We, therefore, carefullydd the*’C-
NMR spectra of hybrid peptid&/g8/9/11) and Tr-aeg derivative
5, especially to troponyl carbonyl carbon peak (SHe Ehemical
shift values of troponyl carbonyl carbon @f-aeg containg
compounds 5/7/8/9/11 are given in Table 1. Herein the
deshielding effects are observed in troponyl cangbaarbon

resultant, the optimized structure 6fis depicted in Fig. 6.,
which also indicates the conformation of troporgdtmonyl group
as pointing to th&’-end of peptide9, like monomel5 and other
peptides. The theoretical studies realted file.pdll” for peptide
9 is provided separately (see Sl). In addition, tineoretically
optimized structure oB, show following strong non-covalent
hydrogen bond interaction: C=0O---4%€ (2.41A); nC----H-
C(2.47R); C=0----H-C (2.05A); and C=0----H-N (2.08AThese
interactions further support the formation of hygkn bonding



between Troponyl carbonyl and adjacent, (1“+amide NH. Then  Synthetic procedure of Tr-aeg monomBy: (A solution of 2-
the formation of 8-membered ring hydrogen bond fnd@i  tosyloxy tropone %) (1.2g, 4.34 mmol) in ethanol (25 mL) was
reasonably possible, which may provide the intergshelical refluxed in presence of Ethyl (2-N-Boc-aminoethyljcinate @)
structure in longer peptide. The theoretical foddipattern of (3.2 g, 13.04 mmol) for 48 hours. After completiohreaction,
hybrid peptide9 also predicted from backbone dihedral andgles which was monitored by thin layer chromatography.@J,
(phi) andy (psi) of peptide. Since peptide backbone dihedral as reaction mixture was cooled down to room tempeeagurd then
¢ andy are being used to generate Ramachandran ¢phas, v, concentrated to dryness under vacuum. The drigd sehction
which predict the secondary structure of peptidd protein® residue was re-dissolved in DCM (50 mL) and waskéih
With geometrically optimized structure of hybridppiele 9, the  water (50ML) ,at least three times, followed bynlersolution (10
backbone dihedral angles és= -76.0, 61 = 170.8; 62= 89.3; mL) using separating flask. The DCM layer was keper
03=81.9, y=92.7 are calculated and then generate aNaSQ, for 30 min and then concentrated to dryness under
Ramachandran plot with help of software GNUPLOT &F).  vacuum. The concentrated reaction mixture was stbjer
The coordinate (-76°092.7) of ramachandran plot for pepti@e  purification by column chromatographic methods. THEhe
indicates the formation gf-sheet ors-turns type of secondary major component of reaction residue was purifiethvsiolvent
structure, which is really provide encouraging infation about system ethylacetate:hexane (1:3) and then chaimede as
development of conformationally defined useful fdgmimics.  desired products (1.2 g, 80%) by'H/C-NMR and mass
spectrometric methodH NMR (400 MHz, CDCI3)% (ppm) 7.12

— 6.96 (m, 2H), 6.92 (d, J = 11.8 Hz, 1H), 6.7556(B, 2H),

‘a/“r 5.60 (s, 1H), 4.20 (s and g, 4H), 3.59 (t, J =16z] 2H), 3.45 —
e | . 3.31 (m, 2H), 1.40 (s, 9H), 1.26 (t, J = 7.1 Hz,)3HC-NMR
N " (101 MHz, CDC)): & (ppm) 181.69, 170.41, 157.93, 156.21,
R 135.62, 133.92, 133.78, 125.10, 115.79, 79.37, %15B.57,
o < 1 52.37, 37.57, 28.33, 14.11. HRMS (ESI-TOF) m/z: H%
;,»i—_'_; v a calcd. for GgH,gN,O5 351.1914, found 351.1921.
w <4y,
e u w oo Acknowledgment

CB thank to UGC & NISER for research fellowship.igbtudied
was supported by Grant-in Aid from NISER, Departimeh
Atomic Energy (DAE)-India. We also thank Dr. Himans
Biswal for DFT calculation.

¢ o

S

$=-76.0°, 0, = 170.3% 6, = 89.3°; 0, =81.9°; y =92.7°

a. 2.41A; b. 2.47A; c. 2.054; d.2.083
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1. General:
Materials and instrumentation: All required materials were obtained from commercial suppliers

and used without further purification. Dry dichloromethane was freshly prepared by distilling
over KOH and Calcium hydride sequentially. Reactions were monitored by thin layer
chromatography, visualized by UV and Ninhydrin. Column chromatography was performed in
100-200 mesh silica. NMR spectra were recorded on Bruker AV-400 (*H: 400 MHz, *3C: 100.6
MHz). 'H and *C{1H} NMR chemical shifts were recorded in ppm downfield from tetramethyl
silane. Splitting patterns are abbreviated as: s, Singlet; d, doublet; dd, doublet of doublet; t,
triplet; q, quartet; dq, doublet of quartet; m, multiplet. Mass spectra were obtained from Bruker
micrOTOF-Q Il Spectrometer.

2. Experimental procedure:

1. Syntheses of Ethyl-(2-N-Boc-aminoethyl)troponyl)glycinate (5): To a solution of 2-
tosyloxy tropone (2) (1.29, 4.34 mmol) in ethanol (25 mL) was added Ethyl (2-N-Boc-
aminoethyl) glycinate (4) (3.2 g, 13.04 mmol) and refluxed. Reaction was monitored using thin
layer chromatography (TLC) and found the completion of reaction after two days. After cooling
to room temperature, reaction mixture was concentrated under vacuum on rota vapour. The
reaction residue was redissolved in DCM (50 mL) and washed with water (50mL) three times
and then with brine solution (10 mL) by using separating flask. The organic layer was kept over
Na,SO, for 30 min and then concentrated to dryness under vacuum. The concentrated residue
was subjected for purification on silica gel by column chromatographic methods. The major
component of reaction residue was purified with solvent mixture Ethylacetate:Hexane (1:3) and
characterized as desired product (1.2 g, 80%) by *H/**C-NMR and Mass spectrometric method.
'H NMR (400 MHz, CDCls) & (ppm) 7.12 — 6.96 (m, 2H), 6.92 (d, J = 11.8 Hz, 1H), 6.75-6.55
(m, 2H), 5.60 (s, 1H), 4.20 (s and g, 4H), 3.59 (t, J = 6.1 Hz, 2H), 3.45-3.31 (m, 2H), 1.40 (s,
10H), 1.26 (t, J = 7.1 Hz, 3H). *C-NMR (101 MHz, CDCls): & (ppm) 181.69, 170.41, 157.93,
156.21, 135.62, 133.92, 133.78, 125.10, 115.79, 79.37, 61.15, 53.57, 52.37, 37.57, 28.33, 14.11.
HRMS (ESI-TOF) m/z: [M+H]" calcd. for C1gH26N,05 351.1914, found 351.1922. Summary of
X-ray data of monomer 5 is deposited to the Cambridge Structural Database (CSD) and their
deposition number CCDC 975954. From X-ray analysis revealed the unit cell parameters: a
11.1125(4) b 15.3001(7) ¢ 12.2394(5) P21/c and molecular formula C1gH26N2Os of monomer 5.
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2. Syntheses of dipeptide (7): A solution of N-(2-amioethyl)troponyl)glycine (6) (200 mg, 0.62
mmol) in anhydrous dichloromethane (10 mL) was cooled to 0 °C, and then EDC-HCI (142 mg,
0.744 mmol) was added, stirred for 5 min at 0°C. Then L-Phenylalanine methyl ester
hydrochloride (160 mg, 0.744 mmol) and Triethylamine (0.26 mL, 1.86 mmol) was added
together. This reaction mixture was continued to stirrer at room temperature (rt) for overnight.
After completion of reaction, the reaction mixture was concentrated to dryness under reduced
pressure. Concentrated reaction residue was re-dissolved in DCM (30 mL) and then washed with
water thrice (3*30mL) followed by saturated sodium bicarbonate (20 mL) by following
extraction method. The washed organic layers were combined together and concentrated under
reduced pressure and then loaded on silicagel column for purification by EtOAc/Hexane to
obtain desired product (7). The major component was isolated with EtOAc/Hexane (30:70) and
characterized as desired product (120 mg, 40%) by *H/**C-NMR and Mass spectrometric
method. *H NMR (400 MHz, CDCls) & (ppm) 7.76 (d, J = 7.9 Hz, 1H), 7.24 — 7.06 (m, 7H), 7.05
—6.92 (m, 2H), 6.72 (dd, J = 21.4, 13.0 Hz, 2H), 5.59 (s, 1H), 4.78 (dd, J = 14.0, 6.7 Hz, 1H),
3.93 (d, J = 16.7 Hz, 1H), 3.88 — 3.75 (m, 1H), 3.72 — 3.60 (m, 3H), 3.55 — 3.37 (m, 1H), 3.36 —
3.12 (m, 4H), 3.05 — 2.93 (m, 1H), 1.38 (s, 9H). **C NMR (101 MHz, CDCls): & (ppm) 182.52,
171.78, 169.39, 157.22, 156.02, 135.87, 134.34, 133.79, 129.02, 128.91, 128.27, 126.75, 126.38,
118.09, 79.02, 55.60, 53.25, 52.12, 51.18, 37.65, 37.46, 28.19. HRMS (ESI-TOF) m/z: [M+H]+
calcd for CpsH33N306484.2442, found 484.2486.

3. Syntheses of dipeptide (8): Similarly the dipeptide 8 was synthesized from Tr-aeg (6) and
L-prolime methyl ester . (150 mg, 41%)."H NMR (400 MHz, CDCls) 6 7.15 — 6.98 (m, 3H), 6.92
(dd, J = 11.7, 5.5 Hz, 1H), 6.78 (t, J = 11.6 Hz, 1H), 6.70 — 6.58 (m, 1H), 5.91 — 5.77 (m, 1H),
4.72 (d, J = 17.2 Hz, 1H), 4.49 (dd, J = 8.4, 4.0 Hz, 1H), 4.20 (t, J = 13.9 Hz, 1H), 3.90 - 3.81
(m, 1H), 3.79 (s, 1H), 3.74 (dd, J = 11.2, 5.9 Hz, 1H), 3.69 (s, 3H), 3.64 (dd, J = 12.7, 5.5 Hz,
1H), 3.55 (dt, J = 17.1, 8.8 Hz, 2H), 3.40 (d, J = 5.7 Hz, 3H), 2.35 — 2.27 (m, 1H), 2.27 — 2.15
(m, 2H), 2.13 — 1.94 (m, 4H), 1.44 (d, J = 19.3 Hz, 9H). *C NMR (101 MHz, CDCls): & (ppm)
181.71, 172.49, 167.89, 157.49, 156.37, 135.66, 134.02, 133.72, 124.99, 116.67, 79.07, 58.92,
53.37,52.49, 52.26, 46.21, 37.87, 28.83, 28.42, 24.89, ( cis and trans isomers are existing around
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secondary amide bond in 1:4, not predicted due to overlapping signals). HRMS (ESI-TOF) m/z:
[M+H]" calcd. for CyH3;N3Og 456.2105, found 456.2123.

3. Syntheses of dipeptide (9): Similarly the dipeptide 9 was synthesized from Tr-aeg (6) and L-
Isoleucice methyl ester. (45 mg 36%) *H NMR (400 MHz, CDCls) & in ppm 7.90 (d, J = 8.2 Hz,
1H), 7.24 —7.12 (m, 1H), 7.11 - 7.00 (m, 2H), 6.92 — 6.81 (m, 1H), 6.79 — 6.70 (m, 1H), 5.65 (s,
1H), 4.65 — 4.43 (g, 1H), 4.18 — 4.05 (m, 1H), 3.72 (d, J = 5.3 Hz, 1H), 3.69 (s, 3H), 3.63 — 3.50
(m, 1H), 3.47 — 3.24 (m, 4H), 2.32 (dd, J = 17.1, 9.6 Hz, 1H), 2.02 — 1.85 (m, 1H), 1.52 (dd, J =
1.0, 6.1 Hz, 1H), 1.47 — 1.34 (m, 9H), .21 — 1.12 (m, 1H), 0.96 — 0.82 (m, 6H). ( cis and trans
isomers are existing around carbamate amide bond in 1:4, not predicted due to overlapping
signals). *C-NMR (101 MHz, CDCls) & in ppm 183.22, 172.43, 169.79, 157.71, 156.27, 136.95,
136.41, 136.18, 135.01, 133.83, 132.73, 127.70, 119.33, 113.09, 79.21, 64.92, 56.65, 56.25,
52.06, 51.39, 37.81, 37.28, 28.33, 24.94, 22.64, 15.68, 14.24, 11.53. ( cis and trans isomers are
existing around carbamate amide bond in 1:4). HRMS (ESI-TOF) m/z: [M+H]" calcd. for
C23H35N305 4722418, found 472.2428.

4. Syntheses of dipeptide (10): Similarly the dipeptide 10 was synthesized from N-Boc glycine
and L-Phenylalanine methyl ester. '"H NMR (400 MHz, CDCls) & 7.36 — 7.17 (m, 3H), 7.16 —
7.03 (m, 2H), 6.59 (s, 1H), 5.14 (s, 1H), 4.94 — 4.82 (m, 1H), 3.78 (dd, J = 18.7, 5.5 Hz, 2H),
3.71 (s, 3H), 3.20 — 3.06 (m, 2H), 1.44 (s, 9H).**C NMR (101 MHz, CDCl3) & in ppm 171.70,
169.12, 155.91, 135.61, 129.17, 128.56, 127.09, 80.16, 77.00, 53.04, 52.29, 44.10, 37.83, 28.22.
HRMS (ESI-TOF) m/z: [M+H]" calcd. for C47H24N,0s 337.1758, found 337.1723.

5. Syntheses of tripeptide (11): Similarly the tripeptide 11 was synthesized from Tr-aeg (6) and NH,-Gly-
Phe-OMe. (138 mg,41%). ‘H NMR (400 MHz, CDCl3) & 7.91 (s, 1H), 7.29 (d, J = 7.7 Hz, 1H), 7.27 —
7.16 (m, 3H), 7.15 — 7.01 (m, 4H), 6.94 (dd, J = 25.0, 10.4 Hz, 2H), 6.81 — 6.68 (m, 1H), 5.55 (s, 1H),
4.81 (dd, J = 13.4, 6.5 Hz, 1H), 4.08 (dd, J = 16.7, 6.2 Hz, 1H), 3.97 — 3.73 (m, 3H), 3.75 — 3.54 (m, 4H),
3.53-3.34 (m, 2H), 3.29 (d, J = 5.3 Hz, 2H), 3.09 (qd, J = 13.8, 6.4 Hz, 2H), 1.39 (s, 9H). *C NMR (101
MHz, CDCls) & in ppm 182.74, 172.02, 170.96, 169.07, 157.65, 156.18, 136.39, 136.00, 135.01, 134.05,
129.19, 128.48, 126.97, 118.83, 79.37, 56.85, 53.42, 52.13, 42.90, 37.58, 37.09, 28.30. HRMS (ESI-

TOF) m/z: [M+H]" calcd. for CpgH3sN4O7 541.2657, found 541.2565.
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3. 'H-NMR spectrum of 2:
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4. *H-NMR spectrum of monomer 5:
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5. *C-NMR spectrum of monomer 5:
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6. Mass spectrum of dipeptide 5:

HRMS (ESI-MS-Tof)
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7. *H-NMR spectrum of dipeptide 7:
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8. *C-NMR spectrum of dipeptide 7:
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9. Deuterium exchange *H-NMR experiment of dipeptide 7:

5 mg of dipeptide was dissolved in 0.5 ml of CDCls, to this three drops of D,0O was added and recorded NMR after 5

hrs.
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Figure S6: *H-NMR of dipeptide (Boc-Tr-aeg-Phe-OMe, 7) in CDCl; and CDCl3+D,0.
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10. Mass spectrum of dipeptide 7:

HRMS (ESI-MS-Tof) (7)
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11. *H-NMR spectrum of dipeptide 8:
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Figure S7: *H-NMR of dipeptide (Boc-Tr-aeg-Pro-OMe). (* hexane peaks)

S14



12. *C-NMR spectrum of dipeptide 8:
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13. Mass spectrum of dipeptide 8:

HRMS (ESI-MS-Tof)
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14. *H-NMR spectrum of dipeptide 9:
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Figure S9: 'H-NMR of dipeptide (Boc-Tr-aeg-1le-OMe).

S17



15. *C-NMR spectrum of dipeptide 9:
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16. Mass spectrum of dipeptide 9:
HRMS (ESI-MS-Tof)
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17.'H-NMR spectrum of dipeptide 10:
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Figure S11: *H-NMR of dipeptide (Boc-Gly-Phe-OMe).
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18. *C-NMR spectrum of dipeptide 10:
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Figure S12: *C-NMR of dipeptide (Boc-Gly-Phe-OMe).
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19. Mass spectrum of dipeptide 10:
HRMS (ESI-Mass-Tof) of

Display Report

Analysis Info

Analysis Name

Method

Pos_tune_low.m

Sample Name

Comment

Acquisition Date

D:\Data\DEC-2013\NKS'\20122013_NKS_CB-G_Phe.d

Operator
Instrument

12/20/2013 2:35:18 PM

RAJKUMAR
micrOTOF-Q Il 10337

Acquisition Parameter
ESl
Not active Set Capillary
Set End Plate Offset -500 vV
Set Collision Cell RF 130.0 Vpp

Source Type
Focus

Scan Begin
Scan End

50 m/z

3000 m/z

lon Polarity

Positive
4500 V

Set Nebulizer
Set Dry Heater
Set Dry Gas
Set Divert Valve

0.4 Bar
180 °C
4.0 l/min
Waste

Intens. |
x10°

1.251

1.001

0.751

0.50+

0.254

120.0801

|

337.1723
(M+H)

N

281.1105

L

692.3137

524.2315

‘ln k L Ill

+MS, 0.1-0.2min #(3-14)

0.00

"100

.200.

300 400

's00° 600 700 800

900 1000 miz

Intens.
x109
1.25

1.00
0.757
0.50
0.259

0.00

3371723

+MS, 0.1-0.2min #{3-14)

20007

1500+

10001

337.1758

| .

C17H24N205, M+nH ,337.18

330

335

340 345

350

355 miz

Bruker Compass DataAnalysis 4.0

printed: 1/4/2014 1:05:31

PM

Page 1 of 1



20. 'H-NMR spectrum of tripeptide 11:
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21. *C-NMR spectrum of tripeptide 11:
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22. Mass spectrum of tripeptide 11:

HRMS (ESI-Mass-Tof)
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23. 1H-1H COSY and NOESY 2D NMR spectrum of monomer 5:
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24. 'H-"H COSY 2D NMR spectrum of dipeptide 7:
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25. 'H-"H NOESY 2D NMR spectrum of dipeptide 7:
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26. HSQC 2D NMR spectrum of dipeptide 7:
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Table S2:

'"H NMR “C NMR
6.72 CHis 118.09
6.72 CHy 126.68
7.05 —-6.92 (m) CHis 133.79
7.05-6.92 (m) CH 134.34
7.24 - 7.06 (m) CHy 135.87
7.24 —7.06 (m) Phe (meta) | 129.02
7.24 —7.06 (m) Phe (ortho) | 128.91
7.24 —7.06 (m) Phe (para) | 126.75
5.59 (s) Carbamate

NH
7.76 (d) Amide NH
3.55-3.37,3.36 — 3.12, (m) Met; 37.46
3.36 — 3.12, (m) Met, 51.18
3.93, 3.81 (d) Mets 55.60
3.05-2.93 (m), 3.36 — 3.12 (m) | Met, 37.65
4.78 (dd) CH, 53.25
1.38 (s) tBu, Cigy 28.19
3.7 (s) Me, Cpe 52.12
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27.'H-'H COSY 2D NMR spectrum of dipeptide 8:

l I‘\/[el]
Met,
CH Mﬂt_:, M t | [j l" Meti
Met, 7| @ ] I
3 M
Ni ol ) il
A \ I AR LT
BV W AAN~ J‘h"‘!‘u‘u’\_,‘"“”l IL_/-'-I-I.._NU\J‘\__—'\-. ;U" Vi M M o,
o
(=] - = 7
o [
0
o
o
» = £ 0
.U] - av L,__;__‘
|
P z 2z
o 3
=z - = &
= 3 ==
@ ° ===
(4] pe ;‘i ,:d"——%
w
=Y
N &_
0
. 2
® . \{35
| T | | T | | T \
3 o o o - - © © P T
'5 ° 0 o n ) 0 ) 0 =3 '5

S32

HT HT

€16 dO

ASOD

€102800¢€



28. 'H-'H NOESY 2D NMR spectrum of dipeptide 8:
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29. HSQC 2D-NMR spectrum of Dipeptide 8:
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30. 'H-'H COSY 2D-NMR spectrum of tripeptide 11:
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31. 'H-'H NOESY 2D NMR spectrum of tripeptide 11:
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32. HSQC 2D NMR sptectrum of tripeptide 11:
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Table S5: COSY and NOESY assignements of tripeptide 11:

COSY NOESY interaction
interaction

CHys Met1’ Met,

CHi

CHss

CHie

CHy

Phe

Carbamate NH | Met; Met;

Gly NH Met, Met,

Phe NH CH, CH,

Met; CHis

Met, CHis

Met;

Met4

Mets Phe(meta)

CH, Mets

tBu

Me

Table S6: HSQC assignements of tripeptide 11:

'HNMR “C NMR
6.81-6.68 CHy 126.89
6.94 CHys, CHig 118.83, 135.01
7.15-7.01 CHy, CHgs 136.00,134.06
7.15-7.01 Phe (meta) 129.23
7.27 —-7.16 (m, 3H) Phe (ortho) 128.42
7.27 -7.16 (m, 3H) Phe (para) 127.04
5.49 (s) Carbamate

NH
7.29 (d) Phe (i+2) NH
7.91 () Gly (i+1) NH
3.29 (d) Met; 37.09
3.53-3.34 (m) Met, 52.06
3.97-3.73 (m) Met; 56.85
4.08 (dd),3.97 — 3.73 (m) Met, 42.90
3.09 (qd) Mets 37.93
4.81 (dd) CHa 53.42
1.39 (s) tBu 28.30
3.75-3.54 (m) Me 52.20
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33. NMR titration studies of 5/7/8/9/10/11:

NMR titration studies of dipeptide (Boc-Tr-aeg-Phe-OMe, 7) in CDCl3; with DMSO-d6:

(5 mg of dipeptide was dissolved in CDCl;, NMR was recorded at 297 K with out DMSO-d6 and 5 pl of
DMSO-d6 was added at each addition and recorded NMR. All spectra were calibrated to tetramethy
silane. Changes in chemical shift values of Nitrogen attached protons are given in TableS7)

Boc,NH
ArpictesiNK ‘ 'H-NMR in/CDCl, + 40p} DMSO-—dj '
—__.l_.._,-.J N l

| 'H-NMR in CDCI, + 3541 DMSO—g|4
__.A_A_‘J A [}

l 'H-NMR in CDCl, + 301 DMSO—,

l

Hiii

e —— s

'H-NMR in CDCI; + 251l DMSO—
Jl _— =/, '

'H-NMR in CDCl; + 20ul DMSO—d

'H-NMR in CDCl; + 15ul DMSO—¢

e —ce—r c—__

'H-NMR in CDCI; + 10ul DMSO,
N

'H-NMR in CDCl; + 5ul DMSO
N

|

i

'H-NMR i CDCl,

T T
0.5 0.0

w
wu
w
=]
N
w
N
=]
]
-
=]

T T T T T T T T
8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0

f1 (ppm)

Table S7:
No | Volumeof | 6NH ONH

DMSO - d6

(in pl)
1 0 7.72 5.51
2 5 7.72 5.55
3 10 7.74 5.56
4 15 7.75 5.65
5 20 7.77 5.68
6 25 7.78 5.72
7 30 7.80 5.75
8 35 7.81 5.79
9 40 7.82 5.82
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NMR titration studies of monomer (Boc-Tr-aeg-OEt, 5) in CDCl; with DMSO-d6:

(5 mg of dipeptide was dissolved in CDCl3;, NMR was recorded at 297 K with out DMSO-d6
and 5ul of DMSO-d6 was added at each addition and recorded NMR. All spectra were calibrated
to tetramethy silane. Changes in chemical shift values of Nitrogen attached protons are given in
Table S8)

'HJ{MR in CDCly

+
9.0

T
8.5

8.0

™ T T ™

-
7.5 7.0 6.5 6.0 5.5 5.0 4.5
1 (ppm)

T T T T T T
4.0 3.5 3.0 25 2.0 1.5 1.0

—_-—'ﬁ_L—AJ Boc NH
LTEG < No | Volume of | 8NH
J‘ —— DMSO-d6 | (mono
T (in pl) mer)
Ul J@om DMSO-d 1 0 5.64
2 5 5.67
4_lj 25ul DMSO-d, 3 10 570
JJUA 201 DMSO-d, 4 15 5.73
5 20 5.77
| 1511 DMSO-d, 6 25 579
Al()pl DMSO-d, ’ 30 5.83
e 8 35 5.86
| sulDMSO-d, 9 40 5.90

NMR titration studies of dipeptide (Boc-Tr-aeg-Pro-OMe, 8) in CDCl; with DMSO-d6:

(5 mg of dipeptide was dissolved in CDCl3, NMR was recorded at 297 K without DMSO-d6 and

5 ul of DMSO-d6 was added at each addition and recorded NMR. All spectra were calibrated to
tetramethy silane. Changes in chemical shift values of Nitrogen attached protons are given in

TableS9)

‘l qu: NH4oul DMSO-d, ’\f ‘ .! " TableS9:

IW'M“h " [No [ Volume of | 6NH
1M ‘! “L - DMSO-d6 | (dipeptid

WIM ‘ & . (in ul) e,14)
Iesy N § e —
" W e
N N v R =t
L9 |40 6.03

T T T T T T
8.5 8.0 7.5 7.0 6.5 6.0

5.5 5.0 a5 4.0
f1 (ppm)

35 3.0 2.5 2.0

“w

5S40

o J
7]

s J
°




NMR Titration studies of tripeptide (Boc-Tr-aeg-Gly-Phe-OMe, 9) in CDCl; with DMSO-d6:

(8mg of tripeptide was dissolved in CDCl;, NMR was recorded at 297K without DMSO-d6 and
5ul of DMSO-d6 was added at each addition and recorded NMR. All spectra were calibrated to
tetramethy silane. Changes in chemical shift values of Nitrogen attached protons are given in
TableS10)

Amide NH i o D;"Sc(n;j: | \ |
3511 DMSO-, '\
-
=
.
-
i
|mes

30pul DMSO-d ‘M
25ul DMSO-d '
N 20pul DMSO—d; '
15u1 DMSO-d L

T T T T T T T T T
9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0

W oom)

Table S10:
No | Volumeof | 6NH | 6NH

DMSO - d6

(in pl)
1 0 7.94 | 5.48
2 5 7.94 | 5.49
3 10 7.94 |5.49
4 15 7.93 | 5.49
5 20 7.92 | 5.52
6 25 7.93 | 5.53
7 30 7.92 | 5.53
8 35 7.92 | 5.53
9 40 7.92 | 554
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NMR titration studies of dipeptide (Boc-Tr-aeg-lle-OMe, 9) in CDCIl3; with DMSO-d6:

(5 mg of dipeptide was dissolved in CDCl3, NMR was recorded at 297 K with out DMSO-d6 and
5 ul of DMSO-d6 was added at each addition and recorded NMR. All spectra were calibrated to
tetramethy silane. Changes in chemical shift values of Nitrogen attached protons are given in
TableS11)

Amide NH Boc NH
| 401l DMSO—d, '~ L
A JM ;é_u_l D_ MS0—d, w ' | -
1 3l DMSO—d, ‘ » | |
N 231 DMSO—d, ' o
2l DMSO-d, | v |
;o el 3 | O, * -
1l DMEO-J | “

ipl DE/ISO—d(, " "‘
'H-NMR in CDCI, \' M ' -
A 1 S

T T T T T T T T T T T T T T T T T T T T
9.5 9.0 85 8.0 7.5 7.0 6.5 6.0 5.5 50 45 40 35 30 25 20 1.5 1.0 0.5 0.0
)

Table S11:

No | Volumeof | &6NH | 6NH

DMSO - d6

(in pl)
1 0 7.89 | 5.65
2 5 7.89 | 5.68
3 10 7.90 | 5.72
4 15 7.90 | 5.76
5 20 7.91 | 5.79
6 25 7.90 | 5.82
7 30 7.91 | 5.85
8 35 7.92 | 5.88
9 40 7.92 | 591
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NMR titration studies of dipeptide (Boc-Gly-Phe-OMe, Controle 10) in CDCl3; with DMSO-d6:

(5 mg of dipeptide was dissolved in CDCl3, NMR was recorded at 297 K with out DMSO-d6 and
5 ul of DMSO-d6 was added at each addition and recorded NMR. All spectra were calibrated to
tetramethy silane. Changes in chemical shift values of Nitrogen attached protons are given in

TableS12)
Amide NH g N
40u1,’"DM50—% 1
bsiowsoa| | '
30,’111 DMSO-d, k “ '
5ul DMSO—d, ’\ A
Oul DMSO—d, A A l
ul DMSO-d, A A 'l
L}RplDMSO—d(,
ﬂplDMSO—d(,
[NMR in CDCl, I
A 11 N .JLL_,. 4l_
9'5 9'0 S‘S S’O "'5 7‘0 6'5 6‘0 5‘5 5'0 4‘5 -;0 5 3’0 0 1.3 l'O 05 00
f1 (ppm)
Table S12:
No | Volume of | 6NH | 6NH
DMSO — d6
(in pi)
1 0 6.63 | 5.18
2 5 6.74 | 5.28
3 10 6.84 | 5.37
4 15 6.90 | 5.45
5 20 6.98 | 5.52
6 25 7.03 | 5.58
7 30 7.11 | 5.65
8 35 7.16 | 5.70
9 40 7.20 | 5.75
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34. 'H-NMR titration results of monomer (5) and peptides (7/8/9/10/11) with
DMSO-dG:

Table S13: NMR titration results

Sr. No dipeptide/ Type of NH only 40.0 uL A(ppm)”
Monomer CDCl; (ppm) DMSO-ds
in CDCl3
(ppm)
1 7 Phe (i+1) Amide NH 7.72 7.82 +0.10
2 7 Carbamate NH 5.51 5.82 +0.31
3 11 Gly (i+1) Amide NH 7.94 7.92 -0.02
4 11 Phe (i+2) Amide NH 7.29 Not predicted
5 11 Carbamate NH 5.48 5.54 +0.06
6 8 Carbamate NH 5.84 6.03 +0.19
7 5 Carbamate NH 5.64 5.90 +0.26
8 9 lle (i+1) Amide NH 7.89 7.92 +0.03
9 9 Carbamate NH 5.65 591 +0.26
10 10 (controle) Phe (i+1) Amide NH 6.63 7.20 +0.57
11 10 (controle) Carbamate NH 5.18 5.75 +0.57

*A: difference between column 5 and 4, #:; Exact chemical shift change with the addition of DMSO-d6 is not determined due to
overlap of signal with aromatic region but found that it is showing upfield shifting.

35. Proposed Hydrogen bonding in peptides

H Z “H P2 f
"'~~x~--o TX0”NT ome (g © NM om kn/N /°
(i+8) m . OMe ik
(i+8) A\ '\( 0 OMe
o o)
@®) ™ ) (11)

""" hydrogen bonding
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36. *C-NMR of tripeptide (11) in CDCI; and DMSO-d6 solvent pairs:

Tropony! carbonyl 13C- NMR in DMSO-d6 fl CDC, (1:1
Fa

13C- NMR in DMSO-d6 CDCI, (3:1

i lL || 1 ]

13C- NMR in DMSO-d6

13C- NMR in CDCI,

T T T T T T T T T T T T T T T T T T T
200 190 180 170 160 150 140 130 120 110 ¢ 1(00 ) 90 80 70 60 50 40 30 20 10
1 (ppm

Expanded region of above given spectra:

Troponyl 1
toporyl.cathon 13C- NMR in DMSO-d6 + CDCI, (1:1)

*

13C-NMR in DMSO-d6 + CDCl; (3:1)

13C- NMR in DMSO-d6

T T T T T T T T T T T T T T T T
200 195 190 185 180 175 170 165 160 155 150 145 14’0 ( 135) 130 125 120 115 110 105 100 95 90 85 80 75
1 (ppm
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37. ®C-NMR and *H-NMR of monomer (5) and peptide (7/8/9/10/11):

13C-NMR of monomer (5) and
peptides (7/8/9/10/11) in CDCI;

10 (Control)
1l i lm.‘u,

5 N L L Jl
I | L1

L B o o o o e RS R R R B e e N RN e
200 180 160 140 120 100 80 60 40 20
Chemical Shift (ppm)

Figure S15: Stacked *C-NMR of Tr-aeg monomer and peptides (5/7/8/9/10/11), Which is showing down
field shifting of tropone carbonyl.

T T T T T T T T T T T T T T T T T
8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

Figure S16: Stacked *H-NMR of Tr-aeg monomer and peptides (5/7/8/9/10/11) in CDCls, Which is
showing down field shifting of i+1 amide NH with respect to control (10) amide NH.
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38. Crystal data of monomer 5:
Table S12. Crystal data and structure refinement for agtr : (CCDC file N0:975954)

Identification code agtr

Empirical formula C18H26N205

Formula weight 350.41

Temperature 296(2) K

Wavelength 0.71073 A

Crystal system, Monoclinic

space group P2(1)/c

Unit cell dimensions a=11.1125(4)A o =90"

b=15.3001(7)A B =112.346".

c=122394(5)A y =90°

Volume 1924.70(14) A®
Z 4
Calculated density 1.209 Mg/m?®
Absorption coefficient 0.088 mm™
F(000) 752
Crystal size 0.06 x 0.041 x 0.032 mm
Theta range for data collection 2.49 t0 26.77°.
Limiting indices -14<=h<=14, -19<=k<=19, -15<=I<=14
Reflections collected / unique 25584 / 4071 [R(int) = 0.0609]
Completeness to theta 26.77  99.2%
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.7454 and 0.6864
Refinement method Full-matrix least-squares on F?
Data / restraints / parameters 4071/0/ 230
Goodness-of-fit on F*2 1.013
Final R indices [I1>2sigma(l)] R1 =0.0484, wR2 = 0.1217
R indices (all data) R1 =0.0990, wR2 = 0.1457
Largest diff. peak and hole 0.247 and -0.199 e. A
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Table S14: Hydrogen bonds for agtr:

Donor --- H....Acceptor | [ ARU]

H..A

D..A

-H..A

N(2) —-H(2) ..0(4) [ 4554.01]

2.30

2.981 (2)

136

¢

Figure S17: A molecular Packing diagram of Tr-aeg monomer. All Hydrogen atoms are omitted for clarity. One
intermolecular hydrogen bond is shown by dashed line.
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39. DFT calculated density map

40. Theoretical Ramachandran Plot
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