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ABSTRACT

Starting from readily available precursors, selenoglycosides derived from GalNAc, GlcNAc, and ManNAc were prepared by either a one- or a
two-step process. The anomeric selenides underwent facile C−Se homolysis to provide the corresponding anomeric radicals, which were
trapped with alkenes to give C-glycosides. This provides a general entry to r-C-glycosides based on 2-amino-2-deoxy sugars that is also
applicable to disaccharide variants.

C-Glycosides based on biologically significant carbohydrates
represent potentially useful probes for determining carbo-
hydrate function and regulation.1 2-Amino-2-deoxy sugars
are important components of oligosaccharides and of both
N- and O-glycopeptides,2 and we recently described a
stereochemically efficient entry toR-C-glycosides4 based
onN-acylgalactosamine (Scheme 1).3 This process offers the
added advantage that the nature of the N-substituent associ-

ated with theC-glycoside4 can be varied (N-Ac vs N-Boc
vs N-COCF3).

Central to this strategy was the use of anR-selenide3 as
a stable precursor to the corresponding anomeric radical, and
3 was constructed via2, the product of azidoselenation of
3,4,6-tri-O-acetyl-D-galactal1.
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Scheme 1. Azidoselenation as an Entry toR-Selenoglycosides
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The approach shown in Scheme 1 is flexible in terms of
the targetC-glycosides,4,5 but the use of azidoselenation6 as
a key step in this sequence has significant limitations.

While this addition process works well for derivatives of
D-galactal (e.g.,1), the use of the corresponding peracetylated
D-glucal leads to a mixture of theD-gluco andD-manno
adducts. The radical addition can be controlled to favor the
gluco adduct,7 but the manno isomer is much less accessible.
Furthermore, disaccharide-based glycals, e.g.,D-maltal, are
poor substrates for this radical addition reaction, leading to
very low yields of adducts.8

We now report procedures that address these limitations
associated with azidoselenation, and these enable selective
access toâ-anomeric selenides based on the galacto and
gluco configurations, as well as theR-anomeric selenide
corresponding to the manno configuration. This selenium-
based method has also been applied to two representative
disaccharides, which also function as substrates forC-
glycoside synthesis.

The solution involves direct synthesis of the anomeric
selenides from the corresponding and readily available 2-N-
acetamido sugars. Two approaches are presented, which are
illustrated in Scheme 2.9

In a two-step protocol, peracetylatedN-acetyl-D-glucos-
amine 5 was reacted with TMSOTf or BF3‚Et2O to give
oxazoline6. Exposure of6 to PhSeH in the presence of
camphorsulfonic acid (CSA) gave the targetâ-selenide7 in
63% overall yield. Alternatively,7 is available in one
operation and in 92% yield by direct treatment of5 with
PhSeSiMe3 and TMSOTf. These procedures are applicable
to the galactosamine and mannosamine derivatives starting
from the commercially available peracetylated pyranosides

8 and10and provide the correspondingâ-selenide9 (galacto)
andR-selenide11 (manno), respectively.10

Crucial to the incorporation of this chemistry into the
radical-mediated strategy forC-glycoside synthesis (as
outlined in Scheme 1) was validation of7, 9, and 11 as
precursors to the corresponding anomeric radicals. In this
sense, it is important to recognize that azidoselenation of
tri-O-acetyl-D-galactal1 leads (ultimately) to theR-selenide
3, whereas the chemistry outlined in Scheme 2 leads to the
isomericâ-selenide9. Nevertheless,9 did undergo smooth
C-Se homolysis, and the resulting radical was trapped
efficiently by eithertert-butyl acrylate or styrene to give the
R-C-glycosides 12a3 and 12b3 in 68 and 41% yields,
respectively (Scheme 3).11,12 These products were identical
to those prepared from the correspondingR-selenide3.
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R-manno isomer11underwent C-Se cleavage and addition
to tert-butyl acrylate and styrene to give theR-C-glycosides
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Scheme 2. One- and Two-Step Selenoglycosylation
Proceduresa

a Reagents and conditions: (a) TMSOTf, Cl(CH2)2Cl, 50°C; (b)
PhSeH (2 equiv), CSA (cat.), Cl(CH2)2Cl, reflux; (c) PhSeTMS (2
equiv), TMSOTf, Cl(CH2)2Cl, 50 °C. bOverall yield for the two-
step procedure (via the corresponding oxazoline).cYield for the
one-step procedure.
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tion, was established by1H NMR: H(2) δ 4.51 (td,3J2,3 )
3J2,NH 8.5 Hz,3J1,2 3.8 Hz). In the case ofC-glycoside14a,
assignment of theR-configuration of the predominant4C1

conformer was again made using1H NMR: H(2) δ 4.46
(dt, 3J2,NH ) 8.9 Hz,3J1,2 ) 3J2,3 3.9 Hz).13

The other significant problem associated with azidosel-
enation is the failure of disaccharide-based glycals to undergo
efficient addition,14 which limits the use of azidoselenation
to monosaccharide substrates. However, direct formation of
selenoglycosides from disaccharides is feasible, and is
illustrated in Scheme 4 for hepta-O-acetyl-N-acetyl-D-lac-
tosamine15.15

The synthesis of the target selenoglycoside16 was
achieved using the one-step procedure from15 in 73% yield,
using the conditions developed for the monosaccharide
variants (Scheme 2). The configuration ofâ-selenide16was
confirmed by1H NMR (H(2) dd, 3J1,2 ) 10 Hz and3J2,3 )
9.5 Hz).

tert-Butyl acrylate served as an effective trap for the
anomeric radical derived from16, and theR-C-glycoside
17 was isolated in 37% yield.16 Similarly, selenoglycoside
18, derived from the peracetylated derivative of disaccharide
â-D-Galp-1f 4-D-ManpNAc,17 underwent C-Se bond ho-
molysis and addition totert-butyl acrylate to provideR-C-
glycoside19 in 43% yield.18

In summary, bothR- and â-selenoglycosides provide
viable sources of anomeric radical reactivity that are well
suited to the synthesis ofC-glycoside analogues of 2-amino-
2-deoxy sugars. Application of “conventional” glycosylation
conditions provides the requisite selenoglycosides (7, 9, 11,
16, and 18) in good yield directly from commercially
available starting materials. Most significantly, the results
reported in this paper extend our earlier work3 by providing
a more general entry to this potentially important class of
C-glycosides.
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(13) Conventional sugar numbering has been used for simplicity, and
full spectroscopic details are available in the Supporting Information. When
styrene, a less reactive trap, was used, the major byproduct was the
corresponding peracetylated 1,5-anhydro-2-deoxy-D-pyranose.
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(16) On the basis of1H NMR, the conformation of the gluco ring of18
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Horton5d has observed similar effects forC-glycosides based on GlcNAc,
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(17) The Heynes rearrangement of lactulose generates a 3: 1 mixture
of N-acetyllactosamine (major component) and the isomeric disaccharide
â-D-Galp-1f 4-D-ManpNAc.15 (This disaccharide is also available from
Dextra Laboratories, Reading, U.K.). Using the “one step” procedure,
selenoglycoside18 was obtained in 91% yield from hepta-O-acetyl-â-D-
Galp-1f4-D-ManpNAc.

(18) In addition to producingC-glycosides17 and19, reaction of both
16and18gave the corresponding 1,5-anhydro-2-deoxy-D-pyranoses, which
were isolated in 44% and 40% yields, respectively.

Scheme 3. Synthesis of Galacto-, Gluco-, and Manno-Based
R-C-Glycosidesa

a Reagents and conditions: (a) H2CdCHCO2-t-Bu or PhCHdCH2

(20 equiv),n-Bu3SnH, AIBN, PhH, reflux.

Scheme 4. Disaccharide-Based Selenoglycosides and
Application toC-Glycoside Synthesisa

a Reagents and conditions: (a) TMSOTf, TMSSePh (1.5 equiv),
Cl(CH2)2Cl, rt, 6 days; (b) H2CdCHCO2-t-Bu (20 equiv),n-Bu3SnH,
AIBN, PhH, reflux.
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