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Stereoselective Dearomatizing Addition of Nucleophiles to
Uncomplexed Benzene Rings: A Route to Carbocyclic Sugar
Analogues**
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Here we report reaction conditions which enable for the first
time the stereoselective dearomatizing addition of organo-
lithium reagents to simple, uncomplexed benzenoid aromatic
rings. Dearomatizing nucleophilic addition reactions to
arenes provide an efficient way of making complex synthetic
intermediates from simple inexpensive precursors.[1,2] As a
strategy, dearomatization marries the regioselectivity of
aromatic electrophilic substitution with the stereoselectivity
achievable upon the conversion of an arene into a cyclohex-
ane derivative.

The seminal work of the Meyers research group[3] showed
the importance of oxazolines in promoting dearomatizing
addition reactions of organometallic reagents to naphthalene
and pyridine derivatives. However, benzene rings are much
more difficult to dearomatize: the addition of nucleophiles to
uncomplexed phenyloxazolines has previously led to depro-
tonation or attack at the oxazoline C=N bond.[4] Current
solutions to the problem adding nucleophiles stereoselec-
tively addition of nucleophiles to simple substituted phenyl
rings involve stoichiometric coordination to Cr, Mn, or
Os.[2a–e] Racemic dearomatized products may also be obtained
from addition reactions to hindered benzamides[2f,g] or to
carbonyl compounds coordinated to aluminum tris(2,6-diphe-
nylphenoxide) (ATPH).[2h–j]

We have found that the previously unexplored 2-aryl
trans-4,5-diphenyloxazolines promote stereoselective nucleo-
philic attack on simple benzenoid rings without metal
complexation, provided N,N’-dimethylpropyleneurea
(DMPU) is used to activate the organolithium nucleophile
(Scheme 1). Upon lithiation with iPrLi in THFand quenching
with methyl iodide, oxazoline 1[5] was converted principally
into the expected[6] product 2 of ortho lithiation. However,

this product was accompanied by a dearomatized adduct 3,
which is formed through the attack of iPrLi on the
p-methoxyphenyl ring. When DMPU[7] is first mixed with
the starting material (in an optimal ratio of 6:1), the cyclo-
hexadiene 3 becomes the major product. Compound 3 was
isolated as a single diastereoisomer (with configuration
assigned by X-ray crystallography[8]) in 70% yield.[9]

The oxazoline group in 1 functions as a chiral auxiliary.[9]

It could be removed from enone 4, the hydrolysis product of 3,
by the alkylation–reduction–hydrolysis–reduction sequence
shown in Scheme 2.[10] The enantiomeric purity (e.r.> 99:1) of
the allylic alcohol 6 was established by HPLC analysis of its
bis-p-bromobenzoate 7.

Carbocyclic sugars and their alkylated, hydroxylated, and
aminated analogues are an important class of natural and

Scheme 1. DMPU-promoted dearomatization of a 4,5-diphenyloxazo-
line.

Scheme 2. Removal of the oxazolinyl auxiliary. Ar= p-BrC6H4;
DMAP=4-dimethylaminopyridine, Tf= trifluoromethanesulfonyl.
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non-natural compounds that possess a range of antibiotic and
antiviral biological activity.[11] The cyclohexadiene 3 and
cyclohexenone 4 presented themselves as readily available
and versatile synthetic intermediates for the synthesis of
functionalized cyclohexanes structurally related to these
compounds.[12] Schemes 3 and 4 illustrate the conversion of
3 into the alkylated carbocyclic analogues 11 and 15 of
l-altrose and l-mannose, respectively, through short,
protecting-group-free sequences.

The dienyl ether 3was prepared by the addition of iPrLi to
1 on a 2 g scale, and was oxidized to yield a single
diastereoisomer of the base-sensitive hydroxyenone 8
(Scheme 3). The oxazoline substituent was removed by the
method used for 4. Concurrent 1,2-reduction of the enone was
fully diastereoselective, and after hydrolysis of the oxazoli-
dine moiety of 9 and further reduction, the triol 10 was
obtained as a single diastereoisomer. Diastereoselective[13]

dihydroxylation of the alkene[14] yielded a single diastereo-

isomer of the alkylated carbocyclic analogue 11 of a-l-altrose.
The X-ray crystal structure of 11[8] confirmed its configura-
tion.

Intermediate 8 from this synthesis was also converted into
a carbocyclic analogue of a-l-mannose (Scheme 4). The
enone underwent 1,2-reduction to give 12 as a single
diastereoisomer, the relative configuration of which was
verified by X-ray crystallography.[8] The directed epoxidation
of 12 yielded 13, and removal of the oxazoline moiety by the
standard method then afforded the epoxytriol 14. The treat-
ment of 14 with aqueous acid led to trans-diaxial ring opening
of the epoxide and provided the a-l-mannose analogue 15 in
81% yield.[15]

The scope and limitations of the dearomatizing addition
were investigated by treating a range of aryl oxazolines 16a–e
with organolithium reagents (1.5–3 equiv; Scheme 5 and
Table 1). A deep green or brown solution formed upon the
successful addition of an organolithium reagent to 16 ;
quenching of the presumed azaenolate intermediate 17 with
methyl iodide gave a cyclohexadiene 18. The addition of

secondary organolithium reagents generally led to the
desired products in moderate to good yields. In each
case only a single diastereoisomer and regioisomer of
the product was detected, along with remaining starting
material and sometimes the rearomatized by-product
19.[16] The use of tert-butyllithium led to the formation of
18a’’ in low yield (Table 1, entry 4), and n-butyllithium
failed to add to the ring (Table 1, entry 1).

Protonation of the extended azaenolate 17 gave a
1,3-cyclohexadiene 20 or 1,4-cyclohexadiene 21
(depending on the substitution pattern) in around
50% yield, along with the rearomatized by-product 19
and recovered starting material. Treatment of the
extended enolate 17 with allyl bromide or benzyl
bromide also yielded mixtures of regioisomers.

In conclusion, the dearomatizing reaction provides a
new entry into highly functionalized cyclohexene and
cyclohexanone derivatives, yielding carbocyclic sugar
analogues in six to eight steps and 33–43% yield from
simple aromatic oxazoline derivatives.
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Scheme 3. Synthesis of an l-altrose analogue. NMO=4-methylmorpholine N-
oxide.

Scheme 4. Synthesis of an l-mannose analogue. mCPBA= m-chloro-
perbenzoic acid.

Scheme 5. Dearomatizing functionalization of aryl oxazolines.
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Table 1: Addition to aryl oxazolines 16.

Entry 16 X[a] R[a] Quench Product,
yield [%]

Yield [%]
of 16 ;[b] 19

1 16 a H nBu MeI – 95; 0
2 16 a H iPr MeI 18a, 70[c] 12; 0
3 16 a H sBu MeI 18a’, 81[d] 1; 0
4 16 a H tBu MeI 18a’’, 17 12; 0[e]

5 16 b 4-Ph iPr MeI 18b, 32 12; 30
6 16 c 3-OMe iPr MeI 18c, 54[c] 20; 0[f ]

7 16 d (1) 4-OMe iPr MeI 3, 70[c] 6; 0
8 16 d (1) 4-OMe sBu MeI 18d’, 78 5; 7
9 16 a H iPr NH4Cl 20a, 47 32; 5

10 16 a H sBu NH4Cl 20a’, 56 29; 9
11 16 d (1) 4-OMe iPr MeOH 20d, 30;

21d, 15
29; 6

12[g] 16 e 4-F iPr NH4Cl 21e, 53 37; 7

[a] See Scheme 5. [b] Recovered starting material. [c] The configuration
of the product was confirmed by X-ray crystallography.[8] [d] The product
was formed as a 3:1 mixture of diastereoisomers with respect to the
exocyclic stereogenic center. [e] Alkylation of the oxazoline ring occurred
to provide a further by-product in 17% yield. [f ] A further by-product was
formed in 9% yield by ortho methylation. [g] The reaction was carried out
in toluene with racemic 16e.
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