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ABSTRACT

o]
- o chiral PTG 2 Ph
M emx _(10-01mol%) >=N>,)J\OBu'
>=N oBu! ———— PH 2
PH Triton X-100, 1M KOH H R
ri. (9)-3 (71-85% ee)

The asymmetric alkylation of the tert-butyl glycinate—benzophenone Schiff base 1 with various arylmethyl bromides catalyzed by O-allyl-N-
(9-anthracenylmethyl)cinchonidinium bromide (2) proceeded smoothly under micellar conditions (5 equiv of 1 M KOH and 0.4 equiv of Triton
X-100) to give the alkylated products in good yields and with good enantioselectivity (72—-85% ee), depending on the electrophiles.

The development of environmentally friendly catalysts for chonidinium salt§® and C,-symmetric ammonium safts
organic transformation is becoming an area of growing derived from chiral binaphthol. These excellent results
importance- From economical and environmental points of provided an efficient tool for the preparation of both natural
view, catalytic use of nonmetallic catalysts such as a chiral and unnatural amino acidsTo further improve the asym-
phase transfer catalyst (PTC) is very promisingntil metric alkylation with these new chiral PTC's, several
recently, there have been no successful applications of PTCproblems must be solved. Since these catalysts, in particular
reaction to catalytic asymmetric synthesidowever, quite cinchonidium salts, are reported to be unstable under basic

recently, the highly enantioselective alkylation of tfest- conditions, the asymmetric alkylation usually demands the
butyl glycinate-benzophenone Schiff basgé has been addition of more than 10 mol % of the chiral catalyst to
achieved under PTC conditions usingalkylated cin- attain high enantioselectivity. In addition, all of the chiral

—— . ) ) PTC reactions reported so far have been carried out in
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any organic solvents, because of the inherent advantages o& few attempts of application of surfactants to asymmetric
using water as the only solvent. For developing an ideal PTC synthesis have been successful and only in a limited'aféa.
which satisfies these conditions (active, stable, cheap, andHowever, a serious problem that may be incurred is that the
recoverable), extensive efforts are being contintiedthis addition of a surfactant may promote a racemic reaction
Letter, we wish to describe a novel strategy, which has not because surfactants are known as PTC catalysisfact,
been reported, for overcoming these problems concurrently,treatment ofL with BnBr and 50% KOH in the presence of
i.e., the asymmetric alkylation dfwith O-allyl-N-(9-anthra- the chiral PTC2 and Triton X-100 gave the nearly racemic
cenylmethyl)cinchonidinium bromide2) in a micellar product3 in 24% yield (entry 2). Then, with the expectation
medium (a mixture of water and a neutral surfactant). Using of improving the enantioselectivity, several reaction condi-
this method we successfully carried out a highly efficient tions, including the base and surfactant, were investigated
PTC-catalyzed enantioselective alkylation in water; we also (entries 3-5). Consequently, use of a 1.0 M KOH solution
found that the amount of the chiral PTC can be reduced upas a base dramatically improved the ee3ofAmong the
to 0.1 mol % without a serious decrease in the enantiomericexamined surfactants, neutral surfactants such as Triton
excess. X-100 were revealed to efficiently promote the alkylation,
We first examined the standard asymmetric alkylation of giving the desired produa in good yield and with good
1 with benzyl bromide without an organic solvent. The €nantioselectivity. On the other hand, neither an anionic nor
benzylation of1 proceeded very reluctantly without the @ cationic surfactant was effective in terms of the chemical
organic solvent, giving the desired prod&in low yield yield and enantioselectivity. In addition, it was revealed that

but with good enantioselectivity (Table 1, entry 1). Recently, the addition of 2.4 equiv of BnBr to the reaction mixture
improved both the chemical yield and enantiomeric excess

_ (entry 6). To our surprise, the reduction of the amoun? of

_ _ _ ) _ from 10 to 1 mol % did not affect the asymmetric alkylation,
Table 1. Catalytic Enantlosglectlve AIky!a_ltlon df with BnBr giving the same result (entry 7). It should be emphasized
in the Presence dla under Micellar Conditiorfs that the alkylation can be carried out with only 0.1 mol %

o chiral PTC2a o) of 2 without a serious decrease of the chemical yield and ee
Ph>_N\)J\ + Bngy 1001 mol%) >:N>)k OB (entry 8). The same reactions with various neutral surfactants
P oBu' surfactant, KOH - P, k% ! bearing different PEG lengths such as Triton X-114, Targitol

1 o (5)-3 NP-40, and Triton X-40% showed that these surfactants
affected only the chemical yield & but not their enantio-
entry surfactant  BnBr (equiv) 2a(mol %) % yield® % ee¢ selectivities [Triton X-12_|.4 (76%, 84% ee), Targitol NP-40
(63%, 85% ee), and Triton X-405 (57%, 84% ee)].
1 d 1.2 10 33 78 . . . N
2 Triton X-100¢ 17 10 i <5 Since the optimal reaction conditions could be found for
3 Triton X-100¢ 12 10 59 78 the asymmetric benzylation, we next examined the influence
4  SDSf 1.2 10 30 63 of various chiral PTC’s other thaka on the enantioselec-
5 CTABY 1.2 10 34 39 tivity of 3 (Table 2). The alkylation ofl using other
6  Triton X-100 2.4 10 91 84 N-alkylated cinchonidium salt&8b—d*® bearing a different
7 Triton X-100 2.4 1 92 85 alkyl group afforded the same produ®){3 with similar
8  Triton X-100 24 01 81 80 enantioselectivity (entries-13). Therefore, the alkyl groups
aThe reaction was carried out with BnBr (£2.4 equiv),2a (0.1-10 of 2 have only a marginal effect in terms of the chemical

mol %), and 1.0 M aqueous KOH (5 equiv) in the presence of several ;i i i -
surfactants (0.4 equiv) at room temperatirisolated yield. Enantiomeric yleld and enantiomeric excess. Furthermore, Gzesym

excess 0B was determined by HPLC analysis of the alkylated imine using Metric ammonium sald,® recently developed by Maruoka,

a chiral column (DAICEL Chiralcel OD) with hexane/2-propanol as solvent.

dThe reaction was performed with 50% KOMMesCCH,C(Me)CeHa- : - .
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Table 2. Enantioselective Benzylation df with Various Table 3. Catalytic Enantioselective Alkylation df with
PTC'’s under Micellar Conditioris Several Alkyl Halides in the Presence 2d and Triton X-100 in
_ Watep
R i o vield? o c
Ph Ph entry RX (equiv.) % yield % ee
M OO OO ><O])<OH (config.)d
N/ SH AN .., OH
='n.0 o
i _O OO R OO Ph/(Ph 1 @CHZBr (2.4) 92 85(S)
2a (R =allyl 4 (R =3,4,5-F3-Ph) 5
2b ((R = H)Y) ? 2 FOCHZBr (24) 87 81(§)
2¢ (R = Me)
2d (R = Bn)

3 F30@CHQBr (2.4) 80 745

entry catalyst % yieldP % ee®

CH,Br w013
1 2b (R = H) 82 84 4 OO @4) 8 ®
2 2¢ (R = Me) 92 76
3 2d (R = Bn) 89 85 5 g (10) 85 82(S)
4 4 78 72
5 5 20 3

6 = B (10) 90 72(8)
aThe reaction was carried out with BnBr (2.4 equiv), PTC (1 mol %),

and Triton X-100 (0.5 equiv) in a 1.0 M aqueous KOH (5 equiv) solution

at room temperaturé.lsolated yield Enantiomeric excess o8 was 7 A~ (10) 60 77 (-)°

determined by HPLC analysis of the alkylated imine using a chiral column Ph Br

(DAICEL Chiralcel OD) with hexane/2-propanol as solvent.

8 Mel (20) 43 64.(3)
was less effective under the micellar conditions, resulting 9 B (20) 28 82(5)
in a slight decrease of the enantiomeric excess (entry 4). In
contrast with these results, the reaction lofwith (—)- aThe reaction was carried out with RX (2.4 equigi (1 mol %), and

TADDOL. which is known as a chiral metal-chelaﬁagave 1.0 M aqueous KOH (5 equiv) in the presence of Triton X-100 (0.4 equiv)
' . . at room temperaturé.lsolated yield.¢ Enantiomeric excess 08 was
the racemic product in poor yield (entry 5). From these determined by HPLC analysis of the alkylated imine using a chiral column

results, we selected the allyl ettaas the best chiral PTC.  (DAICEL Chiralcel OD) with hexane/2-propanol as solvehabsolute
configuration was determined by comparison of the HPLC retention time

We finally investigated whether our new method could with that of an authentic sampléNot determined.
be applied tol with other electrophiles (Table 3). Indeed,
the alkylation with several arylmethyl bromides and aIIyIIC Organic Synthesis in ||ght of the increased demand for
bromides proceeded smoothly to give rise to the correspond-reduction of organic solvents. In addition, the enantiomeric
ing monoalkylated produc®in good enantioselectivity (72 excess shown here might be further enhanced by using a
85% ee), even though, in the latter cases, the reactionmore suitably designed PTC.
required 10 equiv of electrophiles to achieve good chemical  |n conclusion, we have devised a useful and environmen-
yields (entries 7). In contrast to these entries, alkylations  tally benign procedure for the catalytic asymmetric alkylation
with methyl iodide and ethyl iodide were very sluggish, of the aldimine Schiff base of an amino at@tt-butyl ester
resulting in the alkylated products in poor yield or low ysing the micellar system. This method is the first asym-
enantioselectivity (entries 8 and 9). In any event, the metric reaction using a micellar system other than the
configurations of the producB were the same as those of  transition metal-promoted asymmetric reaction. We are now
products obtained by the liquidiquid and liquid-solid two-  jnvestigating other applications in nonmetallic catalyst-
phase reactions usirgy*-® promoted asymmetric reactions.
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