

Bioorganic & Medicinal Chemistry 10 (2002) 233-239

BIOORGANIC & MEDICINAL CHEMISTRY

Non-thiol Farnesyltransferase Inhibitors: N-(4-Acylamino-3-benzoylphenyl)-4-nitrocinnamic Acid Amides

Jacek Sakowski,^a Isabel Sattler^b and Martin Schlitzer^{a,*}

^aInstitut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany ^bHans-Knöll-Institut für Naturstoff-Forschung e.V., Beutenbergstraße 11, D-07745, Jena, Germany

Received 4 April 2001; revised 13 July 2001; accepted 13 July 2001

Abstract—We have developed the 4-nitrocinnamoyl substituted benzophenone 4a as a novel non-thiol farnesyltransferase inhibitor. Replacement of the *p*-tolyl moiety of our initial lead structure 4a by different *para* and *ortho* substituted phenyl residues as well as by 1-naphthyl resulted in derivatives with considerably enhanced activity displaying IC₅₀ values between 42 and 52 nM. These compounds represent novel, readily accessible non-thiol farnesyltransferase inhibitors being more active than the corresponding thiol-containing analogues.

Introduction

Inhibition of farnesyltransferase has received considerable interest in recent years as a strategy for the development of novel potential anti-cancer drugs.¹⁻⁶ Farnesvltransferase catalyzes the transfer of a farnesvl residue from farnesylpyrophosphate to the thiol of a cysteine side chain of proteins which bear the CAAXtetrapeptide sequence (C: cysteine, A: aliphatic amino acid, X: serine or methionine) at their C-terminus.^{7,8} The rationale for using inhibitors of farnesyltransferase as anti-cancer agents stems from the observation that farnesylation is a pre-requisite for the transforming activity of oncogenic Ras which is found in approximately 30% of all cancers in humans. However, there is accumulating evidence that prevention of Ras farnesylation may not be the crucial cellular event responsible for the antiproliferative effect of farnesyltransferase inhibitors.9 Focus has shifted to the prenylation of RhoB, another member of the class of small GTPases which is involved in receptor trafficking.^{10,11} Disregarding of the unresolved mechanism by which farnesyltransferase inhibitors exert their antiproliferative effects, the efficacy of these compounds and their low toxicity has been demonstrated¹² and, therefore, administration of such compounds is regarded as a major strategy emerging in cancer therapy.

Most inhibitors described in literature are peptidomimetics resembling the CAAX-tetrapeptide recognition sequence of farnesylated proteins. The majority of these CAAX-peptidomimetics exhibit a free thiol group $^{1-6}$ which is believed to coordinate the enzyme-bound zinc ion as it has been shown for the native peptide substrate.¹³ However, free thiols are associated with several adverse drug effects¹⁴ and, therefore, the development of farnesyltransferase inhibitors is clearly directed towards the so-called non-thiol farnesyltransferase inhibitors. The most frequently used replacement for cysteine are nitrogen-containing heterocycles. The ring nitrogen is supposed to coordinate to the enzyme-bound zinc similar to the cysteine thiol group.¹⁵ However, it has been shown that nitrogen heterocycles can be replaced by aryl residues lacking the ability to coordinate metal atoms without loosing too much of their farnesyltransferase inhibitory activity.^{16,17} Therefore, the existence of at least one hitherto unknown aryl binding region in the farnesyltransferase's active site has been postulated.^{18,19}

Using our benzophenone-based AAX-peptidomimetic scaffold,²⁰ we have introduced *para*-substituted cinnamoyl moieties as cysteine replacements designed to utilize one of these aryl binding sites. Early investigations on the structure–activity relationships of this novel class of non-thiol farnesyltransferase inhibitors revealed the nitrocinnamoyl-substituted benzophenone **4a** as a particular potent congener.²¹ In this study, we addressed

^{*}Corresponding author. Tel.: +49-6421-282-5825; fax: +49-6421-282-7052; e-mail: schlitze@mailer.uni-marburg.de

^{0968-0896/02/\$ -} see front matter \odot 2001 Elsevier Science Ltd. All rights reserved. P11: S0968-0896(01)00274-7

the question on how the replacement of the *p*-tolylacetyl residue at the 2-amino group of the AAX-peptidomimetic benzophenone core structure of 4a would influence farnesyltrasferase inhibitory activity.

Chemistry

Synthesis of most of the target compounds **4** was accomplished by acylation of the appropriate 2-acylamino-5-aminobenzophenones **3** using 4-nitrocinnamic acid chloride. Intermediates **3** were prepared from 2amino-5-nitrobenzophenone **1** as described previously²² (Scheme 1). However, since acylation of **1** by 2- or 4-trifluoromethylphenylacetic acid chloride failed, an alternative route had to be developed for the preparation of compounds 4g and 4j (Scheme 2). First, the 2-amino group of 1 was protected as trifluoroacetamide (5). After reduction of the 5-nitro group, the resulting amine 6 was acylated by 4-nitrocinnamic acid chloride. After removal of the protective group from 7, the resulting intermediate 8 could by acylated by 2- and 4-trifluoromethylphenylacetic acid chloride, respectively, yielding compounds 4g and 4j.

Farnesyltransferase Inhibition Assay

The inhibitory activity of the inhibitors was determined using the fluorescence enhancement assay as described by Pompliano.²³ The assay employed yeast farnesyltransferase (FTase) fused to glutathione *S*-transferase at

Scheme 1. (i) R–CO–Cl, toluene/dioxane, reflux, 2 h; (ii) $SnCl_2 \times 2H_2O$, EtOAc, reflux 2 h; (iii) 4-nitrocinnamic acid chloride, toluene/dioxane, reflux, 2 h.

Scheme 2. (i) TFAA, DCM/pyridine, 0 °C, 2 h; (ii) SnCl₂×2H₂O, EtOAc, reflux 2 h; (iii) 4-nitrocinnamic acid chloride, toluene/dioxane, reflux, 2 h; (iv) K₂CO₃, dioxane/H₂O, reflux, 3 h; (v) R-C₆H₄-CH₂-COCl, toluene/dioxane, reflux, 2 h.

the N-terminus of the β -subunit.²⁴ Farnesylpyrophosphate and the dansylated pentapeptide Ds-Gly-CysValLeuSer were used as substrates. Upon farnesylation of the cysteine thiol, the dansyl residue is placed in a lipophilic environment. The resulting enhancement of fluorescence at 505 nm is used to monitor the enzyme reaction.

Results and Discussion

We have developed a novel class of non-thiol farnesyltransferase inhibitors in which a cinnamoyl moiety has been introduced as cysteine replacement designed to fit into a recently discovered aryl binding site next to the farnesyltransferase's active site. From early investigations on the structure activity relationships of these inhibitors, the *p*-nitrocinnamoyl derivative 4a turned out to be the most active example.²¹ In this study we addressed the question of how variations of the acyl moiety at the 2-amino group of the AAX-peptidomimetic benzophenone core structure would influence farnesyltransferase inhibitory activity of these compounds (Table 1). Thus, we were aiming at developing more potent inhibitors. Shifting the methyl group of the lead structure **4a** from the *para* into the *meta* (**4b**: $IC_{50} = 88$ nM) or *ortho* position (4c: $IC_{50} = 66$ nM) resulted in an enhancement of inhibitory potency. From several

Table 1. Farnesyltransferase inhibitory activity of compounds 4a-n

derivatives with different substituents in the para position, the methoxy (4d: $IC_{50} = 925$ nM) and the chloro substitutions (4e: $IC_{50} = 875$ nM) yielded compounds with a considerable drop in activity. In contrast, the *para* bromo (**4f**: $IC_{50} = 46 \text{ nM}$) and trifluoromethyl (**4g**: $IC_{50} = 50$ nM) substituted derivatives displayed farnesyltransferase inhibitory activity with IC₅₀ values equal to or less than 50 nM. The same was true for the bulky phenyl residue (**4h**: $IC_{50} = 44 \text{ nM}$). In case of the methyl residue, shifting this substituent from para into the meta or ortho position resulted in an increased activity. However, this effect could not seen with the bromo or the trifluoromethyl residue. While the ortho bromo derivative (4i: $IC_{50} = 65 \text{ nM}$) was less active than its para analogue 4f, the trifluoromethyl group in the ortho position produced a slightly more active inhibitor (4j: $IC_{50} = 42$ nM) than the para substituted derivative 4g. With compounds $4\mathbf{k}$ and $4\mathbf{l}$, the phenyl residue was replaced by a naphthyl moiety. Here, the position by which the naphthyl is attached turned out to be crucial for farnesyltransferase inhibitory activity. While the compound with attachment at C-1 of the naphthyl group (4k: $IC_{50} = 68$ nM) displayed considerable activity, the attachment at C-2 (41: $IC_{50} = 950 \text{ nM}$) led to a significant drop in activity. The same was found for the analogues compounds 4m (IC₅₀=52 nM) and 4n $(IC_{50} = 210 \text{ nM})$ in which the methylene spacer between the aryl moiety and the amide group had been omitted.

In summary, replacement of the *p*-tolyl moiety of our initial lead structure by different *para* and *ortho* substituted phenyl residues as well as by 1-naphthyl resulted in derivatives with considerably enhanced activity displaying IC₅₀ values between 42 and 52 nM. These compounds represent novel, readily accessible non-thiol farnesyltransferase inhibitors being more active than the corresponding thiol-containing analogues.

Experimental

¹H and ¹³C NMR spectra were recorded on a Jeol JMN-GX-400 and a Jeol JMN-LA-500 spectrometer. Mass spectra were obtained with a Vacuum Generators VG 7070 H using a Vector 1 data acquisition system from Teknivent or a AutoSpec mass spectrometer from Micromass. IR spectra were recorded on a Nicolet 510P FT-IR-spectrometer. Microanalyses were obtained from a CH analyzer according to Dr. Salzer from Labormatic and from a Hewlett Packard CHN-analyzer type 185. Melting points were obtained with a Leitz-microscope and are uncorrected. Column chromatagraphy was carried out using silica gel 60 (0.062–0.200 mm) from Merck. The preparation of the following compounds has been described: **4a**,²⁵ **2b-f**, **2h**, **2k-m**, **3b-f**, **3h**, **3k-m**.²²

General procedure 1: acylation of aromatic amines by acyl chlorides

Appropriate acyl chlorides were dissolved in toluene or dioxane (approx. 10 mL) and added to a solution of the appropriate aromatic amine in hot toluene (approx. 50 mL). The mixtures were heated under reflux for 2 h. Then, the solvent was removed in vacuo to give the crude products.

Acyl chlorides not commercially available were prepared form the corresponding carboxylic acids. These were dissolved in toluene and 0.1 mL SOCl_2 per mmol acid was added. The mixture was heated under reflux for 2 h and the volatiles were evaporated in vacuo. The residue obtained was used for the acylation step as described above.

N-[3-Benzoyl-4-[(3-methylphenyl)acetylamino]phenyl]-4nitrocinnamic acid amide (4b). From 4-nitrocinnamoyl chloride (211 mg, 1.0 mmol) and *N*-(4-amino-2-benzoylphenyl)-(3-methylphenyl)acetamide (344 mg, 1.0 mmol) according to general procedure 1. Yield 478 mg (92%); mp 219 °C. IR (KBr): v = 3310, 3065, 1685, 1667, 1638, 1595, 1553, 1513, 1403, 1341 1290 cm⁻¹. ¹H NMR (DMSO-d₆): δ 2.22 (s, 3H), 3.36 (s, 2H), 6.91 (m, 2H), 6.99 (m, 1H), 7.10 (m, 1H), 7.47 (m, 2H), 7.60 (m, 3H), 7.66 (m, 3H), 7.76 (m, 1H), 7.83 (m, 2H), 7.87 (m, 1H), 8.24 (m, 2H), 10.03 (s, 1H), 10.40 (s, 1H). MS (EI): *m*/*z* 519 (29) [M⁺], 44 (100), 73 (86), 105 (67), 212 (65), 387 (55), 129 (49), 414 (29). Anal. calcd for C₃₁H₂₅N₃O₅: C, 71.67; H, 4.85; N, 8.09; found: C, 71.43; H, 4.86; N, 7.99.

N-[3-Benzoyl-4-[(2-methylphenyl)acetylamino]phenyl]-4nitrocinnamic acid amide (4c). From 4-nitrocinnamoyl chloride (211 mg, 1.0 mmol) and *N*-(4-amino-2-benzoylphenyl)-(2-methylphenyl)acetamide (344 mg, 1.0 mmol) according to general procedure 1. Yield 500 mg (96%); mp 260 °C. IR (KBr): v = 3434, 3071, 1685, 1666, 1634, 1596, 1544, 1505, 1401, 1339, 1290 cm⁻¹. ¹H NMR (DMSO-*d*₆): δ 2.13 (s, 3H), 3.44 (s, 2H), 6.91 (d, *J*=16 Hz, 1H), 7.03 (m, 2H), 7.09 (m, 2H), 7.49 (m, 2H), 7.62 (m, 2H), 7.66 (m, 3H), 7.76 (m, 1H), 7.84 (m, 2H), 7.88 (m, 1H), 8.25 (m, 2H), 10.05 (s, 1H), 10.41 (s, 1H). MS (EI): *m/z* 519 (53) [M⁺], 105 (100), 146 (75), 212 (64), 387 (63), 211 (57). Anal. calcd for C₃₁H₂₅N₃O₅: C, 71.67; H, 4.85; N, 8.09; found: C, 71.49; H, 4.89; N, 8.02.

N-[3-Benzoyl-4-[(4-methoxyphenyl)acetylamino]phenyl]-4-nitrocinnamic acid amide (4d). From 4-nitrocinnamoyl chloride (211 mg, 1.0 mmol) and *N*-(4-amino-2-benzoylphenyl)-(4-methoxyphenyl)acetamide (360 mg, 1.0 mmol) according to general procedure 1. Yield: 416 mg (78%); mp 214 °C. IR (KBr): v = 3421, 3070, 2840, 1665, 1633, 1597, 1551, 1511, 1402, 1340, 1291 cm⁻¹. ¹H NMR (DMSO-*d*₆): δ 3.32 (s, 2H), 3.69 (s, 3H), 6.77 (m, 2H), 6.91 (d, J = 16 Hz, 1H), 7.01 (m, 2H), 7.47 (m, 2H), 7.60 (m, 2H), 7.66 (m, 2H), 7.75 (m, 1H), 7.82 (m, 3H), 7.86 (m, 1H), 8.23 (m, 2H), 10.00 (s, 1H), 10.73 (s, 1H). MS (EI): *m*/*z* 535 (7) [M⁺], 121 (100), 387 (96), 212 (58), 211 (44), 77 (30), 105 (33), 414 (17). Anal. calcd for C₃₁H₂₅N₃O₅: C, 69.52; H, 4.71; N, 7.85; found: C, 69.39; H, 4.83; N, 7.51.

N-[3-Benzoyl-4-[(4-chlorophenyl)acetylamino]phenyl]-4nitrocinnamic acid amide (4e). From 4-nitrocinnamoyl chloride (211 mg, 1.0 mmol) and *N*-(4-amino-2-benzoylphenyl)-2-(4-chlorophenyl)acetamide (364 mg, 1.0 mmol) according to general procedure 1. Yield 437 mg (81%); mp: 224 °C. IR (KBr): v=3322, 3070, 2925, 1687, 1633, 1597, 1552, 1512, 1403, 1341, 1291 cm⁻¹. ¹H NMR (DMSO-*d*₆): δ 3.41 (s, 2H), 6.93 (d, *J*=16 Hz, 1H), 7.11 (m, 2H), 7.27 (m, 2H), 7.47 (m, 2H), 7.59 (m, 2H), 7.63 (m, 1H), 7.66 (m, 2H), 7.77 (m, 1H), 7.84 (m, 2H), 7.89 (m, 1H), 8.25 (m, 2H), 10.06 (s, 1H), 10.39 (s, 1H). MS (EI): *m*/*z* 539 (21), 146 (100), 212 (86), 121 (58), 77 (57), 105 (57), 387 (56), 91 (49), 414 (30). Anal. calcd for C₃₀H₂₂ClN₃O₅: C, 66.73; H, 4.11; N, 7.78; found: C, 66.43; H, 4.03; N, 7.78.

N-[3-Benzoyl-4-[(4-bromophenyl)acetylamino]phenyl]-4nitrocinnamic acid amide (4f). From 4-nitrocinnamoyl chloride (211 mg, 1.0 mmol) and *N*-(4-amino-2-benzoylphenyl)-(4-bromophenyl)acetamide (409 mg, 1.0 mmol) according to general procedure 1. Yield 0.427 g (73%); mp 231 °C. IR (KBr): v=3398, 1668, 1635, 1596, 1553, 1513, 1403, 1341, 1290 cm⁻¹. ¹H NMR (DMSO*d*₆): δ 3.40 (s, 2H), 6.94 (d, *J* = 16 Hz, 1H), 7.05 (m, 2H), 7.42 (m, 2H), 7.48 (m, 2H), 7.57 (m, 1H), 7.64 (m, 2H), 7.67 (m, 2H), 7.78 (m, 1H), 7.85 (m, 2H), 7.90 (m, 1H), 8.26 (m, 2H), 10.10 (s, 1H), 10.43 (s, 1H). MS (EI): *m/z* 583 (51) [M⁺], 585 (15, M⁺ + 2), 146 (100), 212 (72), 387 (43), 105 (33), 175 (31), 414 (21). Anal. calcd for C₃₀H₂₂BrN₃O₅: C, 61.66; H, 3.79; N, 7.19; found: C, 61.58; H, 3.87; N, 7.18.

N-(2-Benzoyl-4-nitrophenyl)trifluoroacetamide (5). 2-Amino-5-nitrobenzophenone (1.2 g, 5 mmol) was dissolved in a mixture of dry dichloromethane (50 mL) and dry pyridine (4.5 mL). The solution was cooled to 0° C and trifluoroacetic anhydride (0.75 mL) was added. The mixture was left to warm to room temperature for 2 h. Then, the solution was diluted with dichloromethane and washed with water, brine, satd NaHCO₃ solution and dried over MgSO₄. The residue obtained after removal of the solvent was recrystallized from EtOH. Yield 1.420 g (83%); mp 135 °C. IR (KBr): v = 3432, 1735, 1643, 1619, 1587, 1558, 1522, 1448, 1417, 1353, 1324 cm⁻¹. ¹H NMR (CDCl₃): δ 7.56 (m, 2H), 7.71 (m, 3H), 8.50 (m, 1H), 8.57 (m, 1H), 8.87 (m, 1H), 12.27 (s, 1H). MS (EI): *m*/*z* 105 (100), 77 (69), 338 (55) [M⁺], 269 (34), 191 (32), 145 (16), 339 (10), 139 (8), 106 (8), 241 (7). Anal. calcd for C₁₅H₉F₃N₂O₄: C, 53.27; H, 2.68; N, 8.28; found: C, 53.03; H, 2.91; N, 8.28.

N-(4-Amino-2-benzoylphenyl)trifluoroacetamide (6). To a solution of the N-(2-benzoyl-4-nitrophenyl)trifluoroacetamide (5) (1.400 g, 4.1 mmol) in EtOAc (25 mL) $SnCl_2 \times 2H_2O$ (4.62 g) was added. Then, the solution was refluxed for 2 h. The cooled solution was diluted with water and the pH was adjusted to 7-8 by addition of sat. NaHCO₃ solution. The aqueous phase was extracted with EtOAc (3 \times 100–200 mL) and the combined organic extracts were thoroughly washed with brine and dried over MgSO₄. The product obtained after the removal of the solvent was used without further purification. Yield 1.205 g (95%); mp 108°C. IR (KBr): v = 3445, 3389, 3058, 2975, 2874, 1714, 1653, 1595, 1539, 1438, 1329 cm⁻¹. ¹H NMR (CDCl₃): δ 6.83 (m, 1H), 6.87 (m, 1H), 7.43 (m, 2H), 7.55 (m, 1H), 7.65 (m, 2H), 8.32 (m, 1H), 11.47 (s, 1H). MS (EI): m/z 308 (100) $[M^+]$, 105 (91), 77 (54), 211 (29), 161 (21), 239 (18), 309 (17), 106 (12), 210 (10), 78 (10). $C_{15}H_{11}F_3N_2O_2$

N-[3-Benzoyl-4-(trifluoroacetylamino)phenyl]-4-nitrocinnamic acid amide (7). From 4-nitrocinnamoyl chloride (633 mg, 3.0 mmol) and *N*-(4-amino-2-benzoylphenyl)trifluoroacetamide (6) (925 mg, 3.0 mmol) according to general procedure 1. Yield 1.228 g (82%); mp 210 °C. IR (KBr): v = 3396, 1725, 1685, 1635, 1598, 1558, 1522, 1448, 1408, 1342 cm⁻¹. ¹H NMR (DMSO-*d*₆): δ 6.94 (d, J = 16 Hz, 1H), 7.52 (m, 3H), 7.65 (m, 1H), 7.69 (m, 3H), 7.83 (m, 1H), 7.87 (m, 2H), 7.99 (m, 1H), 8.25 (m, 2H), 10.59 (s, 1H), 11.31 (s, 1H). MS (EI): *m*/*z* 59 (100), 72 (46), 69 (39), 73 (35), 83 (27), 105 (24), 483 (10) [M⁺]. Anal. calcd for C₂₄H₁₆F₃N₃O₅: C, 59.63; H, 3.34; N, 8.69; found: C, 59.83; H, 3.59; N, 8.95.

N-(4-Amino-3-benzoylphenyl)-4-nitrocinnamic acid amide (8). N-[3-Benzoyl-4-(trifluoroacetylamino)phenyl]-4nitrocinnamic acid amide (7) (1.162 g, 2.4 mmol) was dissolved in a 1:1 mixture of dioxane/satd K₂CO₂ solution (30 mL) and refluxed for 3 h. Then, the solution was diluted with water and extracted with EtOAc (3 \times 50 mL). The combined organic extracts were thoroughly washed with water, brine and dried over MgSO₄. The residue obtained after removal of the solvent was recrystallized from toluene. Yield 0.790 g (85%); mp 242 °C. IR (KBr): v=3397, 1725, 1685, 1635, 1598, 1556, 1519, 1448, 1411, 1342 cm⁻¹. ¹H NMR (DMSO d_6): δ 6.93 (d, J = 16 Hz, 1H), 7.56 (m, 2H), 7.63 (m, 3H), 7.71 (m, 1H), 7.79 (m, 1H), 7.86 (m, 2H), 8.28 (m, 2H), 10.03 (s, 1H). MS (EI): m/z 387 (100) [M⁺], 211 (50), 212 (46), 388 (25), 176 (11), 193 (10), 105 (6), 213 (6), 102 (6), 77 (5), 166 (5), 130 (4).

N-[3-Benzoyl-4-[(4-trifluormethylphenyl)acetylamino]phenyl]-4-nitrocinnamic acid amide (4g). From 2-(4-trifluoromethylphenyl)acetyl chloride (0.156 g, 0.7 mmol) and N-(4-amino-3-benzoylphenyl)-4-nitrocinnamic acid amide (8) (271 mg, 0.7 mmol) according to general procedure 1. Yield 0.293 g (73%); mp 231 °C. IR (KBr): v = 3439, 3072, 2924, 1685, 1668, 1633, 1597, 1550, 1514, 1448, 1403, 1341, 1291 cm⁻¹. ¹H NMR (DMSO- d_6): δ 3.50 (s, 2H), 6.93 (d, J = 16 Hz, 1H), 7.29 (m, 2H), 7.43(m, 2H), 7.54 (m, 4H), 7.64 (m, 3H), 7.74 (m, 1H), 7.83 (m, 2H), 7.88 (m, 1H), 8.23 (m, 2H), 10.11 (s, 1H), 10.42 (s, 1H). MS (EI): *m*/*z* 146 (100), 573 (51) [M⁺], 212 (42), 211 (41), 176 (40), 387 (28), 159 (28), 118 (23), 398 (19), 129 (19), 105 (18), 574 (18). Anal. calcd for C₃₁H₂₂F₃N₃O₅: C: 64.92; H: 3.82; N: 7.33; found: C: 64.79; H: 3.98; N: 7.38.

N-[3-Benzoyl-4-(4-biphenylylacetylamino)phenyl]-4-nitrocinnamic acid amide (4h). From 4-nitrocinnamoyl chloride (211 mg, 1.0 mmol) and *N*-(4-amino-2benzoylphenyl)-(4-biphenylyl)acetamide (406 mg, 1.0 mmol) according to general procedure 1. Yield 420 mg (72%); mp 239 °C. IR (KBr): v = 3427, 3066, 1686, 1658, 1636, 1599, 1554, 1516, 1401, 1339, 1287 cm⁻¹. ¹H NMR (DMSO- d_6): δ 4.94 (s, 1H), 6.87 (d, J = 16 Hz, 1H), 7.07 (m, 4H), 7.13 (m, 2H), 7.19 (m, 4H), 7.38 (m, 2H), 7.53 (m, 1H), 7.57 (m, 1H), 7.61 (m, 2H), 7.71 (m, 1H), 7.77 (m, 1H), 7.79 (m, 1H), 7.82 (m, 1H), 8.19 (m, 2H), 10.22 (s, 1H), 10.37 (s, 1H). MS (EI): m/z 581 (29) [M⁺], 414 (100), 182 (32), 105 (29), 415 (24), 265 (22). Anal. calcd for $C_{36}H_{27}N_3O_5$: C, 74.34; H, 4.68; N, 7.22; found: C, 74.15; H, 4.81; N, 7.28.

N-(2-Benzoyl-4-nitrophenyl)-2-(2-bromophenyl)acetamide (2i). From 2-amino-5-nitrobenzophenone (0.969 g, 4.0 mmol) and 2-(2-bromophenyl)acetyl chloride (0.935 g, 4.0 mmol) according to general procedure 1. The product crystallized upon cooling and was recrystallized from EtOH. Yield 1.023 g (58%); mp 96 °C. IR (KBr): v = 3203, 3108, 1701, 1642, 1615, 1597, 1579, 1539, 1506, 1442, 1411, 1348 cm⁻¹. ¹H NMR (CDCl₃): δ 3.96 (s, 2H), 7.23 (m, 1H), 7.37 (m, 1H), 7.41 (m, 1H), 7.52 (m, 2H), 7.60 (m, 1H), 11.01 (s, 1H). MS (EI): m/z 359 (100), 269 (43), 169 (32), 171 (32), 105 (29), 191 (26), 77 (22), 438 (0.5) [M⁺], 440 (0.5, M⁺ + 2). Anal. calcd for C₂₁H₁₅BrN₂O₄: C, 57.42; H, 3.44; N, 6.38; found: C, 57.54; H, 3.56; N, 6.58.

N-(4-Amino-2-benzoylphenyl)-2-(2-bromophenyl)acetamide (3i). As described for compound 6 from *N*-(2-benzoyl-4-nitrophenyl)-2-(2-bromophenyl)acetamide (2m) (1.008 g, 2.3 mmol) and $SnCl_2 \times 2H_2O$ (2.58 g). Yield 0.847 g (87%); Oil. IR (KBr): v = 3438, 3357, 3282, 1658, 1594, 1559, 1518, 1471, 1446, 1434, 1325 cm⁻¹. ¹H NMR (CDCl₃): δ 3.83 (s, 4H), 6.73(d, J = 3 Hz, 1H), 6.85 (dd, J = 3, 7 Hz, 1H), 7.15 (m, 1H), 7.31 (m, 1H), 7.36 (m, 1H), 7.44 (m, 2H), 7.56 (m, 2H), 7.65 (m, 2H), 8.26 (d, J = 9 Hz, 1H), 10.04 (s, 1H). MS (EI): m/z 212 (100), 408 (70), 410 (70), 211 (50), 409 (17) [M⁺], 41 (16), 239 (16), 213 (15), 105 (14), 169 (9), 171 (8), 210 (8).

N-[3-Benzoyl-4-[(2-bromophenyl)acetylamino]phenyl]-4nitrocinnamic acid amide (4i). From 4-nitrocinnamoyl chloride (211 mg, 1.0 mmol) and *N*-(4-amino-2-benzoylphenyl)-2-(2-bromophenyl)acetamide (3m) (409 mg, 1.0 mmol) according to general procedure 1. Yield 403 mg (69%); mp 248 °C. IR (KBr): v = 3432, 1686, 1631, 1596, 1541, 1507, 1443, 1403, 1340 cm⁻¹. ¹H NMR (DMSO-*d*₆): δ 3.57 (s, 2H), 6.91 (d, *J* = 16 Hz, 1H), 7.16 (m, 2H), 7.26 (m, 2H), 7.51 (m, 3H), 7.62 (m, 1H), 7.66 (m, 4H), 7.77 (m, 1H), 7.82 (m, 2H), 7.88 (m, 1H), 8.23 (m, 2H), 10.08 (s, 1H), 10.39 (s, 1H). MS (EI): *m/z* 44 (100), 73 (76), 69 (56), 71 (43), 129 (38), 585 (8, M⁺ + 2), 583 (8) [M⁺]. Anal. calcd for C₃₀H₂₂BrN₃O₅: C: 61.66; H: 3.79; N: 7.19; found: C: 62.06; H: 3.94; N: 7.21.

N-[3-Benzoyl-4-[(2-trifluormethylphenyl)acetylaminolphenyl]-4-nitrocinnamic acid amide (4j). From (2-trifluoromethylphenyl)acetyl chloride (0.156 g, 0.7 mmol) and *N*-(4-amino-3-benzoylphenyl)-4-nitrocinnamic acid amide (8) (271 mg, 0.7 mmol) according to general procedure 1. Yield 0.271 g (72%); mp 224 °C. IR (KBr): v = 3431, 1686, 1665, 1637, 1597, 1559, 1512, 1403, 1342, 1317, 1292 cm⁻¹. ¹H NMR (DMSO-*d*₆): δ 3.64 (s, 2H), 6.94 (d, *J* = 16 Hz, 1H), 7.28 (m, 1H), 7.45 (m, 1H), 7.52 (m, 2H), 7.57 (m, 1H), 7.65 (m, 3H), 7.69 (m, 2H), 7.80 (m, 1H), 7.86 (m, 2H), 7.91 (m, 1H), 8.27 (m, 2H), 10.10 (s, 1H), 10.42 (s, 1H). MS (EI): *m*/*z* 146 (100), 212 (60), 73 (60), 84 (53), 211 (51), 159 (41), 105 (41), 91 (38), 129

(35), 573 (27) [M⁺]. Anal. calcd for $C_{31}H_{22}F_3N_3O_5$: C: 64.92; H: 3.82; N: 7.33; found: C: 64.79; H: 4.19; N: 7.26.

N-[3-Benzoyl-4-(1-naphthylacetylamino)phenyl]-4-nitrocinnamic acid amide (4k). From 4-nitrocinnamoyl chloride (211 mg, 1.0 mmol) and N-(4-amino-2benzoylphenyl)-1-naphthylacetamide (380 mg, 1.0 mmol) according to general procedure 1. Yield 494 mg (89%); mp 229 °C. IR (KBr): v = 3420, 3062, 1663, 1597, 1557, 1512, 1402, 1341, 1237 cm⁻¹. ¹H NMR (DMSO d_6 : δ 3.92 (s, 2H), 6.92 (d, J = 16 Hz, 1H), 7.31 (m, 1H), 7.40 (m, 1H), 7.48 (m, 4H), 7.61 (m, 2H), 7.69 (m, 3H), 7.81 (m, 2H), 7.84 (m, 2H), 7.88 (m, 2H), 7.93 (m, 1H), 8.25 (m, 2H), 10.19 (s, 1H), 10.40 (s, 1H). MS (EI): m/z 555 (11) [M⁺], 44 (100), 387 (86), 73 (81), 141 (70), 129 (54), 256 (51), 212 (43), 414 (36), 105 (29). Anal. calcd for C₃₄H₂₅N₃O₅: C, 73.50; H, 4.54; N, 7.56; found: C, 73.29; H, 4.60; N, 7.44.

N-[3-Benzoyl-4-(2-naphthylacetylamino)phenyl]-4-nitrocinnamic acid amide (4l). From 4-nitrocinnamoyl chloride (211 mg, 1.0 mmol) and *N*-(4-amino-2benzoylphenyl)-2-naphthylacetamide (380 mg, 1.0 mmol). Yield 272 mg (49%); mp 225 °C. IR (KBr): v = 3297, 3063, 1686, 1663, 1595, 1550, 1507, 1402, 1341, 1290 cm⁻¹. ¹H NMR (DMSO-*d*₆): δ 3.57 (s, 2H), 6.91 (d, *J* = 16 Hz, 1H), 7.24 (m, 1H), 7.44 (m, 4H), 7.55 (m, 1H), 7.60 (m, 3H), 7.65 (m, 2H), 7.76 (m, 3H), 7.82 (m, 3H), 7.87 (m, 1H), 8.23 (m, 2H), 10.12 (s, 1H), 10.39 (s, 1H). MS (EI): *m*/*z* 555 (9) [M⁺], 387 (100), 212 (98), 211 (71), 141 (51), 105 (33), 238 (27), 414 (21). Anal. calcd for C₃₄H₂₅N₃O₅: C, 73.50; H, 4.54; N, 7.56; found: C, 73.20; H, 4.69; N, 7.55.

N-[3-Benzoyl - 4 - (1 - naphthoylamino)phenyl] - 4 - nitrocinnamic acid amide (4m). From 4-nitrocinnamoyl chloride (0.211 g, 1.0 mmol) and *N*-(4-amino-2-benzoylphenyl)-1-naphthoyl amide (0.366 g, 1.0 mmol) according to general procedure 1. Yield 0.380 g (70%); mp 230 °C. IR (KBr): v = 3427, 1680, 1633, 1596, 1514, 1402, 1341, 1292 cm⁻¹. ¹H NMR (DMSO-*d*₆): δ 6.96 (d, *J* = 16 Hz, 1H), 7.28 (m, 1H), 7.48 (m, 2H), 7.51 (m, 3H), 7.62 (m, 1H), 7.67 (m, 2H), 7.77 (m, 2H), 7.86 (m, 3H), 7.92 (m, 1H), 7.98 (m, 2H), 7.99 (m, 1H), 8.25 (m, 2H), 10.47 (s, 1H), 10.57 (s, 1H). MS (EI): *m*/*z* 541 (16) [M⁺], 155 (100), 127 (56), 63 (33), 366 (10). Anal. calcd for C₃₃H₂₃N₃O₅: C, 73.19; H, 4.28; N, 7.76; found: C, 72.92; H, 4.46; N, 7.51.

N-(2-Benzoyl-4-nitrophenyl)-2-naphthoyl amide (2n). From 2-amino-5-nitrobenzophenone (0.726 g, 3.0 mmol) and 2-naphthoyl chloride (0.570 g, 3.0 mmol) according to general procedure 1. The products crystallized upon cooling and were recrystallized from EtOH. Yield 0.475 g (40%); mp 211 °C. IR (KBr): v=3447, 3219, 1695, 1630, 1579, 1559, 1546, 1509, 1470, 1426, 1340, 1285 cm⁻¹. ¹H NMR (CDCl₃): δ 7.51 (m, 4H), 7.61 (m, 1H), 7.68 (m, 2H), 7.79 (m, 1H), 7.91 (m, 1H), 7.97 (m, 1H), 8.03 (m, 1H), 8.42 (m, 1H), 8.50 (m, 1H), 8.53 (m, 1H), 9.11 (m, 1H), 12.34 (s, 1H). MS (EI): m/z 155 (100), 396 (41) [M⁺], 156 (13), 397 (11), 366 (4), 291 (3), 127 (2), 398 (1), 367 (1), 157 (1). Anal. calcd for $C_{24}H_{16}N_2O_4{:}$ C: 72.72; H: 4.07; N: 7.07; found: C: 72.55; H: 4.22; N: 6.99.

N-[(4-Amino-2-benzoyl)phenyl]-2-naphthoyl amide (3n). As described for compound **6** from *N*-(2-benzoyl-4-nitrophenyl)-2-naphthoyl amide (**2b**) (0.450 g, 1.1 mmol) and SnCl₂×2H₂O (1.25 g). Yield 0.385 g (95%); mp 81 °C. IR (KBr): v = 3433, 3233, 1661, 1620, 1595, 1529, 1506, 1433, 1321, 1305 cm⁻¹. ¹H NMR (CDCl₃): δ 3.63 (s, 2H), 6.84 (m, 1H), 6.94 (m, 1H), 7.43 (m, 2H), 7.50 (m, 3H), 7.68 (m, 2H), 7.81 (m, 1H), 7.87 (m, 1H), 7.94 (m, 1H), 8.00 (m, 1H), 8.47 (m, 1H), 8.617 (m, 1H), 11.53 (s, 1H). MS (EI): *m*/*z* 155 (100), 127 (71), 366 (43) [M⁺], 59 (42), 41 (25), 43 (23), 57 (23), 44 (22), 55 (21), 771 (19), 105 (18), 211 (15). C₂₄H₁₈N₂O₂

N-[3-Benzoyl-4-(2-naphthoylamino)phenyl]-4-nitrocinnamic acid amide (4n). From 4-nitrocinnamoyl chloride (211 mg, 1.0 mmol) and *N*-(4-amino-2-benzoylphenyl)-2naphthoyl amide (366 mg, 1.0 mmol) according to general procedure 1. Yield: 108 mg (20%); mp 262 °C. IR (KBr): v = 3339, 3059, 1665, 1631, 1596, 1550, 1517, 1403, 1341, 1295 cm⁻¹. ¹H NMR (DMSO-*d*₆): δ 6.98 (d, J = 16 Hz, 1H), 7.49 (m, 2H), 7.59 (m, 3H), 7.68 (d, J = 16 Hz, 1H), 7.76 (m, 3H), 7.86 (m, 3H), 7.91 (m, 1H), 7.97 (m, 5H), 8.22 (m, 1H), 8.27 (m, 2H), 10.51 (s, 1H), 10.72 (s, 1H). MS (EI): *m*/*z* 541 (22) [M⁺], 155 (100), 127 (46), 73 (32), 366 (10). Anal. calcd for C₃₃H₂₃N₃O₅: C, 73.19; H, 4.28; N, 7.76; found: C, 73.19; H, 4.27; N, 7.66.

Enzyme preparation

Yeast farnesyltransferase was used as a fusion protein to glutathione S-transferase at the N-terminus of the β -subunit. Farnesyltransferase was expressed in *Escherichia coli* DH5 α grown in LB media containing ampicillin and chloramphenicol for co-expression of pGEX-DPR1 and pBC-RAM2 for farnesyltransferase production.²⁴ The enzyme was purified by standard procedures with glutathione–agarose beads for selective binding of the target protein.

Farnesyltransferase assay

The assay was conducted as described.²³ Farnesylpyrophosphate (FPP) was obtained as a solution of the ammonium salt in methanol-10 mM aqueous NH₄Cl (7:3) from Sigma-Aldrich. Dansyl-GlyCysValLeuSer (Ds-GCVLS) was custom synthesized by ZMBH, Heidelberg, Germany. The assay mixture (100 µL volume) contained 50 mM Tris-HCl pH 7.4, 5 mM MgCl₂, 10 µM ZnCl₂, 5 mM dithiothreitol (DTT), 7 µM Ds-GCVLS, 20 µM FPP and 5 nmol (approx) yeast GSTfarnesyltransferase and 1% of various concentrations of the test compounds dissolved in dimethylsulfoxide (DMSO). The progress of the enzyme reaction was followed by monitoring the enhancement of the fluorescence emission at 505 nm (excitation 340 nm). The reaction was started by addition of the enzyme and run in a Quartz cuvette thermostatted at 30°C. Fluorescence emission was recorded with a Perkin-Elmer LS50B spectrometer. IC₅₀ values (concentrations

resulting in 50% inhibition) were calculated from initial velocity of three independent measurements of four to five different concentrations of the respective inhibitor.

Acknowledgements

The pGEX-DPR1 and pBC-RAM2 plasmids were kindly provided by Prof. F. Tamanoi (UCLA). Financial support by the Deutsche Pharmazeutische Gesellschaft is gratefully acknowledged. I. S. wishes to thank Prof. Dr. S. Grabley for generous support and Ms. S. Egner for technical assistance.

References and Notes

- 1. Leonard, D. M. J. Med. Chem. 1997, 40, 2971.
- 2. Qian, Y. S.; Sebti, M.; Hamilton, A. D. *Biopolymers* 1997, 43, 25.
- 3. Williams, T. M. Exp. Opin. Therp. Pat. 1998, 8, 553.
- 4. Williams, T. M. Exp. Opin. Therp. Pat. 1999, 9, 1263.
- 5. Williams, T. M.; Dinsmore, C. J. Adv. Med. Chem. 1999, 4, 273.
- 6. Wittinghofer, A.; Waldmann, H. Angew. Chem. 2000, 112,
- 4360. Austin, S Angew. Chem., Int. Ed. 2000, 39, 4192.
- 7. Zhang, F. L.; Casey, P. J Annu. Rev. Biochem. 1996, 65, 241.
- 8. Fu, H.-W.; Casey, P. J. Rec. Prog. Hormon Res. 1999, 54, 315.
- 9. Cox, A. D.; Der, C. J. Biochim. Biophys. Acta 1997, 1333, F51.
- 10. Du, W.; Lebowitz, P. F.; Prendergast, G. C. Mol. Cell. Biol. 1999, 19, 1831.
- 11. Prendergast, G. C. Curr. Opin. Cell Biol. 2000, 12, 166.
- 12. Oliff, A. Biochim. Biophys. Acta 1999, 1423, C19.
- 13. Strickland, C. L.; Windsor, W. T.; Syto, R.; Wang, L.;

Bond, R.; Wu, R.; Schwartz, J.; Le, H. V.; Beese, L. S.; Weber, P. C. *Biochemistry* **1998**, *37*, 16601.

- 14. Reynolds, J. E. F., Ed. *Martindale The Extra Pharmacopeia*. 31st ed.; Royal Pharmaceutical Society of Great Britain: London, 1996, p. 821.
- 15. Hunt, J. T.; Lee, V. G.; Leftheris, K.; Seizinger, B.; Carboni, J.; Mabus, J.; Ricca, C.; Yan, N.; Manne, V. J. Med. Chem. **1996**, *39*, 353.
- 16. O'Connor, S. J.; Barr, K. J.; Wang, L.; Sorensen, B. K.; Tasker, A. S.; Sham, H.; Ng, A.-C.; Cohen, J.; Devine, E.; Cherian, S.; Saeed, B.; Zhang, H.; Lee, J. Y.; Warner, R.; Tahir, S.; Kovar, P.; Ewing, P.; Alder, J.; Mitten, M.; Leal, J.; Marsh, K.; Bauch, J.; Hoffman, D. J.; Sebti, S. M.; Rosenberg, S. H. J. Med. Chem. **1999**, *42*, 3701.
- 17. Augeri, D. J.; Janowick, D.; Kalvin, D.; Sullivan, G.; Larsen, J.; Dickman, D.; Ding, H.; Cohen, J.; Lee, J.; Warner, R.; Kovar, P.; Cherian, S.; Saeed, B.; Zhang, H.; Tahir, S.; Ng, S.-C.; Sham, H.; Rosenberg, S. H. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 1069.
- 18. Breslin, M. J.; deSolms, J.; Giuliani, E. A.; Stokker, G. E.; Graham, S. L.; Pompliano, D. L.; Mosser, S. D.; Hamilton, K. A.; Hutchinson, J. H. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 3311.
- 19. Ciccarone, T. M.; MacTough, S. C.; Williams, T. M.; Dinsmore, C. J.; O'Neill, T. J.; Shah, D.; Culberson, J. C.; Koblan, K. S.; Kohl, N. E.; Gibbs, J. B.; Oliff, A. I.; Graham, S. L.; Hartman, G. D. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 1991. 20. Schlitzer, M.; Sattler, I.; Dahse, H.-M. Arch. Pharm. Pharm. Med. Chem. **1999**, *332*, 124.
- 21. Schlitzer, M.; Böhm, M.; Mitsch, A.; Sakowski, J.; Wiβ ner, P.; Sattler, I. Short communication presented at the annual meeting of the German Pharmaceutical Society, Münster, Oct 5–7, 2000; *Abstr.: Arch. Pharm. Pharm. Med. Chem.* 2000, 333 (Suppl. 2), 12; D 1.62.
- 22. Sakowski, J.; Böhm, M.; Sattler, I.; Dahse, H.-M.; Schlitzer, M. J. Med. Chem. 2001, 44, 2886.
- 23. Pompliano, D. L.; Gomez, R. P.; Anthony, N. J. J. Am. Chem. Soc. 1992, 114, 7945.
- 24. Del Villar, K.; Mitsuzawa, H.; Yang, W.; Sattler, I.; Tamanoi, F. J. Biol. Chem. 1997, 272, 680.
- 25. Manuscript in preparation.