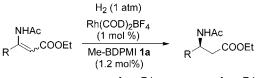
LETTERS 2002 Vol. 4, No. 14 2429–2431

ORGANIC

Rh(I)-Catalyzed Enantioselective Hydrogenation of (*E*)- and (*Z*)-β-(Acylamino)acrylates Using 1,4-Bisphosphine Ligands under Mild Conditions


Sang-gi Lee* and Yong Jian Zhang

Life Sciences Division, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650, Korea

sanggi@kist.re.kr

Received May 15, 2002

ABSTRACT

ee from Z-isomers ≥ ee from E-isomers

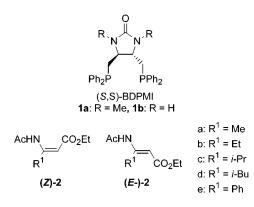
Rh–Me-BDPMI (1a) complex can be an effective catalyst for the hydrogenations of (*E*)- and (*Z*)- β -(acylamino)acrylates, in which the *Z*-isomers hydrogenated with the same or even higher ee values than the corresponding *E*-isomers. The conversion yield and enantioselectivity of *E*- and *Z*-isomers were largely dependent on the solvent, and thus, the *E*-isomers were hydrogenated more effectively in CH₂Cl₂, whereas the *Z*-isomers were hydrogenated more effectively in polar MeOH solvent.

Optically pure β -amino acids are crucial structural features of numerous biologically active natural products as well as important building blocks for the synthesis of β -peptides and β -lactam antibiotics.¹ Several stoichiometric chiral auxilaries and catalytic methods have been developed to make chiral β -amino acids.² Among these methods, catalytic asymmetric hydrogenation of β -dehydroamino acid derivatives potentially offers one of the most convenient routes. However, in striking contrast to α -amino acids, only a few chiral bisphosphine metal complexes (i.e., Rh(I) complexes of BPPM,³ BICP,⁴ and DuPhos^{4,5} and MiniPhos⁶ and Ru(II) complex of BI-NAP⁷) have been applied as catalysts for the asymmetric hydrogenation of β -acylamino acrylates. Moreover, the intrinsic problem consists of the different catalytic behaviors attributed to Z- and E-isomeric substrates. In general, an E-isomer hydrogenated with higher enantioselectivity than the corresponding Z-isomer. For examples, the Ru–BINAP catalyst hydrogenated the (E)-methyl 3-acetamido-2-butenoate (E)-**2a** in 96% ee, while its Z-isomer, (Z)-**2a**, hydrogenated in only 5% ee with a different configuration.⁷ Recently, Zhang et al. reported an important breakthrough on the

^{(1) (}a) Hoekstra, W. J., Ed. The Chemistry and Biology of β -Amino Acids. *Curr. Med. Chem.* **1999**, 6, 905. (b) *Enantioselective Synthesis of Amino Acids*; Juaristi, E., Ed.; Wiley-VCH: New York, 1997. (c) Cole, D. C. *Tetrahedron* **1994**, *50*, 9517. (d) Gellman, S. H. *Acc. Chem. Res.* **1998**, *31*, 173.

^{(2) (}a) Tang, T.; Ellman, J. A. J. Org. Chem. 1999, 64, 12. (b) Sibi, M.
P.; Shay, H. J.; Liu, M.; Jasperse, C. P. J. Am. Chem. Soc. 1998, 120, 6615.
(c) Kobayashi, S.; Ishitani, H.; Ueno, M. J. Am. Chem. Soc. 1998, 120, 431. (d) Chung, X. X. Tetrahedron: Asymmetry 1997, 8, 5 (e) Dumas, F.; Mezrhab, B.; d'Angelo, J. J. Org. Chem. 1996, 61, 2293. (f) Davis, F. A.; Szewczyk, J. M.; Reddy, R. E. J. Org. Chem. 1996, 61, 2222. (g) Enders, D.; Wahl, H.; Bettray, W. Angew. Chem., Int. Ed. Engl. 1995, 34, 455.

^{(3) (}a) Achiwa, K.; Soga, T. *Tetrahedron Lett.* **1978**, *13*, 1119. (b) Furukawa, M.; Okawara, T.; Noguchi, Y.; Terawaki, Y. *Chem. Pharm. Bull.* **1979**, *27*, 2223.


⁽⁴⁾ Zhu, G.; Chen, Z.; Zhang, X. J. Org. Chem. 1999, 64, 6907.

⁽⁵⁾ Heller, D.; Holz, J.; Drexler, H.-J.; Lang, J.; Drauz, K.; Krimmer, H.-p.; Börner, A. J. Org. Chem. 2001, 66, 6816

⁽⁶⁾ Yasutake, M.; Gridnev, I. D.; Higashi, N.; Imamoto, T. Org. Lett. 2001, 3, 1701.

⁽⁷⁾ Lubell, W. D.; Kitamura, M.; Noyori, R. Tetrahedron: Asymmetry 1991, 2, 543.

enantioselective hydrogenation of (Z)-alkyl 3-acetamido-2butenoates with Rh(I)-BICP complex. In the reduction of (E)-2a and (Z)-2a, 96% ee and 88% ee, respectively, were observed in nonpolar toluene solvent.⁴ It has been also reported that the rate of hydrogenation of (Z)-2a using Rh(I)-Me-DuPhos catalyst was dramatically increased in a polar MeOH solvent.⁵ Nevertheless, the enantioselectivity obtained from (Z)-2a (87.8% ee) was still lower than that obtained from (E)-2a (98.2% ee). Therefore, the development of a catalytic system exhibiting high enantioselectivity for (Z)-2, which formed as a major isomer in most synthetic protocols, is important. Here, we report enantioselective hydrogenation of ethyl (E)- and (Z)- β -(acylamino)acrylates 2 using Rh(I)-(S,S)-BDPMI 1a, in which the Z-isomers provided the same or even higher ee values than the corresponding E-isomers.

Quite recently, we have demonstrated that Rh(I) complexes of 1,4-bisphosphine ligands bearing an imidazolidin-2-one backbone ((S,S)-BDPMI 1a) are highly enantioselective catalyst for hydrogenation of an isomeric mixture of E- and Z-enamides.⁸ Zhang's Rh(I)-BICP⁹ and Burk's Rh(I)-DuPhos¹⁰ catalysts also effectively hydrogenated an isomeric mixture of Z/E-enamides. Prompted by these results, we have applied the Rh(I)-BDPMI catalyst to hydrogenation of ethyl 2-acylaminoacrylates 2a-e, which can be conveniently made according to the reported procedure.^{3,7} The *E*- and *Z*-isomers of 2a-d can be separated by silica gel column chromatography except 2e. To search for the optimal conditions, we have examined the hydrogenation of ethyl (E)- and (Z)-3acetoamido-2-butenoate (2a) using 1 mol % of [Rh((S,S)-Me-BDPMI (1a)(COD))BF₄] as precatalyst in various organic solvents under 14.7 and 100 psi of H₂ pressure (Table 1). We were very pleased to find that the Z-isomer of 2a was hydrogenated with almost the same or even higher enantioselectivity than those obtained from the E-isomer of **2a.** It is important to note that the conversion yields of (E)-**2a** and (Z)-**2a** were largely dependent on the solvent used and H_2 pressure. For instance, (E)-2a could be hydrogenated completely using Rh-1a catalyst in CH₂Cl₂ solvent at both

Table 1. Rh-BDPMI-Catalyzed Asymmetric Hydrogenation of (E)- and/or (Z)- 2^a

	H ₂	
NHAc	Rh(COD) ₂ BF ₄	NHAc
R ¹ COOEt -	BDPMI rt,	R ¹ COOEt
2		3

entry	ligand	2	solvent	p (psi)	time (h)	convn ^b (%)	% ee ^c (conf) ^d
1	1a	(E)- 2a	CH ₂ Cl ₂	14.7	12	100	94.6 (R)
2	1a	(<i>E</i>)- 2a	CH_2Cl_2	100	4	100	93.2 (R)
3	1a	(<i>Z</i>)-2a	CH_2Cl_2	14.7	12	66.1	94.6 (R)
4	1a	(<i>Z</i>)-2a	CH_2Cl_2	100	4	100	95.0 (<i>R</i>)
5	1a	(<i>E</i>)- 2a	THF	14.7	12	11.1	94.1 (R)
6	1a	(<i>E</i>)- 2a	THF	100	4	58.4	92.3 (R)
7	1a	(<i>Z</i>)-2a	THF	14.7	12	21.0	97.4 (R)
8	1a	(<i>Z</i>)-2a	THF	100	4	86.4	95.3 (<i>R</i>)
9	1a	(<i>E</i>)- 2a	acetone	14.7	12	94.6	91.0 (R)
10	1a	(<i>E</i>)- 2a	acetone	100	4	100	92.6 (R)
11	1a	(<i>Z</i>)-2a	acetone	14.7	12	57.3	93.4 (R)
12	1a	(<i>Z</i>)-2a	acetone	100	4	100	93.2 (R)
13	1a	(<i>E</i>)- 2a	IPA	14.7	12	58.8	94.3 (R)
14	1a	(<i>E</i>)- 2a	IPA	100	4	100	92.6 (R)
15	1a	(<i>Z</i>)-2a	IPA	14.7	12	44.4	95.9 (R)
16	1a	(<i>Z</i>)-2a	IPA	100	4	100	90.8 (R)
17	1a	(E)- 2a	MeOH	14.7	12	100	92.3 (R)
18	1a	(<i>E</i>)- 2a	MeOH	100	4	100	91.5 (R)
19	1a	(<i>Z</i>)-2a	MeOH	14.7	12	100	94.6 (R)
20	1a	(<i>Z</i>)-2a	MeOH	100	4	100	91.3 (R)
21^{e}	1a	(<i>E/Z</i>)- 2a	CH_2Cl_2	14.7	12	52.0	95.1 (R)
22^{e}	1a	(<i>E/Z</i>)- 2a	CH_2Cl_2	100	4	100	92.6 (R)
23^{e}	1a	(<i>E/Z</i>)- 2a	MeOH	14.7	12	100	93.4 (R)
24	1b	(<i>E</i>)- 2a	CH_2Cl_2	14.7	12	100	87.0 (R)
25	1b	(<i>Z</i>)-2a	MeOH	14.7	12	100	70.1 (R)
26	(S,S)-DIOP	(<i>E</i>)- 2a	CH_2Cl_2	14.7	12	100	83.7 (R)
27	(<i>S</i> , <i>S</i>)-DIOP	(<i>Z</i>)-2a	MeOH	14.7	12	100	33.3 (R)
28	1a	(<i>E</i>)- 2b	CH_2Cl_2	14.7	12	100	94.0 (R)
29	1a	(<i>Z</i>)- 2b	MeOH	14.7	12	100	94.0 (R)
30 ^e	1a	(<i>E</i> / <i>Z</i>)- 2b	MeOH	14.7	12	100	93.0 (R)
31	1a	(E)-2c	CH_2Cl_2	14.7	12	100	92.0 (S)
32	1a	(Z)-2c	MeOH	14.7	12	100	91.9 (<i>S</i>)
33^e	1a	(<i>E</i> / <i>Z</i>)-2c	MeOH	14.7	12	100	91.2 (<i>S</i>)
34^{f}	1a	(<i>E</i>)-2d	CH_2Cl_2	14.7	12	100	90.3 (R)
35^{f}	1a	(<i>Z</i>)-2d	MeOH	14.7	12	100	90.1 (R)
36 ^{e,f}	1a	(<i>E</i> / <i>Z</i>)-2d	MeOH	14.7	12	100	89.4 (R)
37 ^g	1a	(E/Z)-2e	MeOH	40	12	100	75.6 (S)

^{*a*} [Rh(COD)₂]BF₄/ligand/substrate = 0.01:0.012:1. ^{*b*} Determined by ¹H NMR. ^{*c*} Determined by chiral GC using CP-Chirasil-Dex CB column. ^{*d*} Determined by comparing the sign of optical rotations with that of the reported ones.⁴ ^{*e*} E/Z = 1:1. ^{*f*} Determined by chiral HPLC using Daicel Chiracel OD-H column. ^{*s*} E/Z = 1:1.7.

14.7 psi (94.6% ee, entry 1) and 100 psi (93.2% ee, entry 2) of H₂ pressures in high enantioselectivities. However, the corresponding Z-isomer, (Z)-**2a**, was hydrogenated at 14.7 psi in only 66.1% conversion yield, but the same enantioselectivity (94.6% ee, entry 3) with (E)-**2a** was observed. As the H₂ pressure was increased, both the conversion (100%) and enantioselectivity (95.0% ee) increased (entry 4). This is the first asymmetric hydrogenation of (Z)- β -(acylamino)acrylates exhibiting higher enantioselectivity than the corresponding E-isomers. In THF solvent, both (E)- and (Z)-**2a** were not completely converted at 14.7 and 100 psi of H₂ pressures, but the enantioselectivity of (Z)-**2a** was still higher than those obtained from (E)-**2a** (compare entries 5 vs 7 and 6 vs 8). Similar catalytic activities were observed in acetone and *i*-PrOH solvents at 14.7 psi, but the conver-

⁽⁸⁾ Lee, S.-g.; Zhang, Y. J.; Song, C. E.; Lee, J. K.; Choi, J. H. Angew. Chem., Int. Ed. 2002, 41, 847.

^{(9) (}a) Zhu, G.; Cao, P.; Jiang, Q.; Zhang, X. J. Am. Chem. Soc. 1997, 119, 1799.
(b) Zhu, G.; Zhang, X. J. Org. Chem. 1998, 63, 9560.
(10) Burk, M. J.; Wang, Y. M.; Lee, J. R. J. Am. Chem. Soc. 1996, 118,

⁽¹⁰⁾ Burk, M. J.; Wang, Y. M.; Lee, J. R. J. Am. Chem. Soc. **1996**, 118 5142.

sions were completed when the H₂ pressure was increased to 100 psi (entries 9–16). Interestingly, both of (E)-and (Z)-**2a** were completely hydrogenated in MeOH at 14.7 psi [(E)-2a: 92.3% ee, entry 17; (Z)-2a: 94.6% ee, entry 19] and 100 psi (entries 18 and 20) within 12 and 4 h, respectively. However, a 1:1 mixture of (E)/(Z)-2a was hydrogenated in CH₂Cl₂ at 14.7 psi in only 52% of conversion with 95.1% ee (entry 21). In ¹H NMR analysis, the remained starting material was the Z-isomer, indicating that the E-isomer is more reactive in CH₂Cl₂ solvent. When the same reaction was conducted at 100 psi of H₂ pressure, the conversion was completed, but the ee value decreased to 92.6% (entry 22). In contrast to the reaction in CH₂Cl₂, the hydrogenation of a 1:1 mixture of (E)/(Z)-2a in MeOH proceeded completely at 14.7 psi with 93.4% ee (entry 23). This ee value corresponds to the mean value of the individual hydrogenations of (E)-2a and (Z)-2a in MeOH solvent. These results suggested that the hydrogenation of (E)-2a in CH₂Cl₂ solvent became more effective, whereas the hydrogenation of (Z)-2a in polar MeOH solvent was more effective. Although the reason for the superiority of MeOH for the hydrogenation of the Z-isomer is not clear yet, the intramolecular hydrogen bond between the NH of acylamide and the carbonyl oxygen of ester in (Z)- β -(acylamino)acrylates, which prevents the desired bidentate coordination of the substrate to the metal as pointed by Novori,⁷ may be broken down easily in MeOH solvent and thus allow the olefin to coordinate at the metal center. We next examined the catalytic activities of Rh(I)-(S,S)-1b and Rh(I)-(S,S)-DIOP complexes for the hydrogenation of (E)-2a in CH₂Cl₂ and (Z)-2a in MeOH solvents at 14.7 psi of H₂ pressure. Both (E)-2a and (Z)-2a were completely converted to 3a with low to moderate enantioselectivities (entries 24-27). The enantioselectivity difference between the ee values obtained from hydrogenations of (E)- and (Z)-2a using ligand 1b (entries 24 and 25) is much smaller than the that obtained using (S,S)-DIOP ligand (entries 26 and 27). However, like other catalytic systems, both of these catalysts hydrogenated (E)-2a with higher enantioselectivities than the (Z)-2a.

A variety of E- and Z-isomers of ethyl β -alkyl- β -(acylamino)acrylates (2b-d) and a 1:1.7 mixture of (E)/(Z)- β -phenyl- β -(acylamino)acrylate (2e), which cannot be separated by silica gel column chromatography, were hydrogented using 1 mol % of Rh(I)-Me-BDPMI (1a) complex (entries 28-37). For E-isomers and Z-isomers, CH₂Cl₂ and MeOH solvents, respectively, and MeOH solvent for a mixture of E/Z-isomers have been used. High enantiomeric excesses have been achieved with both of the (*E*)- and (*Z*)- β -alkyl- β -(acylamino)acrylates **2a**-**d**. Compared to the ee values obtained from individual hydrogenations of E- and Z-isomers, slightly decreased enantioselectivity was observed in the hydrogenation of a 1:1 mixture of E/Z-isomer, which may be due to the decreased enantioselectivity of E-isomer in MeOH solvent. It has been also found that the enantioselectivity was slightly decreased as the size of β -alkyl substituent was increased. Moreover, as found by Zhang with

Rh–BICP catalyst, the sense of enantioselection observed for all *E*-isomers is the same as that for *Z*-isomers.⁴ Mechanistic studies by Imamoto with Rh-complexes of BisP* and MiniPhos on the hydrogenation of enamides and (*E*)- β -alkyl- β -(acylamino)acrylates indicated that the first hydrogen atom is transferred to the α -position yielding monohydrides with a β -carbon atom bound to rhodium.^{6,11} Therefore, it could be expected that the sense of enantioselection in Rh-catalyzed hydrogenation of β -alkyl- β -(acylamino)acrylates **2a**–**d** is not strongly dependent on their *E*/*Z* geometry.

In contrast to the β -alkyl-substituted prochiral compounds **2a**–**d**, the β -phenyl-substituted substrate **2e** was hydrogenated under 40 psi of H₂ pressure in only moderate enantioselectivity (75.6% ee, entry 37). It is notorious that the enantioselectivities obtained from the hydrogenation of β -aryl- β -(acylamino)acrylate such as **2e** are not higher than the β -alkyl- β -(acylamino)acrylates. During preparation of this manuscript, Zhang reported highly effective chiral orthosubstituted BINAP ligands (*o*-BINAPO), which showed extremely high enantioselectivities in Ru-catalyzed asymmetric hydrogenations of a mixture of (*E*)- and (*Z*)- β -aryl- β -(acylamino)acrylates.¹²

In summary, we have found that Rh-Me-BDPMI (2a) complex can be an effective catalyst for the hydrogenations of (E)- and (Z)- β -(acylamino)acrylates in which the Zisomers provided the same or even the higher ee values than the corresponding E-isomers. The conversion yields of Eand Z-isomers were largely dependent on the solvent. The E-isomers were hydrogenated in CH₂Cl₂ solvent more effectively, whereas the Z-isomers were hydrogenated in polar MeOH solvent. The Rh-Me-BDPMI catalyst is especially effective for hydrogenation of a 1:1 mixture of (E)/(Z)- β -alkyl- β -(acylamino)acrylates. The highly enantioselective hydrogenation provides a useful way to prepare β -alkyl substituted β -amino acids. Further study with other enamides, especially β -aryl- β -(acylamino)acrylates using other transition metal complexes of BDPMI ligands, will be explored.

Acknowledgment. This work was supported by a Korea National Center for Cleaner Production, a National Research Laboratory Program from MOST, the Center for Molecular Design and Synthesis, and KIST.

Supporting Information Available: Experimental procedures for the syntheses of $2\mathbf{a}-\mathbf{e}$ and the asymmetric hydrogenation. GC and HPLC chromatograms to determine enantiomeric excesses of $3\mathbf{a}-\mathbf{e}$. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0261884

⁽¹¹⁾ Gridnev, I. D.; Yasutake, M.; Higashi, N.; Imamoto, T. J. Am. Chem. Soc. 2001, 123, 5268.

⁽¹²⁾ Zho, Y.-G.; Tang, W.; Wang, W.-B.; Li, W.; Zhang, X. J. Am. Chem. Soc. 2002, 124, 4952.