2002 Vol. 4, No. 11 1955–1957

The Bromopentadienyl Acrylate Approach to Himbacine

Leon S.-M. Wong, Lisa A. Sharp, Natacha M. C. Xavier, Peter Turner, and Michael S. Sherburn*

School of Chemistry, University of Sydney, Sydney NSW 2006, Australia

m.sherburn@chem.usyd.edu.au

Received April 5, 2002

ABSTRACT

The syntheses of 4,4a-didehydrohimbacine and 4,4a-didehydrohimandravine are presented. Key steps include an intramolecular Diels—Alder reaction of a bromopentadienyl acrylate and Suzuki—Miyaura and Stille coupling reactions.

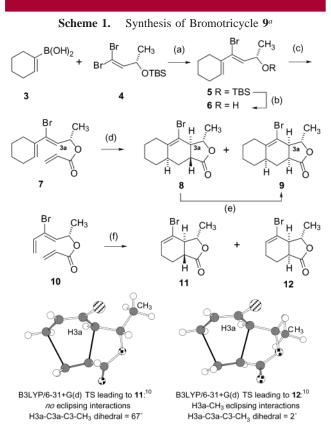
The structures of himbacine (1) and himandravine (2) (Figure 1) were reported by Pinhey, Ritchie, and Taylor in 1961.¹ These alkaloids were extracted from *Galbulimima baccata*, a species of tree found in Northern Australia and Papua New Guinea. Himbacine was subsequently found to exhibit strong, selective binding to muscarinic receptors of the M₂ subtype.² Speculation that selective presynaptic muscarinic receptor antagonists might find application in the treatment of neurodegenerative disorders such as Alzheimer's disease³ has provoked extensive synthetic efforts toward *Galbulimima* alkaloids by many groups.^{4–8}

Reported synthetic work toward himbacine to date involves the construction of ring B by way of a Diels—Alder reaction (Figure 1). Of all possible Diels—Alder-based disconnections that can be applied to the himbacine framework, a ring B

Figure 1. Synthetic approaches to himbacine involving a Diels—Alder reaction to construct the B-ring.

 $^{^{\}dagger}\,\text{To}$ whom correspondence should be addressed regarding the crystal structure.

⁽¹⁾ Pinhey, J. T.; Ritchie, E.; Taylor, W. C. Aust. J. Chem. **1961**, 14 106–134.


^{(2) (}a) Anwar-ul, S.; Gilani, H.; Cobbin, L. B. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1986**, *332*, 16–20. (b) Wang, J. X.; Roeske, W. R.; Wang, W.; Yamamura, H. I. *Brain Res.* **1988**, *446*, 155–158.

⁽³⁾ Kozikowski, A. P.; Fauq, A. H.; Miller, J. H.; McKinney, M. *Bioorg. Med. Chem. Lett.* **1992**, 2, 797–802.

^{(4) (}a) Hart, D. J.; Wu, W.-L.; Kozikowski, A. P. *J. Am. Chem. Soc.* **1995**, *117*, 9369–9370. (b) Hart, D. J.; Li, J.; Wu, W.-L.; Kozikowski, A. P. *J. Org. Chem.* **1997**, *62*, 5023–5033.

^{(5) (}a) De Baecke, G.; De Clercq, P. J. *Tetrahedron Lett.* **1995**, *36*, 7515–7518. (b) Hofman, S.; De Baecke, G.; Kenda, B.; De Clercq, P. J. *Synthesis* **1998**, 479–489. (c) Hofman, S.; Gao, L.-J.; Van Dingenen, H.; Hosten, N. G. C.; Van Haver, D.; De Clercq, P. J.; Milanesio, M.; Viterbo, D. *Eur. J. Org. Chem.* **2001**, 2851–2860.

disconnection of 4,4a-didehydrohimbacine appeared to us as the most synthetically attractive, since such a disconnection reveals an intramolecular Diels—Alder (IMDA) reaction involving an acrylate ester derivative of either a [3]-dendralene⁹ or a bromodiene. We recently reported the results of a joint synthetic-computational investigation into the feasibility of the latter approach for the preparation of himbacine,¹⁰ and herein we disclose an extension of this work to 4,4a-didehydrohimbacine and 4,4a-didehydrohimandravine.¹¹ The appearance of a paper by De Clercq and coworkers¹² prompts this preliminary report.

^a (a) Pd(PPh₃)₄ (0.10 equiv), Ba(OH)₂ (1.8 equiv), THF—MeOH−H₂O, 25 °C, 15 h, 70%; (b) Bu₄NF (1.5 equiv), THF, 25 °C, 3 h, 94%; (c) CH₂=CHCOCl (1.6 equiv), Et₃N (2.1 equiv), CH₂Cl₂, 25 °C, 0.5 h, 81%; (d) PhCl ([7]_{initial} = 10 mM), BHT (0.05 equiv), reflux, 112 h, 81%; **8:9** = 86:14; (e) DBU (1.1 equiv), CH₂Cl₂, reflux, 16 h, 97%; (f)¹⁰ PhCl ([10]_{initial} = 10 mM), BHT (0.05 equiv), reflux, 156 h, 83%; 11:12 = 81:19.

Our synthesis begins (Scheme 1) with a Suzuki-Miyaura coupling between (S)-lactic acid derived dibromoalkene $\mathbf{4}^{13}$ and cyclohexene-1-boronic acid $\mathbf{3}$, which, in line with earlier observations by Roush, save the Z-bromodiene $\mathbf{5}$

in high selectivity. Deprotection of the silyl ether and esterification of the resulting bromodienol with acryloyl chloride gave IMDA precursor 7. Dilute (10 mM) solutions of 7 in chlorobenzene undergo a highly stereoselective IMDA reaction upon heating to 132 °C for 5 days at ambient pressure to afford two cycloadducts 8 and 9 in an 86:14 ratio. Both cycloadducts possess the C3,C3a-anti-stereochemistry required for himbacine. The stereochemical outcome of the IMDA reaction of 7 mirrors that seen with the acyclic precursor 10.10 This close similarity in reaction outcome strongly suggests that the same stereocontrolling influences are at play. Thus, π -diastereofacial selectivity in these reactions is dominated by the development of destabilizing ^{1,3}A strain in transition states leading to the unseen C3,C3asyn isomers. Of the two observed C3.C3a-anti products. trans-fused exo-isomer 8 (cf. 11) is preferred over its cisfused endo-congener 9 (cf. 12) as a result of the presence of a destabilizing eclipsing interaction between the CH₃ group and H3a in the transition state leading to the latter. The major cycloaddition product 8 is readily converted into the required cis-fused isomer 9 in essentially quantitative yield on exposure to DBU.¹⁰

The D-ring-appended vinylstannane side chains required for himbacine and himandravine, **16** and **19**, respectively (Scheme 2), were prepared from the known N-Boc piperidine

^a (a) (Ph₃PCHBr₂)Br (2.0 equiv), *t*-BuOK (1.9 equiv), THF, RT, 10 min, 81%; (b) LiHMDS (1.2 equiv), THF, −78 °C − RT, 7 h, 90%; (c) Bu₃SnH (2.2 equiv), Pd₂dba₃ (0.005 equiv), PPh₃ (0.04 equiv), THF, RT, 6 h, 77%; (d) (Ph₃PCHBr₂)Br (2.0 equiv), *t*-BuOK (1.9 equiv), THF, RT, 7 h, then *n*-BuLi (5.0 equiv), −78 °C, 10 min, 78%; (e) Bu₃SnH (1.1 equiv), AIBN (0.05 equiv), PhH, reflux, 11 h, 61%.

aldehydes **13**¹⁶ and **17**^{7c,16a} through related two- and threestep sequences.¹⁷ In the case of the 2,5-*trans* diastereomer **16**, modified Corey—Fuchs reaction¹⁸ of aldehyde **13** gave

1956 Org. Lett., Vol. 4, No. 11, 2002

⁽⁶⁾ Baldwin, J. E.; Chesworth, R.; Parker, J. S.; Russell, A. T. Tetrahedron Lett. 1995, 36, 9551–9554.

^{(7) (}a) Chackalamannil, S.; Davies, R. J.; Asberom, T.; Doller, D.; Leone, D. J. Am. Chem. Soc. 1996, 118, 9812–9813. (b) Chackalamannil, S.; Davies, R. J.; Wang, Y.; Asberom, T.; Doller, D.; Wong, J.; Leone, D.; McPhail, A. T. J. Org. Chem. 1999, 64, 1932–1940. (c) Chackalamannil, S.; Davies, R.; McPhail, A. T. Org. Lett. 2001, 3, 1427–1429.

⁽⁸⁾ Takadoi, M.; Katoh, T.; Ishiwata, A.; Terashima, S. *Tetrahedron Lett.* **1999**, *40*, 3399–3402.

⁽⁹⁾ Fielder, S.; Rowan, D. D.; Sherburn, M. S. Angew. Chem., Int. Ed. **2000**, *39*, 4331–4333.

⁽¹⁰⁾ Cayzer, T. N.; Wong, L. S.-M.; Turner, P.; Paddon-Row, M. N.; Sherburn, M. S. Chem. Eur. J. 2002, 8, 739–750.

⁽¹¹⁾ Portions of this work were presented by L.S.-M.W. at the Royal Australian Chemical Institute Organic Group 21st Annual Symposium, University of Wollongong, Australia, 29 November 2000.

Scheme 3. Synthesis of 4,4a-Didehydrohimbacine 22 and 4,4a-Didehydrohimandravine 23^a

^a (a) Pd(PPh₃)₄ (0.20 equiv), CuCl (5.0 equiv). LiCl (6.0 equiv), DMSO, 60 °C, 32 h, 73% for R = α-H; 65% for R = β -H; (b) CF₃COOH (80 equiv), CH₂Cl₂, RT, 10 min, then CH₂O (17 equiv), NaBH₃CN (6 equiv), CH₃CN, RT, 16 h, 65% for R = α-H; 60% for R = β -H.

the 1,1-dibromoalkene **14**, which was converted to the *E*-vinylstannane **16** via the 1-bromoalkyne **15** according to Pattenden's hydrostannylation—reductive debromination protocol. ¹⁹ Interestingly, better yields were obtained in the 2,5-*cis* series by adopting a one-pot Corey—Fuchs reaction—dehydrobromination—debromination sequence ¹⁸ (**17** \rightarrow **18**) followed by radical hydrostannylation (**18** \rightarrow **19**).

Cuprous chloride accelerated Stille coupling of vinylstannanes **16** and **19** with bromotricycle **9** proceeded in 73% and 65% yields under conditions reported by Corey and coworkers (Scheme 3).²⁰

Deprotection and reductive methylation of the tetracyclic products **20** and **21** gave 4,4a-didehydrohimbacine **22** and 4,4a-didehydrohimandravine **23** in overall yields of 65% and 60%, respectively. The structure of the latter was confirmed by single-crystal X-ray analysis (Figure 2).²¹

In summary, a short and modular approach to didehydro analogues of biologically important *Galbulimima* alkaloids has been developed. Current efforts involve the application of this general strategy to the synthesis of himbacine.

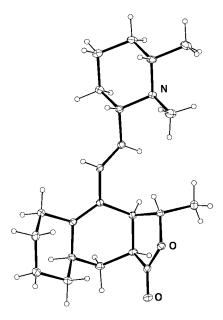


Figure 2. ORTEP diagram of 4,4a-didehydrohimandravine 23.

Acknowledgment. We thank Dr. Ian Luck (University of Sydney) for assistance with NMR experiments and the Australian Research Council and the University of Sydney for funding.

Supporting Information Available: Experimental procedures and product characterization data for key steps (3 $+ 4 \rightarrow 5$; $7 \rightarrow 8 + 9$; $16 + 9 \rightarrow 20$; $20 \rightarrow 22$), ¹H and ¹³C NMR spectra of all new compounds, and X-ray crystallographic details for 4,4a-didehydrohimandravine 23. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0259746

(15) Roush, W. R.; Moriarty, K. J.; Brown, B. B. *Tetrahedron Lett.* **1990**, 31, 6509–6512

(16) (a) Beak, P.; Lee, W. K. *J. Org. Chem.* **1993**, *58*, 1109–1117. (b) Chackalamannil, S.; Davies, R. J.; Wang, Y.; Asberom, T.; Doller, D.; Wong, J.; Leone, D.; McPhail, A. T. *J. Org. Chem.* **1999**, *64*, 1932–1940.

(17) Attempts to carry out this conversion directly (Hodgson, D. M.; Boulton, L. T.; Maw, G. N. *Tetrahedron* **1995**, *51*, 3713–3724) have thus far proven unsuccessful.

(18) Michel, P.; Gennet, D.; Rassat, A. Tetrahedron Lett. 1999, 40, 8575–8578

(19) Boden, C. D. J.; Pattenden, G.; Ye, T. J. Chem. Soc., Perkin Trans. I 1996, 2417–2419.

(20) Han, X.; Stoltz, B. M.; Corey, E. J. J. Am. Chem. Soc. 1999, 121, 7600-7605.

(21) See Supporting Information for full details.

Org. Lett., Vol. 4, No. 11, 2002

⁽¹²⁾ Cauwenberge, G. V.; Gao, L.-J.; Van Haver, D.; Milanesio, M.; Viterbo, D.; De Clercq, P. J. *Org. Lett.* **2002**, *4*, 1579–1582.

^{(13) (}a) Marshall, J. A.; Xie, S. J. Org. Chem. **1995**, 60, 7230–7237. (b) Smith, N. D.; Kocienski, P. J.; Street, S. D. A. Synthesis **1996**, 652–666

⁽¹⁴⁾ This known compound (Renaud, J.; Ouellet, S. G. *J. Am. Chem. Soc.* **1998**, *120*, 7995–7996) was prepared on large scale from 1-lithio-1-cyclohexene (Brandsma, L.; Verkruijsse, H. D. *Synth. Commun.* **1990**, *20*, 3367–3369) by boronate ester formation and hydrolysis.