JS}

Synthesis of Benzophenone Glucopyranosides from *Phaleria macrocarpa* and Related Benzophenone Glucopyranosides

Phebe Hendra, Yukiharu Fukushi,[†] and Yasuyuki Hashidoko

Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan

Received April 3, 2009; Accepted June 16, 2009; Online Publication, October 7, 2009 [doi:10.1271/bbb.90242]

The first total syntheses of benzophenone glucopyranosides reported from *Phaleria macrocarpa* and related benzophenone glucopyranosides were successfully carried out. The alkoxy groups present *ortho* to the carbonyl group in polyalkoxybenzophenones were selectively deprotected by AlCl₃–PhNMe₂ in high yields, leaving other alkoxy groups unaffected. It was concluded in the current synthetic study that all the reported benzophenone glucopyranosides possessed the same structure as 2,4',6-trihydroxy-4-methoxybenzophenone 2-*O*- β -Dglucopyranoside.

Key words: benzophenone glucopyranoside; *Phaleria* macrocarpa; selective dealkylation; AlCl₃– PhNMe₂

Phaleria macrocarpa (Scheff.) Boerl. [mahkota dewa in Indonesian], which belongs to the family Thymelaeaceae, has been used for traditional medicine in Java Island, Indonesia. The phytochemical analysis of this plant has shown the presence of benzophenone glucosides (Fig. 1), 3,4,5-trihydroxy-4'-methoxybenzophenone 3-O- β -D-glucopyranoside (phalerin, proposed as 1),¹⁾ 2,4',6-trihydroxy-4-methoxybenzophenone 2-O- β -D-glucopyranoside (2),^{2,3)} 2,4',6-trihydroxy-4-methoxybenzophenone 2-O- α -D-glucopyranoside (3) reported by Tambunan et al.,⁴⁾ 2,4,4'-trihydroxy-6-methoxybenzophenone 2-O- β -D-glucopyranoside (mahkoside A, proposed as 4), mangiferin, kaempferol 3-O- β -D-glucopyranoside, dodecanoic acid, palmitic acid, ethyl stearate and sucrose,⁵⁾ gallic acid,⁶⁾ desacetylfevicordin A, fevicordin A, fevicordin A glucoside and fevicordin D glucoside,⁷⁾ and the lignans, pinoresinol, lariciresinol and matairesinol.8)

Benzophenone derivatives are a series of diphenyl ketones used primarily as photoinitiators and fragrance enhancers. They are also used in the manufacturing of insecticides, agricultural chemicals, hypnotics, antihist-amines and other pharmaceuticals, ultraviolet curing agents in sunglasses and inks, as an additive in plastics, coatings and adhesive formulations, and in flavor ingredients.⁹⁾ This class of compounds has recently shown notable cytotoxicity against cancer cells and antioxidative activity.^{1–3)} It is necessary for *in vivo* experiments to obtain these compounds in sufficient quantity. We describe here total syntheses of the benzophenone glucopyranosides (**1**, **2** and **4**) reported

as constituents of *P. macrocarpa*, and of related benzophenone glucopyranosides (5 and 6) for further investigation into the structure-activity relationship.

Results and Discussion

We chose the following reactions to synthesize the benzophenone glucopyranosides: i) Friedel-Crafts acylation for synthesis of the benzophenone skeleton and ii) regioselective dealkylation of alkyl aryl ethers by AlCl₃–PhNMe₂. Compound **1** was synthesized as shown in Scheme 1. 3,4,4',5-Tetramethoxybenzophenone (8) was prepared by the Friedel-Crafts acylation of anisole with 3,4,5-trimethoxybenzoyl chloride (7),¹⁰⁾ and subsequent demethylation with boron tribromide at 0°C gave 3,4,5-trihydroxy-4'-methoxybenzophenone (9).^{11,12)} Protection of the hydroxyl groups at C-4 and C-5 in 9 by using such protection reagents as *p*-anisaldehyde dimethyl acetal¹³) and benzylidene dichloride¹⁴) failed to give the desired compound, but eventually the reaction was successful by using benzaldehyde dimethyl acetal in refluxed toluene to yield 10. Glucosylation of 10 with 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl bromide under a phase transfer-catalyzed condition¹⁵⁾ afforded **11** as a 1:1 mixture of diastereomers. Deacetylation of 11 in a mixture of MeOH/Et₃N (3:1) gave diastereomers of deacetylated glucopyranoside (12). Hydrogenolysis of **12** with palladium on charcoal as a catalyst in ethanol¹⁶) led to 3,4,5-trihydroxy-4'-methoxybenzophenone 3-O- β -D-glucopyranoside (1).

A comparison of the NMR data for synthesized 1 with those for phalerin¹⁾ showed they were different. In a current report,³⁾ another benzophenone glucopyranoside (2) was isolated from the same plant, and the structure of phalerin had been revised to that of 2. Compound 2 had first been isolated from Gnidia involucrata (Thymelaeaceae).¹⁷⁾ The $[\alpha]_D$ value (+4° in MeOH) for 2 from *P. macrocarpa*, $^{3)}$ however, was an opposite sign to that of originally reported 2 from G. *involucrata* with a $[\alpha]_{D}$ value of -23° in MeOH.¹⁷⁾ We therefore prepared 2 (Scheme 2). 2,4,6-Trimethoxy-4'-benzyloxybenzophenone (15) was obtained from 1,3,5-trimethoxybenzene and 4-benzyloxybenzoic acid (14) by triflouroacetic anhydride (TFAA) condensation.¹⁸⁾ A combination system of AlCl₃-PhNMe₂ was used to cleave the benzyl, allyl and methyl ethers.¹⁹⁾ We demonstrated that selective ortho monodemethylation of 15 occurred

[†] To whom correspondence should be addressed. Fax: +81-11-706-4182; Email: y-fuku@abs.agr.hokudai.ac.jp

Abbreviations: DMAP, 4-N,N-dimethylaminopyridine; TFAA, trifluoroacetic anhydride; NBA, 3-nitrobenzylalcohol; TEA, triethanolamine

with the system at 0 °C to yield **16**. The resulting hydroxyl group was benzoylated, and subsequent product **17** was *ortho* monodemethylated by the same system. After debenzoylation of **18** in *N*,*N*-dimethyl-1,3-propanediamine, the product (**19**) was then subjected to glucosylation with 2,3,4,6-tetra-*O*-acetyl- β -D-glucopyranosyl bromide in the presence of 18-crown-6 under an alkaline condition²⁰ to give **20**. Finally, deacetylation of **20** in MeOH/Et₃N (3:1) and subsequent hydrogenolysis yielded **2**.

The ¹³C-NMR spectral data for phalerin (proposed as structure 1)¹⁾ and those for synthesized 2 were identical. The ¹H-NMR spectra of phalerin¹⁾ and synthesized 2 closely resembled each other. However, the reported proton chemical shifts of phalerin¹⁾ and those of synthesized 2 are quite different (Table 1). By moving all the proton signals of phalerin to the left around 0.17 ppm, we found that the signals of phalerin and those

1 Phalerin (proposed)

 $\begin{array}{l} 2 \ R_1= \ H, \ R_2= \ Me, \ R_3= \ \beta- D-glc, \ R_4= \ H\\ 3 \ R_1= \ H, \ R_2= \ Me, \ R_3= \ \alpha- D-glc, \ R_4= \ H\\ 4 \ R_1= \ Me, \ R_2= \ H, \ R_3= \ \beta- D-glc, \ R_4= \ H\\ Mahkoside \ A \ (proposed)\\ 5 \ R_1= \ Me, \ R_2= \ H, \ R_3= \ H, \ R_4= \ \beta- D-glc\\ 6 \ R_1= \ Me, \ R_2= \ \beta- D-glc, \ R_3= \ H, \ R_4= \ H \end{array}$

Fig. 1. Proposed Structures for Benzophenone Derivatives from *Phaleria macrocarpa* and Related Benzophenone Glucopyranosides.

of synthesized **2** overlapped. We therefore consider that phalerin and synthesized **2** were same.

The $[\alpha]_D$ value for phalerin $(+0.53^\circ \text{ in EtOH})^{(1)}$ and isolated **2** $(+4^{\circ} \text{ in MeOH})^{3)}$ from the same plant showed an opposite sign and smaller values than those of synthesized 2 (-26° in MeOH, -15° in EtOH) and originally reported 2 $(-23^{\circ} \text{ in MeOH})$.¹⁷⁾ We therefore started to isolate compound 2 (phalerin) from the leaves and fruits of P. macrocapra. We found one constituent in the MeOH extract that had the same R_f value as synthesized 2. This compound was obtained in a 0.98% yield from dried fruits and in 2.0% yield from dried leaves. The compound showed identical physiochemical data to those of synthesized 2. The $[\alpha]_D$ values of the compound from the fruits and leaves were -18° in MeOH and -2.7° in EtOH, and -14° in MeOH and -2.8° in EtOH, respectively. These results indicate that phalerin was compound 2.

We also confirmed that 2,4',6-trihydroxy-4-methoxybenzophenone 2-O- α -D-glucopyranoside (3) reported from *P. macrocarpa*⁴⁾ should be revised to 2-O- β -Dglucopyranoside (2), because the coupling constant (J = 7.5 Hz) of the anomeric proton signal at δ 5.64 in pyridine- d_5 of 3 was characteristic of a β -anomer. We therefore measured synthesized 2 in pyridine- d_5 and found that compounds 3 and 2 were the same.

The synthetic route for mahkoside A (proposed as 4)⁵⁾ is shown in Scheme 3. A coupling reaction of 1,3,5tribenzyloxybenzene and 14 was established with TFAA to obtain benzophenone (23). Selective *ortho* monodebenzylation of 23 by AlCl₃–PhNMe₂ afforded 24 in a high yield. Methylation of 24 with dimethyl sulfate²¹⁾ gave 25 which was again selectively *ortho* monodebenzylated by AlCl₃–PhNMe₂ to yield 26 in a high yield.

The dealkylation reaction of **25** was examined by using AlCl₃, BBr₃ and AlCl₃–PhNMe₂ (Table 2). Deprotection of the alkyl group of **25** by using AlCl₃ at 0 °C and then for 3 h at room temperature, failed to give the desired benzophenone (**26**; entry 1). Dealkylation of **25** with BBr₃ (1 eq.) at low temperature gave a mixture of **26** and **24** (4.6:1) as determined by ¹H-NMR (entry 2). Akiyama *et al.*¹⁹⁾ have reported that a combination system of AlCl₃ (3 eq.) and PhNMe₂

Scheme 1. Synthesis of 3,4,5-Trihydroxy-4'-methoxybenzophenone $3-O-\beta$ -D-Glucopyranoside (1). Reagents and conditions: (a) anisole, CHCl₃, AlCl₃, 0 °C \rightarrow r.t., 2 h; (b) BBr₃, CH₂Cl₂, 0 °C, 1 h; (c) benzaldehyde dimethyl acetal, *p*-TsOH, toluene, refl., 2 h; (d) 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl bromide, BnBu₃NCl, K₂CO₃, CHCl₃, r.t., 72 h; (e) MeOH/Et₃N (3:1), r.t., 72 h; (f) H₂, Pd–C, EtOH, r.t., 15 h.

Scheme 2. Synthesis of 2,4',6-Trihydroxy-4-methoxybenzophenone 2-O- β -D-Glucopyranoside (2). Reagents and conditions: (a) (CF₃CO)₂O, CH₂Cl₂, 0 °C \rightarrow r.t., overnight; (b) AlCl₃, PhNMe₂, CH₂Cl₂, 0 °C, 20 min; (c) BzCl, Et₃N, DMAP, CH₂Cl₂, r.t., 20 min; (d) AlCl₃, PhNMe₂, CH₂Cl₂, 0 °C, 15 min; (e) NH₂(CH₂)₃NMe₂, r.t., 1 h; (f) 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl bromide, 18-crown-6, K₂CO₃, CH₃CN, r.t., 24 h; (g) MeOH/Et₃N (3:1), r.t., 15 h; (h) H₂, Pd–C, dioxane, r.t., 15 h.

Scheme 3. Synthesis of 2,4,4'-Trihydroxy-6-methoxybenzophenone 2-*O*-β-D-Glucopyranoside (4). Reagents and conditions: (a) (CF₃CO)₂O, CH₂Cl₂, 0 °C → r.t., overnight; (b) AlCl₃, PhNMe₂, CH₂Cl₂, 0 °C, 10 min; (c) (MeO)₂SO₂, K₂CO₃, 18-crown-6, CH₃CN, refl., 1 h; (d) AlCl₃, PhNMe₂, CH₂Cl₂, 0 °C, 10 min; (e) *O*-(2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranosyl) trichloroacetimidate, BF₃•OEt₂, CH₂Cl₂, 0 °C → r.t., 6 h; (f) MeOH/Et₃N (3:1), r.t., 15 h; (g) H₂, Pd–C, dioxane, r.t., 15 h.

Table 1. Comparison of ¹H-NMR Data for the Aglycon Moieties of Synthesized 1, 2, 4-6 and Proposed 1, 3 and 4

Position	Synthesized 1	$\frac{Proposed}{1^{(ref.1)}}$	Synthesized 2		$\begin{array}{c} Proposed \\ 3^{(ref.4)} \end{array}$	$\begin{array}{c} Proposed \\ 4^{(ref.5)} \end{array}$	Synthesized 4		Synthesized 5	Synthesized 6	
	CD ₃ OD 500 MHz	CD ₃ OD* 500 MHz	CD ₃ OD 500 MHz	DMSO-d ₆ 500 MHz	Pyridine-d ₅ 500 MHz	Pyridine-d ₅ 500 MHz	DMSO-d ₆ 400 MHz	CD ₃ OD 500 MHz	DMSO-d ₆ 270 MHz	CD ₃ OD 500 MHz	CD ₃ OD 500 MHz
H-2' and H-6'	7.75 (8.6)	6.60 (8)	7.68 (8.7)	7.57 (8.7)	8.23 (8.6)	8.26 (8.5)	7.57 (8.6)	7.66 (8.7)	7.55 (8.0)	7.62 (8.8)	7.63 (8.8)
H-3' and H-5'	7.03 (8.6)	7.52 (8)	6.78 (8.7)	6.78 (8.7)	7.12 (8.6)	7.13 (8.5)	6.80 (8.7)	6.78 (8.7)	6.77 (8.0)	7.10 (8.8)	6.78 (8.8)
H-6	7.03 (2)	6.19									
H-5			6.17 (1.7)	6.12 (2)	6.60	6.60	6.30 (1.9)	6.22 (1.9)	6.26	5.99	6.35 (2)
H-3			6.39 (1.7)	6.29 (2)	7.02	7.05	6.12 (1.9)	6.37 (1.9)	6.16	5.99	6.30 (2)
H-2	7.20 (2)	6.00									
OCH ₃	3.88	3.55	3.79	3.72	3.73	3.76	3.73	3.62	3.55	3.54	3.63

*CDCl3 was described as NMR solvent in ref. 1. CD3OD signals, however, were detected in ¹³C-NMR spectra.

Synthesis of Benzophenone Glucopyranosides from Phaleria macrocarpa

Enters	Conditions	Produc	Yield of	
Entry	Conditions	24 (%)	26 (%)	26 (%)
1	AlCl ₃ (3 eq.), $0^{\circ}C \rightarrow r.t.$ 3 h	_	_	0
2	BBr ₃ (1 eq.), $-78 \degree C 2 h \rightarrow -60 \degree C 30 min$	18	82	41
3	AlCl ₃ (3 eq.)-PhNMe ₂ (6 eq.), 0 °C 10 min	0	>99	98
4	AlCl ₃ (3 eq.)-PhNMe ₂ (6 eq.), $0 \circ C = 10 \min \rightarrow r.t. 2 h$	0	>99	96

Table 2. Results of the Cleavage of Benzophenone 25 in CH₂Cl₂ under Different Reaction Conditions

*determined by ¹H NMR

Scheme 4. Synthesis of 2,4,4'-Trihydroxy-6-methoxybenzophenone 4'-O- β -D-Glucopyranoside (5). Reagents and conditions: (a) (CF₃CO)₂O, CH₂Cl₂, 0 °C \rightarrow r.t., 48 h; (b) AlCl₃, PhNMe₂, CH₂Cl₂, 0 °C, 5 min; (c) (MeO)₂SO₂, K₂CO₃, 18-crown-6, acetone, refl., 2 h; (d) Pd(PPh₃)₄, K₂CO₃, dioxane, MeOH, r.t., 20 h; (e) 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl bromide, BnBu₃NCl, K₂CO₃, CH₂Cl₂, r.t., 24 h; (f) MeOH/Et₃N (3:1), r.t., 30 h; (g) H₂, Pd–C, dioxane, r.t., 15 h.

(4 eq.) was available to cleave general aliphatic and aromatic benzyl ethers mostly in less than 1 h at room temperature. The cleavage reaction, however, didn't proceed at 0° C, except for the *p*-methoxybenzyl ethers.¹⁹⁾ Chemo- and regioselective monodebenzylation of **25** occurred by using the combination system at 0° C to give **26** (entry 3 in Scheme 3). Although the reaction was continued for 2 h at room temperature, no other product was obtained (entry 4).

Glucosylation of **26** with *O*-(2,3,4,6-tetra-*O*-acetyl- β -D-glucopyranosyl) trichloroacetimidate²²⁾ afforded **27**. Deacetylation of **27** in MeOH/Et₃N and subsequent hydrogenolysis gave **4**.

The spectral data did not match those of mahkoside A and synthesized 4 (Table 1). The distinguishable differences between them were the chemical shifts of the methoxy and H-3 and H-5 aromatic proton signals. The methoxy proton signal of mahkoside A resonated at δ 3.73 in DMSO- d_6 . Synthesized 4 however showed the signal at δ 3.55 in the same solvent. The *ortho* methoxy protons in 4 may have been affected by the shielding effect of another benzene ring of the benzophenone skeleton. The downfield appearance of the methoxy signal (δ 3.73) of mahkoside A indicates that the methoxyl group was located at the para position of benzophenone. Therefore, we also compared the reported ¹H-NMR data of mahkoside A with those of synthesized **2** in DMSO- d_6 (Table 1), and found that their data were indistinguishable. Consequently, the correct structure of mahkoside A should be 2,4',6trihydroxy-4-methoxybenzophenone 2- $O-\beta$ -D-glucopyranoside (2).

Details for the synthesis of **5** are depicted in Scheme 4. Benzophenone (**30**) was prepared from 1,3,5-tribenzyloxybenzene and 4-allyloxybenzeic acid, using TFAA as a condensing agent. After *ortho* monodebenzylation of **30** by AlCl₃–PhNMe₂, product **31** was methylated and then subjected to a cleaving reaction of the allyl group with Pd(PPh₃)₄²³⁾ in the presence of potassium carbonate to afford **33**. Glucosylation of **33** yielded **34**. Deacetylation of **34** and subsequent hydrogenolysis led to **5**.

Compound 6 was synthesized as shown in Scheme 5. Selective *ortho* debenzylation of 32 by $AlCl_3$ -PhNMe₂ and subsequent deallylation yielded 37. The resulting hydroxyl groups of 37 were acetylated, and 38 was subsequently hydrogenated into 39. Glucosylation of 39 afforded 40. Deacetylation of 40 in MeOH/Et₃N gave product 6.

The structures of compounds **1**, **2** and **4–6** were determined by 2D-NMR analyses (Fig. 2). We made it possible to provide five synthetically pure benzophenone glucopyranosides. Enough of each glucoside was available for a bioassay by scaling up the reactions. In addition, we found that selective *ortho* monodealkylation to polyalkoxybenzophenones could be achieved by AlCl₃–PhNMe₂. AlCl₃–PhNMe₂ may selectively cleave the alkoxy groups located at the *ortho* carbonyl group in the substrate. Thus, we could synthesize some benzophenone glucopyranosides related with the reported benzophenone glucopyranosides from *P. macrocarpa*. Comparing the NMR data of the four benzophenone glucopyranosides (for proposed structures **1–4**) from *P. macrocarpa* with those of the synthesized material

P. HENDRA et al.

Scheme 5. Synthesis of 2,4,4'-Trihydroxy-6-methoxybenzophenone 4-*O*-β-D-Glucopyranoside (6).
Reagents and conditions: (a) AlCl₃, PhNMe₂, CH₂Cl₂, 0°C, 20min; (b) Pd(PPh₃)₄, K₂CO₃, dioxane, MeOH, r.t., 20h; (c) Ac₂O, Et₃N, CH₂Cl₂, r.t., 1h; (d) H₂, Pd-C, dioxane, r.t., overnight; (e) *O*-(2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranosyl) trichloroacetimidate, BF₃•OEt₂, $CH_2Cl_2,\, 0\,{}^\circ C \rightarrow r.t.,\, 6\,h;\, (f) \ MeOH/Et_3N \ (3{:}1),\, r.t.,\, 15\,h.$

Fig. 2. Selected NOESY and HMBC Correlations for 1, 2 and 4-6. Dashed arrows are correlations with overlapping signals.

(1, 2 and 4) showed that the proposed structures for the natural products of the four benzophenone glucopyranosides were all 2.

Experimental

General procedures. The solvent and reagents used were each a pure grade of the commercial product. Unless otherwise stated, they were used without purification. NMR spectra were recorded at 270 MHz/67.5 MHz (¹H/¹³C) in CDCl₃, using tetramethylsilane as an internal standard, unless otherwise stated. Compounds **1**, **2** and **4–6** were recorded at 500 MHz/126 MHz (¹H/¹³C), and the chemical shifts were calculated from the residual solvent signals of $\delta_{\rm H}$ 3.30 ppm and $\delta_{\rm C}$ 49.0 ppm in CD₃OD, $\delta_{\rm H}$ 2.49 ppm and $\delta_{\rm C}$ 39.5 ppm in DMSO- d_6 , $\delta_{\rm H}$ 2.04 ppm and $\delta_{\rm C}$ 29.0 ppm in acetone- d_6 , and $\delta_{\rm H}$ 8.71 ppm and $\delta_{\rm C}$ 149 ppm in pyridine- d_5 . Complete attribution was performed on the basis of 2D-NMR (COSY, NOESY, HMBC and HMQC) experiments.

3,4,5,4'-*Tetramethoxybenzophenone* (8). To a stirred solution of 3,4,5-trimethoxybenzoyl chloride (7; 4.6 g, 20 mmol) and anisole (2.8 ml, 28 mmol) in CHCl₃ (20 ml) was added powdered AlCl₃ (2.9 g, 22 mmol) at 0 °C. The solution was stirred for 2 h at room temperature. The reaction mixture was then diluted with EtOAc, poured into icecold aq. 2 M HCl and mixed. The organic layer was separated, washed with aq. sat. NaHCO₃ and dried over MgSO₄; the solvent was evaporated under reduced pressure. Purification by flash column chromatography on silica gel (hexane/EtOAc 20:1) afforded **8** (4.6 g, 77%).

8: colorless prisms; mp 81.0–81.5 °C (EtOH), lit. 72–73 °C;¹⁰) NMR $\delta_{\rm H}$ (CDCl₃): 7.83 (2H, d, J = 8.9 Hz), 7.02 (2H, s), 6.97 (2H, d, J = 8.9 Hz), 3.93 (3H, s), 3.90 (3H, s), 3.88 (6H, s); NMR $\delta_{\rm C}$ (CDCl₃): 194.4, 162.9, 152.7, 141.5, 133.2, 132.3, 130.2, 113.4, 107.4, 61.0, 56.3, 55.5; EIMS *m*/*z* (rel. int. %): 303 (M⁺ +1, 18), 302 (M⁺, 100), 287 (16), 271 (11), 259 (25), 195 (17), 135 (52), 92 (10), 77 (15).

3,4,5-Trihydroxy-4'-methoxybenzophenone (9). To a stirred solution of **8** (1.51 g, 4.99 mmol) in CH₂Cl₂ (20 ml) was added boron tribromide (15.0 ml of 1 M in hexane, 15 mmol) at 0 °C. The solution was stirred for 1 h at 0 °C. The reaction mixture was decomposed by ice-cold aq. 2 M HCl and diluted with EtOAc. The organic layer was separated and dried over MgSO₄; the solvent was evaporated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (CHCl₃/MeOH 10:0.5) to afford **9** (1.02 g, 78%).

9: colorless prisms; mp 182.0–184.0 °C (acetone); NMR $\delta_{\rm H}$ (acetone- d_6): 7.73 (2H, d, J = 8.9 Hz), 7.03 (2H, d, J = 8.9 Hz), 6.88 (2H, s), 3.89 (3H, s); NMR $\delta_{\rm C}$ (acetone- d_6): 183.7, 163.6, 148.2, 147.0, 145.9, 132.6, 131.9, 130.0, 114.2, 110.6, 55.8; EIMS m/z (rel. int. %): 261 (M⁺ +1, 16), 260 (M⁺, 100), 243 (21), 229 (21), 153 (21), 135 (87); HREIMS m/z (M⁺) calcd. for C₁₄H₁₂O₅, 260.0685; found, 260.0722.

3,4-(Benzylidenedioxy)-5-hydroxy-4'-methoxybenzophenone (10). A flask equipped with a Dean-Stark trap and water condenser was charged with 9 (0.91 g, 3.5 mmol), benzaldehyde dimethyl acetal (0.52 ml, 3.4 mmol) and p-toluene-sulfonic acid monohydrate (3 mg) in toluene (50 ml). The reaction mixture was refluxed for 2 h. The solvent collected from the side arm of the Dean-Stark trap was continuously removed. The reaction mixture was then diluted with EtOAc and washed with aq. sat. Na₂CO₃. The organic layer was separated and dried over MgSO₄; the solvent was evaporated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (toluene/EtOAc 10:1) to afford 10 (0.54 g, 44%).

10: amorphous white solid; mp 162.5–164.5 °C (EtOAc); NMR $\delta_{\rm H}$ (CDCl₃): 7.80 (2H, d, J = 8.8 Hz), 7.46–7.62 (5H, m), 7.10 (1H, d, J = 1.5 Hz), 7.07 (1H, d, J = 1.5 Hz), 6.96 (1H, s), 6.94 (2H, d, J = 8.8 Hz), 5.67 (OH, brs), 3.88 (3H, s); NMR $\delta_{\rm C}$ (CDCl₃): 194.3, 163.1, 148.7, 138.9, 138.0, 135.3, 132.6, 132.4, 130.6, 130.2, 128.7, 126.4, 114.8, 113.5, 111.8, 103.8, 56.3, 55.5; EIMS m/z (rel. int. %): 349 (M⁺ +1, 21), 348 (M⁺, 100), 347 (17), 241 (15), 135 (44); HREIMS m/z (M⁺) calcd. for C₂₁H₁₆O₅, 348.0998; found, 348.0962.

3,4-(Benzylidenedioxy)-5-hydroxy-4'-methoxybenzophenone 5-(2,3,4,6tetra-O-acetyl)- β -D-glucopyranoside (11). A mixture of 10 (0.70 g, 2.0 mmol), 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl bromide (1.66 g, 4.0 mmol), K₂CO₃ (1.38 g, 10 mmol) and benzyltributylammonium chloride (0.12 g, 0.4 mmol) were added to CHCl₃ (30 ml), and the solution stirred for 72 h at room temperature. The reaction mixture was acidified with aq. 2 M HCl and diluted with EtOAc. The organic layer was separated, washed with aq. sat. NaHCO₃ and dried over MgSO₄; the solvent was evaporated under reduced pressure. Purification by flash column chromatography on silica gel (hexane/EtOAc 5:1) gave 11 (0.93 g, 69%) as a 1:1 mixture of diastereomers as determined by ¹H-NMR.

11: white solid; $[\alpha]_D^{27} - 15^\circ$ (c 0.3, MeOH); NMR δ_H (500 MHz, CDCl₃): 7.77 (4H, d, J = 8.9 Hz), 7.54–7.56 (4H, m), 7.45–7.47 (6H, m), 7.18 (1H, d, J = 1.5 Hz), 7.16 (1H, d, J = 1.5 Hz), 7.08 (2H, d, J = 2.3 Hz), 7.06 (2H, d, J = 2.3 Hz), 6.94 (4H, d, J = 8.9 Hz), 5.22– 5.25 (6H, m), 5.13 (2H, dd, J = 9.8, 7.3 Hz), 4.23 (1H, dd, J = 12.3, 4.9 Hz), 4.16 (1H, dd, J = 12.3, 4.8 Hz), 4.08 (1H, dd, J = 12.3, 2.4 Hz), 3.94 (1H, dd, J = 12.3, 2.3 Hz), 3.87 (6H, s), 3.76 (1H, m), 3.70 (1H, m), 2.01 (3H, s), 2.00 (6H, s), 1.99 (6H, s), 1.98 (3H, s), 1.97 (3H, s), 1.92 (3H, s); NMR δ_C (CDCl₃): 193.2, 170.6, 170.2, 169.3, 169.24, 169.22, 169.18, 163.2, 149.3, 140.1, 139.8, 139.0, 138.9, 135.4, 135.2, 132.9, 132.8, 132.3, 130.75, 130.71, 130.1, 128.8, 126.4, 126.3, 116.8, 116.5, 113.6, 111.9, 111.87, 106.1, 106.0, 99.8, 96.1, 72.7, 72.6, 72.2, 71.1, 71.0, 68.2, 68.1, 61.8, 61.5, 55.5, 20.6, 20.57, 20.5; FABMS (positive, NBA matrix) m/z (rel. int. %): 701 [M + Na]⁺ (6), 679 [M + H]⁺ (14); HRFABMS m/z [M + H]⁺ calcd. for C₃₅H₃₅O₁₄, 679.2027; found, 679.2018.

3,4-(Benzylidenedioxy)-5-hydroxy-4'-methoxybenzophenone 5-O- β -D-glucopyranoside (12). Compound 11 (204 mg, 0.301 mmol) was dissolved in MeOH (6 ml) and triethylamine (2 ml), and the solution stirred for 72 h at room temperature. To the reaction mixture was added toluene, before evaporating to dryness. Purification by flash column chromatography on silica gel (CHCl₃/MeOH 5:1) afforded 12 (103 mg, 67%) as a 1:1 mixture of diastereomers as determined by ¹H-NMR.

12: white solid; $[\alpha]_D^{26} - 23^{\circ}$ (c 0.3, MeOH); NMR δ_H (500 MHz, CD₃OD): 7.76 (2H, d, J = 8.9 Hz), 7.75 (2H, d, J = 8.9 Hz), 7.59–7.62 (4H, m), 7.30–7.49 (6H, m), 7.21 (1H, d, J = 1.8 Hz), 7.20 (1H, d, J = 2.0 Hz), 7.18 (1H, s), 7.16 (1H, s), 7.033 (1H, d, J = 2.0 Hz), 7.030 (4H, d, J = 8.9 Hz), 7.027 (1H, d, J = 1.8 Hz), 5.12 (1H, d, J = 7.0 Hz), 5.10 (1H, d, J = 7.4 Hz), 3.89 (3H, s), 3.88 (3H, s), 3.80 (1H, dd, J = 12.2, 2.6 Hz), 3.77 (1H, dd, J = 12.2, 2.5 Hz), 3.70 (2H, dd, J = 12.2, 4.5 Hz), 3.38–3.53 (6H, m), 3.32–3.34 (2H, m); NMR δ_C (CD₃OD): 195.9, 195.8, 165.0, 164.7, 150.84, 150.81, 147.0, 146.6, 141.5, 141.1, 137.2, 137.1, 133.72, 133.70, 133.5, 133.4, 131.7, 131.3, 129.9, 129.83, 127.8, 127.5, 117.0, 114.8, 114.6, 113.2, 113.0, 105.5, 105.4, 104.6, 104.3, 102.44, 102.4, 78.2, 78.1, 77.9, 77.6, 74.85, 74.82, 71.0, 70.9, 62.3, 62.1, 56.5, 56.1; FABMS (positive, NBA matrix) m/z (rel. int. %): 533 [M + Na]⁺ (12), 511 [M + H]⁺ (32); HRFABMS m/z [M + H]⁺ calcd. for C₂₇H₂₇O₁₀, 511.1604; found, 511.1597.

3,4,5-Trihydroxy-4'-methoxybenzophenone 3-O- β -D-glucopyranoside (1). To a solution of 12 (20 mg, 0.039 mmol) in EtOH (5 ml) was added 10% Pd/C (20 mg), and the resulting suspension was stirred vigorously under a hydrogen atmosphere for 15 h at room temperature. The catalyst was filtered off through Celite, and the filtrate was evaporated under reduced pressure. The crude product was suspended in EtOH and filtered to afford 1 (13.6 mg, 82%).

1: colorless prisms; mp 117.5–119.5 °C (EtOH); $[\alpha]_D^{27}$ –38° (*c* 0.3, MeOH); NMR δ_H (500 MHz, CD₃OD): 7.75 (2H, d, J = 8.6 Hz, H-2' and 6'), 7.20 (1H, d, J = 2.0 Hz, H-2), 7.03 (1H, d, J = 2.0 Hz, H-6), 7.03 (2H, d, J = 8.6 Hz, H-3' and H-5'), 4.81 (1H, d, J = 7.5 Hz, H-1"), 3.88 (3H, s, OCH₃), 3.77 (1H, dd, J = 12.1, 2.2 Hz, H-6"b), 3.70 (1H, dd, J = 12.1, 4.6 Hz, H-6"a), 3.52 (1H, m, H-2"), 3.48 (1H, m, H-4"), 3.45 (1H, m, H-3"), 3.34 (1H, m, H-5"); NMR δ_C (CD₃OD): 196.7 (C=O), 164.7 (C-4'), 147.0 (C-5), 146.6 (C-3), 141.6 (C-4), 133.4 (C-2' and C-6'), 131.6 (C-1'), 129.7 (C-1), 114.6 (C-3' and C-5'), 113.9 (C-6), 112.9 (C-2), 104.2 (C-1"), 78.2 (C-5"), 77.5 (C-3"), 74.8 (C-2"), 70.9 (C-4"), 62.0 (C-6"), 56.0 (OCH₃); FABMS (positive, NBA matrix) m/z (rel. int. %): 445 [M + Na]⁺ (37), 423 [M + H]⁺ (22); HRFABMS m/z [M + H]⁺ calcd. for C₂₀H₂₃O₁₀, 423.1291; found, 423.1299.

4'-Benzyloxy-2,4,6-trimethoxybenzophenone (15). To a suspension of 4-benzyloxybenzoic acid (2.28 g, 10 mmol) in CH₂Cl₂ (15 ml) cooled to 0 °C was added trifluoroacetic anhydride (1.81 ml, 13 mmol), and the mixture was stirred for 10 min to give a clear solution. To this solution was added 1,3,5-trimethoxybenzene 13 (2.19 g, 13 mmol), and the mixture stirred overnight at room temperature. The reaction mixture was diluted with EtOAc, ice water and aq. sat. Na₂CO₃, and stirred vigorously again to yield a suspension. Sodium 4-benzyloxybenzoate was filtered off through Celite, and the organic layer was separated and successively washed with aq. sat. NaHCO₃ and brine. The organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was suspended in EtOH and filtered to afford 15 (2.72 g, 72%).

15: colorless prisms; mp 120.5–122.0 °C (EtOH); NMR $\delta_{\rm H}$ (CDCl₃): 7.81 (2H, d, $J = 8.9 \,\rm Hz$), 7.32–7.43 (5H, m), 6.96 (2H, d, $J = 8.9 \,\rm Hz$), 6.15 (2H, brs), 5.10 (2H, s), 3.85 (3H, s), 3.68 (6H, s); NMR $\delta_{\rm C}$ (CDCl₃): 193.4, 162.7, 162.2, 158.5, 136.3, 131.8, 131.6, 128.6, 128.2, 127.5, 114.3, 111.2, 96.1, 90.7, 70.1, 55.8, 55.40, 55.36; EIMS m/z (rel. int. %): 379 (M⁺ +1, 10), 378 (M⁺, 40), 361 (12), 258 (35), 195 (11), 91 (100); HREIMS m/z (M⁺) calcd. for C₂₃H₂₂O₅, 378.1467; found, 378.1491.

4'-Benzyloxy-2-hydroxy-4,6-dimethoxybenzophenone (16). To a stirred solution of 15 (2.22 g, 5.87 mmol) and PhNMe₂ (4.45 ml, 35.2 mmol) in CH₂Cl₂ (40 ml) was added powdered AlCl₃ (5.48 g, 41.1 mmol) at 0 °C. The solution was stirred for 20 min at 0 °C. The reaction mixture was then diluted with EtOAc, poured into ice-cold aq. 2 M HCl and mixed. The organic layer was separated, washed with brine and dried over MgSO₄; the solvent was evaporated under reduced pressure. Purification by flash column chromatography on silica gel (hexane/EtOAc 3:1) afforded 16 (1.79 g, 84%).

16: colorless prisms; mp 119.0–120.5 °C (EtOH); NMR $\delta_{\rm H}$ (CDCl₃): 11.85 (OH, brs), 7.56 (2H, d, J = 8.8 Hz), 7.32–7.45 (5H, m), 6.94 (2H, d, J = 8.8 Hz), 6.15 (1H, d, J = 2.3 Hz), 5.93 (1H, d, J = 2.3 Hz), 5.11 (2H, s), 3.83 (3H, s), 3.49 (3H, s); NMR $\delta_{\rm C}$ (CDCl₃): 197.4, 165.9, 165.2, 161.51, 161.47, 136.4, 134.0, 130.8, 128.6, 128.1, 127.5, 113.7, 105.8, 93.7, 91.3, 70.1, 55.6, 55.1; EIMS m/z (rel. int. %): 365 (M⁺ +1, 6), 364 (M⁺, 27), 363 (17), 244 (14), 91 (100); HREIMS m/z (M⁺) calcd. for C₂₂H₂₀O₅, 364.1311; found, 364.1310.

2-Benzoyloxy-4'-benzyloxy-4,6-dimethoxybenzophenone (17). To a stirred solution of 16 (1.62 g, 4.45 mmol), triethylamine (0.92 ml, 6.6 mmol) and 4-N,N-dimethylaminopyridine (DMAP, 5 mg, 0.04 mmol) in CH₂Cl₂ (20 ml) was added benzoyl chloride (0.62 ml, 5.3 mmol) at room temperature. The solution was stirred for 20 min. The reaction mixture was then diluted with CHCl₃, successively washed with aq. 2 M HCl, aq. sat. NaHCO₃ and brine, and then dried over MgSO₄; the solvent was evaporated under reduced pressure. Purification by flash column chromatography on silica gel (hexane/EtOAc 3:1) afforded 17 (2.04 g, 98%).

17: colorless oil; NMR $\delta_{\rm H}$ (CDCl₃): 8.15 (2H, dd, J = 7.3, 1.3 Hz), 7.83 (1H, t, J = 7.3 Hz), 7.79 (2H, d, J = 8.9 Hz), 7.67 (2H, dd, J = 7.6, 7.3 Hz), 7.46–7.55 (2H, m), 7.30–7.38 (3H, m), 6.90 (2H, dd, J = 8.9 Hz), 6.52 (1H, d, J = 2.0 Hz), 6.44 (1H, d, J = 2.0 Hz), 5.05 (2H, s), 3.85 (3H, s), 3.72 (3H, s); NMR $\delta_{\rm C}$ (CDCl₃): 191.5, 164.2, 162.8, 162.2, 161.7, 158.7, 149.8, 136.2, 134.5, 133.6, 133.4, 131.8, 131.3, 130.5, 130.2, 130.1, 128.8, 128.6, 128.4, 128.3, 128.2, 127.4, 115.4, 114.3, 99.8, 96.7, 96.1, 70.0, 55.9, 55.6; EIMS, m/z (rel. int. %): 469 (M⁺ +1, 12), 468 (M⁺, 38), 243 (28), 105 (100), 91 (66), 77 (24); HREIMS m/z (M⁺) calcd. for C₂₉H₂₄O₆, 468.1573; found, 468.1539.

2-Benzoyloxy-4'-benzyloxy-6-hydroxy-4-methoxybenzophenone (18). To a stirred solution of 17 (2.0 g, 4.3 mmol) and PhNMe₂ (3.1 ml, 25 mmol) in CH₂Cl₂ (30 ml) was added powdered AlCl₃ (2.19 g, 16.4 mmol) at 0 °C. The solution was stirred for 15 min at 0 °C. The reaction mixture was then diluted with EtOAc, poured into ice-cold aq. 2 M HCl and mixed. The organic layer was separated, washed with brine and dried over MgSO₄; the solvent was evaporated under reduced pressure. Purification by flash column chromatography on silica gel (hexane/EtOAc 3:1) afforded 18 (1.40 g, 72%).

18: colorless needles; mp 117.5–119.0 °C (EtOH); NMR $\delta_{\rm H}$ (CDCl₃): 11.48 (OH, brs), 7.43–7.54 (5H, m), 7.47 (2H, d, J = 8.9 Hz), 7.24–7.38 (5H, m), 6.71 (2H, d, J = 8.9 Hz), 6.47 (1H,

d, J = 2.5 Hz), 6.35 (1H, d, J = 2.5 Hz), 4.79 (2H, s), 3.87 (3H, s); NMR $\delta_{\rm C}$ (CDCl₃): 196.9, 164.9, 164.5, 163.9, 161.8, 151.7, 136.2, 133.3, 133.2, 130.6, 129.8, 128.6, 128.5, 128.2, 127.9, 127.3, 114.1, 108.9, 102.5, 99.4, 96.2, 70.0, 55.7; EIMS m/z (rel. int. %): 455 (M⁺ +1, 11), 454 (M⁺, 37), 105 (100), 91 (53), 77 (21); HREIMS m/z(M⁺) calcd. for C₂₈H₂₂O₆, 454.1416; found, 454.1409.

4'-Benzyloxy-2,6-dihydroxy-4-methoxybenzophenone (19). Compound 18 (0.70 g, 1.5 mmol) was added to N,N-dimethyl-1,3-propanediamine (2.0 ml) at 0 °C, and then the solution was stirred for 1 h at room temperature. The reaction mixture was diluted with EtOAc and aq. 2 M HCl, and then mixed. The organic layer was separated, washed with brine and dried over MgSO₄; the solvent was evaporated under reduced pressure. Purification by flash column chromatography on silica gel (hexane/EtOAc 3:1) afforded 19 (0.33 g, 61%).

19: amorphous white solid; mp 110.0–112.0 °C (EtOH); NMR $\delta_{\rm H}$ (CDCl₃): 8.68 (OH, brs), 7.67 (2H, d, J = 8.6 Hz), 7.34–7.42 (5H, m), 7.06 (2H, d, J = 8.6 Hz), 6.03 (2H, s), 5.13 (2H, s), 3.82 (3H, s); NMR $\delta_{\rm C}$ (CDCl₃): 195.8, 166.5, 162.5, 161.9, 135.9, 131.7, 130.9, 128.7, 128.3, 127.5, 115.3, 104.6, 96.1, 94.9, 70.3, 55.1; EIMS m/z (rel. int. %): 351 (M⁺ +1, 8), 350 (M⁺, 33), 259 (5), 230 (5), 166 (7), 121 (5), 91 (100), 65 (5); HREIMS m/z (M⁺) calcd. for C₂₁H₁₈O₅, 350.1154; found, 350.1109.

4'-Benzyloxy-2,6-dihydroxy-4-methoxybenzophenone 2-(2,3,4,6-tetra-O-acetyl)-β-D-glucopyranoside (**20**). A mixture of **19** (55 mg, 0.16 mmol), 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl bromide (110 mg, 0.268 mmol), 18-crown-6 (10 mg, 0.038 mmol), K₂CO₃ (108 mg, 0.781 mmol) and CH₃CN (5 ml) was stirred at room temperature for 24 h. The reaction mixture was acidifed with aq. 2 M HCl and diluted with EtOAc. The organic layer was separated, washed with aq. sat. NaHCO₃ and dried over MgSO₄; the solvent was evaporated under reduced pressure. Purification by flash column chromatography on silica gel (CHCl₃/acetone 15:1) gave **20** (107 mg, 61%).

20: colorless prisms; mp 65.0–67.0 °C (EtOH); $[\alpha]_D^{28} - 19^\circ$ (*c* 0.3, CHCl₃); NMR δ_H (CDCl₃): 11.3 (OH, brs), 7.60 (2H, d, J = 8.7 Hz), 7.32–7.48 (5H, m), 6.94 (2H, d, J = 8.7 Hz), 6.27 (1H, d, J = 2.1 Hz), 6.15 (1H, d, J = 2.1 Hz), 5.18 (2H, s), 5.05 (1H, dd, J = 9.3, 8.8 Hz), 4.98 (1H, dd, J = 9.3, 9.3 Hz), 4.88 (1H, d, J = 7.5 Hz), 4.40 (1H, dd, J = 8.8, 7.5 Hz), 4.20 (1H, dd, J = 12.4, 6.3 Hz), 4.11 (1H, dd, J = 12.4, 2.3 Hz), 3.74 (1H, m), 3.82 (3H, s), 2.09 (3H, s), 2.00 (3H, s), 1.91 (3H, s), 1.87 (3H, s); NMR δ_C (CDCl₃): 196.6, 170.5, 170.0, 169.3, 168.3, 165.0, 164.3, 162.3, 157.6, 136.5, 132.9, 131.3, 128.6, 128.1, 127.5, 114.0, 107.2, 98.5, 96.1, 95.9, 95.6, 91.7, 72.9, 72.2, 70.8, 70.1, 67.9, 62.0, 55.6, 20.6; FABMS (negative, TEA matrix) m/z (rel. int. %) 679 [M – H]⁻ (8); HRFABMS m/z [M – H]⁻ calcd. for C₃₅H₃₅O₁₄, 679.2027; found, 679.2033.

4'-Benzyloxy-2,6-dihydroxy-4-methoxybenzophenone 2-O-β-D-glucopyranoside (21). Compound 20 (41 mg, 0.060 mmol) was dissolved in MeOH (3 ml) and triethylamine (1 ml) and stirred for 15 h at room temperature. To the reaction mixture was added toluene, before being evaporated to dryness. The crude product was suspended in hexane and diethyl ether and then filtered to afford 21 (39 mg, 91%).

21: colorless plates; mp 74.5–76.0 °C (EtOH); $[\alpha]_D^{27} - 27^\circ$ (*c* 0.3, CHCl₃); NMR δ_H (CDCl₃): 7.55 (2H, d, J = 8.7 Hz), 7.25–7.33 (5H, m), 6.90 (2H, d, J = 8.7 Hz), 6.18 (1H, d, J = 2.0 Hz), 6.06 (1H, d, J = 2.0 Hz), 5.05 (2H, s), 4.62 (1H, d, J = 7.5 Hz), 3.74 (3H, s), 3.60–3.80 (3H, m), 3.25–3.34 (3H, m), 2.56 (OH, brs); NMR δ_C (CDCl₃): 197.1, 165.4, 164.3, 161.8, 157.5, 136.1, 134.1, 130.8, 128.7, 128.2, 127.4, 114.1, 107.0, 100.1, 96.1, 95.9, 95.2, 75.7, 74.7, 73.2, 70.2, 69.8, 62.1, 55.7; FABMS (negative, TEA matrix) m/z (rel. int. %) 511 [M – H]⁻ (2); HRFABMS m/z [M – H]⁻ calcd. for C₂₇H₂₇O₁₀, 511.1604; found, 511.1584.

2,4',6-Trihidroxy-4-methoxybenzophenone 2-O-β-D-glucopyranoside (2). To a solution of **21** (20 mg 0.039 mmol) in dioxane (3 ml) was added 10% Pd/C (20 mg), and the resulting suspension was stirred vigorously under a hydrogen atmosphere for 15 h at room temperature. The catalyst was filtered off through Celite, and the filtrate was evaporated under reduced pressure. The crude product was suspended in CHCl₃ and filtered to afford **2** (11.5 mg, 70%).

2: colorless prisms; mp 103.5–104.5 $^{\circ}\mathrm{C}$ (EtOH), lit. 202–204 $^{\circ}\mathrm{C},^{2)}$

133–135 °C, ¹⁷⁾ 103–105 °C; ⁵⁾ $[\alpha]_D^{27}$ –26° (*c* 0.1, MeOH), –15° (*c* 0.5, EtOH), lit. -23° (c 0.1, MeOH),¹⁷⁾ $+4^{\circ}$ (c 0.9, MeOH),³⁾ $+0.53^{\circ}$ $(c \ 0.15, \ EtOH);^{1)}$ NMR δ_{H} (500 MHz, CD₃OD): 7.68 (2H, d, J = 8.7 Hz, H-2' and H-6'), 6.78 (2H, d, J = 8.7 Hz, H-3' and H-5'), 6.39 (1H, d, J = 1.7 Hz, H-3), 6.17 (1H, d, J = 1.7 Hz, H-5), 4.86 (1H, d, J = 7.9 Hz, H-1"), 3.84 (1H, brd, J = 12.0 Hz, H-6"b), 3.79 (3H, s, OCH₃), 3.63 (1H, dd, J = 12.0, 6.0 Hz, H-6"a), 3.37 (1H, m, H-5"), 3.37 (1H, m, H-3"), 3.24 (1H, dd, J = 9.5, 9.2 Hz, H-4"), 3.12 (1H, dd, J = 8.9, 7.9 Hz, H-2''; NMR δ_{H} (500 MHz, DMSO- d_6): 10.26 (OH, brs), 9.70 (OH, brs), 7.57 (2H, d, J = 8.7 Hz, H-2' and H-6'), 6.78 (2H, d, J = 8.7 Hz, H-3' and H-5'), 6.29 (1H, d, J = 2.0 Hz, H-3), 6.12 (1H, d, J = 2.0 Hz, H-5), 4.96 (OH, d, J = 5.3 Hz, OH-C-4"), 4.92 (OH, d, J = 5.2 Hz, OH-C-3"), 4.78 (1H, d, J = 8.0 Hz, H-1"), 4.54 (OH, d, J = 5.7 Hz, OH-C-6"), 4.52 (OH, d, J = 5.0 Hz, OH-C-2"), 3.72 (3H, s, OCH₃), 3.66 (1H, ddd, J = 11.0, 5.7, 5.2 Hz, H-6"a), 3.38 (1H, brdd, *J* = 11.0, 5.7 Hz, H-6"b), 3.27 (1H, m, H-5"), 3.17 (1H, ddd, *J* = 9.2, 8.8, 5.2 Hz, H-3"), 3.01 (1H, ddd, J = 9.3, 9.2, 5.3 Hz, H-4"), 2.91 (1H, ddd, J = 8.8, 8.0, 5.0 Hz, H-2''); NMR δ_{H} (500 MHz, pyridine d_5): 8.23 (2H, d, J = 8.6 Hz, H-2' and H-6'), 7.12 (2H, d, J = 8.6 Hz, H-3' and H-5'), 7.02 (1H, s, H-3), 6.60 (1H, s, H-5), 5.60 (1H, d, J = 8.2 Hz, H-1''), 4.54 (1H, brd, J = 12.0 Hz, H-6''b), 4.30 (1H, dd, H-1)J = 12.0, 6.0 Hz, H-6''a), 4.25 (1H, dd, J = 10.0, 8.7 Hz, H-3''), 4.13(1H, dd, J = 9.6, 8.7 Hz, H-4''), 4.06 (1H, m, H-5''), 4.03 (1H, dd, dd) $J = 10.0, 8.2 \text{ Hz}, \text{ H-2''}), 3.73 \text{ (3H, s)}; \text{ NMR } \delta_{\text{C}} \text{ (CD}_{3}\text{OD}): 197.1$ (C=O), 164.3 (C-4), 163.8 (C-4'), 159.0 (C-6), 158.4 (C-2), 133.6 (C-2' and C-6'), 131.9 (C-1'), 115.9 (C-3' and C-5'), 111.7 (C-1), 102.5 (C-1"), 96.8 (C-5), 94.9 (C-3), 78.3 (C-5"), 77.8 (C-3"), 74.8 (C-2"), 71.2 (C-4"), 62.6 (C-6"), 55.9 (OCH₃); NMR δ_{C} (DMSO-d₆): 192.5, 161.9, 161.0, 156.3, 156.1, 131.7, 129.8, 114.9, 110.6, 100.6, 95.1, 92.9, 77.2, 76.7, 73.2, 69.8, 60.8, 55.1; NMR δ_C (pyridine-d₅): 194.1, 163.1, 162.2, 158.0, 157.8, 132.5, 115.4, 107.9, 102.5, 96.2, 93.6, 78.6, 77.9, 74.2, 70.7, 62.0, 54.8; FABMS (negative, TEA matrix) m/z (rel. int. %) 421 $[M - H]^-$ (8); HRFABMS $m/z [M - H]^-$ calcd. for C₂₀H₂₁O₁₀, 421.1135; found, 421.1138.

2,4,6,4'-Tetrabenzyloxybenzophenone (23). To a suspension of 4-benzyloxybenzoic acid (2.32 g, 10.2 mmol) in CH₂Cl₂ (20 ml) cooled to 0 °C was added trifluoroacetic anhydride (1.67 ml, 12.0 mmol), and the mixture was stirred for 10 min to gave a clear solution. To this solution was added 1,3,5-tribenzyloxybenzene 22 (3.0 g, 7.6 mmol), and the mixture stirred overnight at room temperature. The reaction mixture was diluted with EtOAc, ice water and aq. sat. Na₂CO₃, and stirred vigorously to yield a suspension again. Sodium 4-benzyloxybenzoate was filtered off through Celite, and the organic layer was separated and successively washed with aq. sat. NaHCO₃ and brine. The organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was suspended in diethyl ether and filtered to afford 23 (3.71 g, 81%).

23: amorphous white solid; mp 119.0–121.0 °C (EtOH); NMR $\delta_{\rm H}$ (CDCl₃): 7.82 (2H, d, J = 8.9 Hz), 7.32–7.43 (10H, m), 7.18–7.24 (5H, m), 7.07–7.10 (5H, m), 6.95 (2H, d, J = 8.9 Hz), 6.24 (2H, s), 5.11 (2H, s), 4.97 (2H, s), 4.96 (4H, s); NMR $\delta_{\rm C}$ (CDCl₃): 193.3, 162.6, 161.4, 161.1, 157.6, 137.0, 136.6, 136.5, 136.4, 132.1, 131.8, 128.9, 128.7, 128.3, 128.2, 127.9, 127.8, 127.6, 127.54, 127.45, 126.7, 114.3, 93.6, 70.3, 70.1; EIMS m/z (rel. int. %): 606 (M⁺, 3), 273 (9), 91 (100), 44 (15); HREIMS m/z (M⁺) calcd. for C₄₁H₃₄O₅, 606.2406; found, 606.2403.

2,4,4'-Tribenzyloxy-6-hydroxybenzophenone (24). To a stirred solution of 23 (4.35 g, 7.17 mmol) and PhNMe₂ (5.43 ml, 43.0 mmol) in CH₂Cl₂ (30 ml) was added powdered AlCl₃ (2.87 g, 21.5 mmol) at 0 °C. The solution was stirred for 10 min at 0 °C. The reaction mixture was then diluted with EtOAc, poured to ice-cold aq. 2 M HCl and mixed. The organic layer was separated, and the aqueous phase was extracted with CHCl₃. The combined organic layer was washed with brine, dried over MgSO₄ and filtered through a silica-gel pad; the filtrate was evaporated under reduced pressure. The crude product was suspended in EtOAc and filtered to afford 24 (2.90 g, 78%).

24: amorphous white solid; mp 146.0–148.0 °C (EtOH); NMR $\delta_{\rm H}$ (CDCl₃): 11.79 (OH, brs), 7.57 (2H, d, $J = 8.7\,{\rm Hz}$), 7.31–7.42 (10H, m), 7.08–7.20 (5H, m), 6.84 (2H, d, $J = 8.7\,{\rm Hz}$), 6.26 (1H, d, $J = 2.1\,{\rm Hz}$), 6.12 (1H, d, $J = 2.1\,{\rm Hz}$), 5.08 (2H, s), 4.99 (2H, s), 4.80 (2H, s); NMR $\delta_{\rm C}$ (CDCl₃): 197.9, 165.2, 164.9, 161.6, 160.5,

136.5, 135.9, 135.6, 134.4, 130.6, 128.7, 128.6, 128.3, 128.11, 128.06, 127.7, 127.5, 127.4, 126.5, 113.8, 106.2, 96.1, 94.8, 92.9, 70.3, 70.1, 70.0; EIMS m/z (rel. int. %): 516 (M⁺, 10), 425 (5), 211 (8), 91 (100); HREIMS m/z (M⁺) calcd. for C₃₄H₂₈O₅, 516.1937; found, 516.1929.

2,4,4'-Tribenzyloxy-6-methoxybenzophenone (25). A mixture of 24 (3.49 g, 6.76 mmol), dimethyl sulfate (1.11 g, 8.80 mmol), potassium carbonate (1.39 g, 10.1 mmol) and 18-crown-6 (0.10 mg, 0.38 mmol) as a catalyst in CH₃CN (15 ml) was refluxed for 1 h. To the reaction mixture was added conc. NH₄OH (0.5 ml), and the solution stirred for 10 min, EtOAc subsequently added and the whole washed with brine. The organic layer was separated, dried over MgSO₄, and the solvent was evaporated under reduced pressure. Purification by flash column chromatography on silica gel (hexane/EtOAc 6:1) gave 25 (3.20 g, 93%).

25: amorphous white solid; mp 104.0–105.0 °C (EtOH); NMR $\delta_{\rm H}$ (CDCl₃): 7.82 (2H, d, J = 8.9 Hz), 7.31–7.39 (10H, m), 7.04–7.18 (5H, m), 6.95 (2H, d, J = 8.9 Hz), 6.24 (2H, s), 5.10 (2H, s), 5.03 (2H, s), 4.94 (2H, s), 3.67 (3H, s); NMR $\delta_{\rm C}$ (CDCl₃): 193.3, 162.6, 161.2, 158.6, 157.4, 136.6, 136.5, 136.4, 131.9, 131.8, 128.7, 128.3, 128.2, 127.5, 127.4, 126.7, 117.4, 114.3, 112.1, 96.2, 93.1, 92.2, 70.2, 70.1, 55.8; EIMS m/z (rel. int. %): 530 (M⁺, 17), 439 (7), 333 (5), 257 (4), 211 (5), 910 (100), 65 (5), 44 (5); HREIMS m/z (M⁺) calcd. for C₃₅H₃₀O₅, 530.2093; found, 530.2071.

4,4'-Dibenzyloxy-2-hydroxy-6-methoxybenzophenone (26). To a stirred solution of 25 (1.80 g, 3.39 mmol) and PhNMe₂ (2.57 ml, 20.3 mmol) in CH₂Cl₂ (15 ml) was added powdered AlCl₃ (1.36 g, 10.2 mmol) at 0 °C. The solution was stirred for 10 min at 0 °C. The reaction mixture was then diluted with EtOAc, poured into ice-cold aq. 2 M HCl and mixed. The organic layer was separated, and the aqueous phase was extracted with CHCl₃. The combined organic layer was washed with brine, dried over MgSO₄ and filtered through a silica-gel pad; the solvent was evaporated under reduced pressure to give a white solid. The crude product was suspended in EtOAc and filtered to afford 26 (1.48 g, 98%).

26: amorphous white solid; mp 111.0–113.0 °C (EtOH); NMR $\delta_{\rm H}$ (CDCl₃): 11.82 (OH, brs), 7.56 (2H, d, J = 8.9 Hz), 7.32–7.44 (10H, m), 6.94 (2H, d, J = 8.9 Hz), 6.23 (1H, d, J = 2.1 Hz), 6.02 (1H, d, J = 2.1 Hz), 5.11 (2H, s), 5.08 (2H, s), 3.48 (3H, s); NMR $\delta_{\rm C}$ (CDCl₃): 197.4, 165.2, 164.9, 161.5, 136.4, 136.0, 134.0, 130.8, 128.7, 128.6, 128.3, 128.1, 127.7, 127.5, 113.7, 106.0, 94.6, 91.9, 70.3, 70.1, 55.2; EIMS m/z (rel. int. %): 440 (M⁺, 30), 349 (7), 320 (4), 91 (100), 65 (5); HREIMS m/z (M⁺) calcd. for C₂₈H₂₄O₅, 440.0998; found, 440.1659.

Dealkylation reaction of **25** with Lewis acids (AlCl₃ and BBr₃). (a) Reaction with AlCl₃

To a stirred solution of **25** (200 mg, 0.38 mmol) in CH₂Cl₂ (5 ml) was added powdered AlCl₃ (151 mg, 1.13 mmol) at 0 °C. The solution was stirred for 3 h at room temperature. No reaction occurred.

(b) Reaction with BBr₃

To a stirred solution of **25** (206 mg, 0.39 mmol) in CH₂Cl₂ (5 ml) was added BBr₃ (0.39 ml of 1 M in hexane, 0.39 mmol) at -78 °C. The solution was stirred for 2 h at -78 °C and then for 30 min at -60 °C. The reaction mixture was decomposed by ice-cold aq. 2 M HCl and diluted with EtOAc. The organic layer was separated and dried over MgSO₄; the solvent was evaporated under reduced pressure. A product with the same *Rf* value as that of **26** was purified by flash column chromatography on silica gel (hexane/EtOAc 2:1). This product suspended in hexane gave a white solid (86 mg). ¹H-NMR indicated this to be a mixture of **26** (68 mg, 41%) and **24** (18 mg, 9%).

(c) Reaction with AlCl₃ and PhNMe₂ at room temperature

To a stirred solution of **25** (200 mg, 0.39 mmol) and PhNMe₂ (0.29 ml, 2.26 mmol) in CH₂Cl₂ (5 ml) was added powdered AlCl₃ (150 mg, 1.1 mmol) at 0 °C. The solution was stirred for 10 min at 0 °C and then for 2 h at room temperature. The reaction mixture diluted with EtOAc was poured into ice-cold aq. 2 M HCl and mixed. The organic layer was separated, and the aqueous phase was extracted twice with CHCl₃. The combined organic layer was washed with brine, dried over MgSO₄ and filtered through a silica-gel pad; the solvent was evaporated under reduced pressure to give a white solid. The

crude product was suspended in EtOAc and filtered to afford 26 (160 mg, 96%).

4,4'-Dibenzyloxy-2-hydroxy-6-methoxybenzophenone 2-(2,3,4,6-tetra-O-acetyl)-β-D-glucopyranoside (27). To a stirred solution of 26 (200 mg, 0.454 mmol) and O-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl) trichloroacetimidate (447 mg, 0.91 mmol) in dry CH₂Cl₂ (5 ml) was added BF₃•OEt₂ (1 drop) at 0 °C. The solution was stirred for 6 h at room temperature. The reaction mixture was diluted with EtOAc and successively washed with aq. sat. NH₄Cl and brine. The organic layer was separated and dried over MgSO₄; the solvent was evaporated under reduced pressure. Purification by flash column chromatography on silica gel (CHCl₃/acetone 15:1) afforded 27 (100.5 mg, 29%) and 26 (122.5 mg, 61%).

27: colorless prisms; mp 77.5–78.5 °C (EtOH); $[\alpha]_D^{27}$ –16° (*c* 0.3, CHCl₃); NMR δ_H (CDCl₃): 7.75 (2H, d, J = 8.6 Hz), 7.26–7.40 (10H, m), 6.95 (2H, d, J = 8.6 Hz), 6.45 (1H, d, J = 1.9 Hz), 6.34 (1H, d, J = 1.9 Hz), 5.16 (1H, dd, J = 9.9, 9.2 Hz), 5.11 (2H, s), 5.09 (2H, s), 5.02 (1H, dd, J = 9.9, 9.6 Hz), 4.93 (1H, dd, J = 9.6, 7.6 Hz), 4.88 (1H, d, J = 7.6 Hz), 4.19 (1H, dd, J = 12.4, 5.2 Hz), 4.10 (1H, dd, J = 12.4, 2.9 Hz), 3.73 (1H, m), 3.67 (3H, s), 2.04 (3H, s), 2.00 (3H, s), 1.95 (3H, s), 1.90 (3H, s); NMR δ_C (CDCl₃): 193.7, 171.9, 171.5, 170.7, 170.5, 164.3, 162.4, 159.6, 156.7, 137.7, 133.3, 132.6, 130.12, 130.07, 129.7, 129.6, 129.0, 128.9, 115.8, 101.4, 98.0, 97.5, 95.6, 74.0, 73.4, 71.8, 71.7, 71.5, 69.4, 57.3, 22.00, 21.97, 21.7; FABMS (negative, TEA matrix) m/z (rel. int. %) 769 [M – H]⁻ (1); HRFABMS m/z [M – H]⁻ calcd. for C₄₂H₄₁O₁₄, 769.2496; found, 769.2519.

4,4'-Dibenzyloxy-2-hydroxy-6-methoxybenzophenone 2-O-β-D-glucopyranoside (28). Compound 27 (70 mg, 0.091 mmol) was dissolved in MeOH (6 ml) and triethylamine (2 ml), and then stirred at room temperature for 15 h. To the reaction mixture was added toluene, and the solution evaporated to dryness. The crude product was suspended in hexane and diethyl ether, and filtered to afford 28 (50 mg, 92%).

28: colorless prisms; mp 79.5–81.5 °C (EtOH); $[\alpha]_D^{27} - 6^\circ$ (*c* 0.1, MeOH); NMR δ_H (CDCl₃): 7.78 (2H, d, J = 8.4 Hz), 7.39–7.42 (10H, m), 6.94 (2H, d, J = 8.4 Hz), 6.45 (1H, d, J = 1.9 Hz), 6.32 (1H, d, J = 1.9 Hz), 5.09 (4H, brs), 4.73 (1H, d, J = 7.5 Hz), 3.75–3.86 (2H, m), 3.71 (3H, s), 3.51–3.57 (3H, m), 3.41 (1H, m), 2.34 (OH, brs); NMR δ_C (CDCl₃): 194.1, 163.1, 161.7, 158.7, 157.1, 136.2, 132.1, 131.5, 128.8, 128.7, 128.3, 128.2, 127.5, 114.4, 103.9, 96.3, 96.1, 94.5, 75.9, 73.7, 70.4, 70.2, 70.2, 69.9, 62.4, 55.8; FABMS (negative, TEA matrix) m/z (rel. int. %) 601 [M – H]⁻ (1); HRFABMS m/z [M – H]⁻ calcd. for C₃₄H₃₃O₁₀, 601.2074; found, 601.2075.

2,4,4'-Trihydroxy-6-methoxybenzophenone 2-O-β-D-glucopyranoside (4). To a solution of **28** (53 mg, 0.088 mmol) in dioxane (4 ml) was added 10% Pd/C (50 mg), and the resulting suspension was stirred vigorously under a hydrogen atmosphere for 15 h at room temperature. The catalyst was filtered off through Celite, and the filtrate was evaporated under reduced pressure. The crude product was suspended in CHCl₃ and filtered to afford **4** (28 mg, 75%).

4: colorless plates; mp 136.0–138.0 °C (EtOH); $[\alpha]_D^{28} - 10^\circ$ (*c* 0.1, MeOH); NMR δ_H (DMSO-d₆): 10.26 (OH, brs), 9.81 (OH, brs), 7.55 (2H, d, J = 8.0 Hz), 6.77 (2H, d, J = 8.0 Hz), 6.26 (1H, brs), 6.16 (1H, brs), 4.94 (OH, d, J = 4.9 Hz), 4.90 (OH, d, J = 5.3 Hz), 4.73 (1H, d, J = 7.0 Hz), 4.52 (OH, d, J = 4.6 Hz), 4.46 (OH, d, J = 5.0 Hz), 3.63 (1H, m), 3.55 (3H, s), 3.48 (1H, m), 3.20 (1H, m), 3.17 (1H, m), 3.06 (1H, m), 2.89 (1H, m); NMR $\delta_{\rm H}$ (500 MHz, CD₃OD): 7.66 (2H, d, J = 8.7 Hz, H-2' and H-6'), 6.78 (2H, d, J = 8.7 Hz, H-3' and H-5'), 6.37 (1H, d, J = 1.9 Hz, H-3), 6.22 (1H, d, J = 1.9 Hz, H-5), 4.83 (1H, d, J = 7.9 Hz, H-1"), 3.84 (1H, dd, J = 12.0, 2.1 Hz, H-6"b), 3.66 (1H, dd, J = 12.0, 5.5 Hz, H-6"a), 3.62 (3H, s, OCH₃), 3.37 (1H, dd, J = 9.3, 9.0 Hz, H-3'', 3.36 (1H, m, H-5''), 3.28 (1H, dd, J = 9.3, 9.3 Hz, H-4"), 3.19 (1H, dd, J = 9.0, 7.9 Hz, H-2"); NMR $\delta_{\rm C}$ (CD₃OD): 196.4 (C=O), 164.1 (C-4'), 161.9 (C-4), 160.2 (C-6), 157.9 (C-2), 133.5 (C-2' and C-6'), 131.6 (C-1'), 116.0 (C-3' and C-5'), 112.1 (C-1), 102.8 (C-1"), 96.9 (C-3), 94.6 (C-5), 78.2 (C-5"), 77.8 (C-3"), 74.7 (C-2"), 71.1 (C-4"), 62.5 (C-6"), 56.1 (OCH3); FABMS (negative, TEA matrix) *m/z* (rel. int. %) 421 [M – H]⁻ (7); HRFABMS *m/z* [M – H]⁻ calcd. for C₂₀H₂₁O₁₀, 421.1135; found, 421.1138.

4'-Allyloxy-2,4,6-tribenzyloxybenzophenone (**30**). To a suspension of 4-allyloxybenzoic acid (2.14 g, 12.0 mmol) in CH₂Cl₂ (20 ml) cooled to 0 °C was added trifluoroacetic anhydride (1.81 ml, 13.0 mmol), and the mixture was stirred for 10 min. To the solution was added 1,3,5-tribenzyloxybenzene (**22**; 3.96 g, 10.0 mmol) and the mixture stirred at room temperature for 48 h. The reaction mixture was diluted with EtOAc, ice-cooled water and aq. sat. Na₂CO₃, and then stirred vigorously. The organic layer was separated, successively washed with aq. sat. NaHCO₃ and brine, dried over MgSO₄ and filtered through a silica-gel pad. The solvent was evaporated under reduced pressure. The crude product was suspended in EtOH and filtered to afford **30** (4.57 g, 82%).

30: colorless prisms; mp 121.5–123.5 °C (EtOH); NMR $\delta_{\rm H}$ (CDCl₃): 7.83 (2H, d, J = 8.7 Hz), 7.35–7.38 (5H, m), 7.20–7.22 (5H, m), 7.08–7.11 (5H, m), 6.90 (2H, d, J = 8.7 Hz), 6.25 (2H, s), 6.04 (1H, ddt, J = 18.8, 11.8, 5.3 Hz), 5.43 (1H, ddt, J = 18.8, 2.5, 2.0 Hz), 5.31 (1H, ddt, J = 11.8, 2.5, 1.0 Hz); NMR $\delta_{\rm C}$ (CDCl₃): 193.1, 162.4, 161.1, 157.6, 155.6, 136.6, 132.7, 132.0, 131.7, 128.7, 128.4, 128.2, 127.6, 127.5, 126.7, 118.0, 114.2, 112.8, 96.1, 93.6, 70.3, 68.8, 25.0; EIMS m/z (rel. int. %): 557 (M⁺ +1, 6), 556 (M⁺, 16), 223 (29), 161 (15), 91 (100); HREIMS m/z (M⁺) calcd. for C₃₇H₃₂O₅, 556.2250; found, 556.2209.

4'-Allyloxy-2,4-dibenzyloxy-6-hydroxybenzophenone (**31**). To a stirred solution of **30** (1.04 g, 1.87 mmol) and PhNMe₂ (1.42 ml, 11.2 mmol) in CH₂Cl₂ (10 ml) was added powdered AlCl₃ (0.75 g, 5.6 mmol) at 0 °C. The solution was stirred for 5 min at 0 °C. The reaction mixture was then diluted with EtOAc, poured into ice-cold aq. 2 M HCl and mixed. The organic layer was separated and washed with brine, dried over MgSO₄ and filtered through a silica-gel pad. The solvent was evaporated under reduced pressure to give a white solid. The crude product was suspended in EtOH and filtered to afford **31** (0.70 g, 80%).

31: colorless needles; mp 114.0–115.5 °C (EtOH); NMR $\delta_{\rm H}$ (CDCl₃): 11.76 (OH, brs), 7.56 (2H, d, J = 8.9 Hz), 7.35–7.45 (5H, m), 7.10–7.18 (3H, m), 6.79 (2H, d, J = 8.9 Hz), 6.73–6.80 (2H, m), 6.27 (1H, d, J = 2.3 Hz), 6.13 (1H, d, J = 2.3 Hz), 6.01 (1H, ddt, J = 18.8, 11.8, 5.3 Hz), 5.39 (1H, ddt, J = 18.8, 2.5, 2.0 Hz), 5.29 (1H, ddt, J = 11.8, 2.5, 1.0 Hz), 5.09 (2H, s), 4.81 (2H, s), 4.48 (2H, ddt, J = 5.3, 2.0, 1.0 Hz); NMR $\delta_{\rm C}$ (CDCl₃): 197.9, 165.1, 164.9, 161.4, 160.5, 135.9, 135.6, 134.2, 132.8, 130.6, 128.7, 128.3, 128.1, 127.7, 127.5, 126.5, 117.9, 113.7, 106.3, 96.1, 94.8, 92.9, 70.3, 70.1, 68.8; EIMS m/z (rel. int. %): 467 (M⁺ +1, 7), 466 (M⁺, 24), 375 (6), 243 (6), 224 (5), 161 (18), 91 (100); HREIMS m/z (M⁺) calcd. for C₃₀H₂₆O₅, 466.1780; found, 466.1775.

4'-Allyloxy-2,4-dibenzyloxy-6-methoxybenzophenone (32). A suspension of 31 (3.45 g, 7.40 mmol), potassium carbonate (1.42 g, 10.3 mmol), 18-crown-6 (0.10 g, 0.38 mmol), and dimethyl sulfate (1.08 g, 8.56 mmol) in acetone (30 ml) was refluxed for 2 h. To the reaction mixture was added conc. NH₄OH (2 ml), EtOAc and water. The organic layer was separated, washed with brine and dried over MgSO₄; the solvent was evaporated under reduced pressure. The crude product was suspended in hexane and filtered to afford 32 (3.36 g, 95%).

32: colorless needles; mp 83.0–84.0 °C (EtOH); NMR $\delta_{\rm H}$ (CDCl₃): 7.82 (2H, d, J = 8.4 Hz), 7.33–7.41 (5H, m), 7.18–7.24 (3H, m), 7.04– 7.07 (2H, m), 6.89 (2H, d, J = 8.4 Hz), 6.25 (2H, s), 6.03 (1H, ddt, J = 17.5, 10.6, 5.3 Hz), 5.40 (1H, ddt, J = 17.5, 2.1, 1.9 Hz), 5.29 (1H, ddt, J = 10.6, 2.1, 1.1 Hz), 5.04 (2H, s), 4.95 (2H, s), 4.57 (2H, ddt, J = 5.3, 1.9, 1.1 Hz), 3.67 (3H, s); NMR $\delta_{\rm C}$ (CDCl₃): 193.3, 162.5, 161.2, 158.6, 157.4, 136.6, 136.5, 132.6, 131.7, 128.6, 128.3, 128.1, 127.5, 126.7, 118.0, 114.2, 112.1, 96.1, 93.0, 92.2, 70.3, 70.2, 68.8, 55.8; EIMS m/z (rel. int. %): 481 (M⁺ +1, 16), 480 (M⁺, 51), 463 (8), 439 (10), 257 (9), 161 (14), 91 (100), 43 (11); HREIMS m/z (M⁺) calcd. for C₃₁H₂₈O₅, 480.1937; found, 480.1958.

2,4-Dibenzyloxy-4'-hydroxy-6-methoxybenzophenone (33). To a solution of 32 (0.53 g, 1.0 mmol) in dioxane (3 ml) and MeOH (3 ml) was added Pd(PPh₃)₄ (34 mg, 0.029 mmol) under an N₂ atmosphere. The solution was stirred for 10 min, K₂CO₃ (0.41 g, 3.0 mmol) was added, and stirring was continued for 20 h. The reaction mixture was then diluted with EtOAc, poured into ice-cold aq. 2 M HCl and mixed.

The organic layer was separated and washed with brine, dried over $MgSO_4$ and filtered through a silica-gel pad. The solvent was evaporated under reduced pressure. The crude product was suspended in hexane and filtered to afford **33** (0.43 g, 98%).

33: amorphous white solid; mp 195.0–197.0 °C (EtOH); NMR $\delta_{\rm H}$ (acetone- d_6): 9.12 (OH, brs), 7.70 (2H, d, J = 8.7 Hz), 7.35–7.51 (5H, m), 7.15–7.24 (5H, m), 6.90 (2H, d, J = 8.7 Hz), 6.51 (1H, d, J = 2.0 Hz), 6.44 (1H, d, J = 2.0 Hz), 5.17 (2H, s), 5.06 (2H, s), 3.69 (3H, s); NMR $\delta_{\rm C}$ (acetone- d_6): 192.6, 162.6, 162.1, 159.4, 158.2, 138.0, 132.4, 131.9, 129.6, 129.3, 129.0, 128.8, 128.6, 128.3, 127.8, 115.9, 113.1, 94.0, 92.9, 70.8, 70.7, 56.1; EIMS m/z (rel. int. %): 441 (M⁺ +1, 8), 440 (M⁺, 30), 349 (7), 320 (4), 91 (100), 65 (5); HREIMS m/z (M⁺) calcd. for C₂₈H₂₄O₅, 440.0998; found, 440.1659.

2,4-Dibenzyloxy-4'-hydroxy-6-methoxybenzophenone 4'-(2,3,4,6tetra-O-acetyl)-β-D-glucopyranoside (34). A mixture of 33 (350 mg, 0.795 mmol), 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl bromide (653 mg, 1.59 mmol), BnBu₃NCl (10.2 mg), K₂CO₃ (529 mg, 3.97 mmol) and CH₂Cl₂ (8 ml) was stirred at room temperature for 24 h. The reaction mixture was acidifed with aq. 2 M HCl and diluted with EtOAc. The organic layer was separated, washed with aq. sat. NaHCO₃, dried over MgSO₄, and evaporated under reduced pressure. Purification by flash column chromatography on silica gel (CHCl₃/ acetone 15:1) afforded 34 (380 mg, 62%).

34: amorphous white solid; mp 152.5–154.5 °C (EtOH); $[\alpha]_D^{27}$ –11° (*c* 0.3, CHCl₃); NMR δ_H (CDCl₃): 7.82 (2H, d, *J* = 8.9 Hz), 7.33–7.41 (5H, m), 7.20–7.22 (3H, m), 7.04–7.07 (2H, m), 6.97 (2H, d, *J* = 8.9 Hz), 6.25 (2H, brs), 5.29 (1H, d, *J* = 7.7 Hz), 5.22 (2H, m) 5.16 (1H, dd, *J* = 9.6, 9.0 Hz), 5.05 (2H, s), 4.95 (2H, s), 4.28 (1H, dd, *J* = 12.2, 5.6 Hz), 4.15 (1H, dd, *J* = 12.2, 2.3 Hz), 3.89 (1H, m), 3.68 (3H, s), 2.10 (3H, s), 2.04 (9H, s); NMR δ_C (CDCl₃): 193.4, 170.5, 170.2, 169.3, 169.2, 161.4, 160.2, 158.7, 157.5, 136.4, 133.8, 131.6, 128.7, 128.3, 128.2, 127.7, 127.6, 126.7, 116.0, 106.1, 98.2, 96.1, 93.0, 92.1, 72.6, 72.2, 71.0, 70.3, 68.2, 63.9, 61.8, 55.8, 20.7, 20.6; FABMS (negative, TEA matrix) *m*/*z* (rel. int. %) 679 [M – H]⁻ (8); HRFABMS *m*/*z* [M – H]⁻ calcd. for C₃₅H₃₅O₁₄, 679.2027; found, 679.2033.

2,4-Dibenzyloxy-4'-hydroxy-6-methoxybenzophenone 4'-O- β -D-glucopyranoside (35). Compound 34 (100 mg, 0.130 mmol) was dissolved in MeOH (6 ml) and triethylamine (2 ml), and the solution stirred at room temperature for 30 h. To the reaction mixture was added toluene, and the solution evaporated to dryness. The crude product was suspended in CHCl₃ and filtered to afford 35 (78 mg, 98%).

35: colorless plates; mp 83.0–85.0 °C (EtOH); $[\alpha]_D^{27}$ –35° (*c* 0.3, CHCl₃); NMR δ_H (CDCl₃): 7.73 (2H, d, J = 8.0 Hz), 7.30–7.35 (5H, m), 7.08–7.11 (3H, m), 6.97 (2H, d, J = 8.0 Hz), 6.94–6.98 (2H, m), 6.20 (1H, brs), 6.18 (1H, brs), 4.98 (3H, s), 4.84 (2H, s), 3.75–3.82 (2H, m), 3.60–3.74 (3H, m), 3.52 (3H, s), 3.36–3.40 (1H, m); NMR δ_C (CDCl₃): 193.6, 161.4, 160.8, 158.6, 157.5, 136.5, 136.4, 133.2, 131.7, 128.6, 128.4, 128.1, 127.6, 126.7, 116.0, 105.4, 99.8, 96.1, 93.2, 92.2, 75.9, 75.1, 73.2, 70.2, 69.3, 65.5, 60.9, 55.7; FABMS (negative, TEA matrix) m/z (rel. int. %) 601 [M – H]⁻ (1); HRFABMS m/z [M – H]⁻ calcd. for C₃₄H₃₃O₁₀, 601.2074; found, 601.2092.

2,4,4'-Trihydroxy-6-methoxybenzophenone 4'-O-β-D-glucopyranoside (5). To a solution of **35** (57 mg, 0.095 mmol) in dioxane (3 ml) was added 10% Pd/C (20 mg), and the resulting suspension was stirred vigorously under a hydrogen atmosphere for 15 h at room temperature. The catalyst was filtered off through Celite, and the filtrate was evaporated under reduced pressure. The crude product was suspended in CHCl₃ and filtered to afford **5** (32.2 mg, 81%).

5: colorless prisms; mp 245.5–247.5 °C (EtOH); $[\alpha]_D^{27}$ – 55° (*c* 0.3, MeOH); NMR δ_H (500 MHz, CD₃OD): 7.62 (2H, d, J = 8.8 Hz, H-2' and H-6'), 7.10 (2H, d, J = 8.8 Hz, H-3' and H-5'), 5.99 (2H, s, H-3 and H-5), 5.01 (1H, d, J = 7.4 Hz, H-1"), 3.89 (1H, dd, J = 12.1, 2.0 Hz, H-6"b), 3.69 (1H, dd, J = 12.1, 5.6 Hz, H-6"a), 3.54 (3H, s, OCH₃), 3.47–3.48 (3H, m, H-2", H-3" and H-5"), 3.39 (1H, dd, J = 9.4, 9.1 Hz, H-4"); NMR δ_C (CD₃OD): 198.1 (C=O), 164.2 (C-4^a), 162.28 and 162.25 (C-2^a and C-6^b), 162.21 (C-4^b), 135.7 (C-1'), 132.0 (C-2' and C-6'), 116.7 (C-3' and C-5'), 107.7 (C-1), 101.6 (C-1"), 96.7 (C-5°), 92.2 (C-3°), 78.2 (C-5"), 77.9 (C-3"d), 74.8 (C-2"d), 71.3 (C-4"), 62.4 (C-6"), 55.8 (OCH₃) [signals with the same

superscript may be interchangeable]; FABMS (negative, TEA matrix) m/z (rel. int. %) 421 [M – H][–] (8); HRFABMS m/z [M – H][–] calcd. for C₂₀H₂₁O₁₀, 421.1135; found, 421.1130.

4'Allyloxy-4-benzyloxy-2-hydroxy-6-methoxybenzophenone (**36**). To a stirred solution of **32** (1.06 g, 2.21 mmol) and PhNMe₂ (1.51 ml, 12.0 mmol) in CH₂Cl₂ (10 ml) was added powdered AlCl₃ (0.80 g, 6.0 mmol) at 0 °C. The solution was stirred for 20 min at 0 °C. The reaction mixture was then diluted with EtOAc, poured into ice-cold aq. 2 M HCl and mixed. The organic layer was separated and washed with brine, dried over MgSO₄ and filtered through a silica-gel pad. The solvent was evaporated under reduced pressure. The crude product was suspended in EtOH and filtered to afford **36** (0.71 g, 82%).

36: colorless needles; mp 118.5–119.5 °C (EtOH); NMR $\delta_{\rm H}$ (CDCl₃): 11.81 (OH, brs), 7.57 (2H, d, J = 8.9 Hz), 7.33–7.45 (5H, m), 6.88 (2H, d, J = 8.9 Hz), 6.23 (1H, d, J = 2.1 Hz), 6.05 (1H, ddt, J = 18.8, 11.9, 5.3 Hz), 6.02 (1H, d, J = 2.1 Hz), 5.43 (1H, ddt, J = 18.8, 2.0, 1.5 Hz), 5.31 (1H, ddt, J = 11.9, 2.0, 1.3 Hz), 5.09 (2H, s), 4.59 (2H, ddt, J = 5.3, 1.5, 1.3 Hz), 3.51 (3H, s); NMR $\delta_{\rm C}$ (CDCl₃): 197.3, 165.2, 164.9, 161.5, 161.4, 136.0, 133.9, 132.8, 130.8, 128.7, 128.3, 127.7, 118.0, 114.5, 113.5, 96.2, 94.6, 91.9, 70.3, 68.8, 55.1; EIMS m/z (rel. int. %): 391 (M⁺ +1, 11), 390 (M⁺, 46), 389 (21), 299 (8), 91 (100); HREIMS m/z (M⁺) calcd. for C₂₄H₂₂O₅, 390.1467; found, 390.1462.

4-Benzyloxy-2,4'-dihydroxy-6-methoxybenzophenone (**37**). To a solution of **36** (0.55 g, 1.4 mmol) in dioxane (5 ml) and MeOH (5 ml) was added Pd(PPh₃)₄ (35 mg, 0.030 mmol) under an N₂ atmosphere. The solution was stirred for 10 min, K₂CO₃ (0.97 g, 7.0 mmol) was added, and stirring was continued for 20 h. The reaction mixture was then diluted with EtOAc, poured into ice-cold aq. 2 M HCl and mixed. The organic layer was separated and washed with brine, dried over MgSO₄ and filtered through a silica-gel pad. The solvent was evaporated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 2:1) afforded **37** (0.44 g, 90%).

37: colorless prisms; mp 59.0–61.0 °C (EtOH); NMR $\delta_{\rm H}$ (CDCl₃): 11.83 (OH, brs), 7.53 (2H, d, J = 8.7 Hz), 7.33–7.43 (5H, m), 6.80 (2H, d, J = 8.7 Hz), 6.24 (1H, d, J = 2.3 Hz), 6.03 (1H, d, J = 2.3 Hz), 5.43 (OH, brs), 5.09 (2H, s), 3.51 (3H, s); NMR $\delta_{\rm C}$ (CDCl₃): 197.4, 165.2, 165.0, 161.5, 158.7, 135.9, 134.0, 131.1, 128.7, 128.4, 127.7, 114.4, 96.1, 94.6, 92.0, 70.3, 55.1; EIMS m/z (rel. int. %): 351 (M⁺ +1, 11), 350 (M⁺, 50), 349 (16), 259 (14), 91 (100); HREIMS m/z (M⁺) calcd. for C₂₁H₁₈O₅, 350.1154; found, 350.1152.

4',6-Diacetoxy-4-benzyloxy-6-methoxybenzophenone (**38**). A mixture of **37** (0.40 g, 1.14 mmol), triethylamine (0.80 ml, 5.7 mmol), DMAP (5 mg, 0.04 mmol) and acetic anhydride (0.30 ml, 3.4 mmol) in CH₂Cl₂ (10 ml) was stirred at room temperature for 1 h. The reaction mixture was added with toluene and evaporated to dryness. The crude product purified by flash column chromatography on silica gel (hexane/EtOAc 2:1) afforded **38** (0.50 g, 99%).

38: colorless prisms; mp 115.0–117.0 °C (hexane); NMR $\delta_{\rm H}$ (CDCl₃): 7.65 (2H, d, J = 8.0 Hz), 7.20–7.27 (5H, m), 6.97 (2H, d, J = 8.0 Hz), 6.29 (2H, brs), 4.89 (2H, s), 3.47 (3H, s), 1.86 (3H, s), 1.79 (3H, s); NMR $\delta_{\rm C}$ (CDCl₃): 191.2, 168.2, 161.0, 158.7, 154.1, 149.7, 135.9, 135.5, 130.5, 128.4, 128.0, 127.3, 121.2, 114.7, 100.9, 97.0, 95.9, 70.1, 57.5, 55.5, 20.1, 18.1; EIMS m/z (rel. int. %): 434 (M⁺, 20), 392 (36), 259 (16), 91 (100); HREIMS m/z (M⁺) calcd. for C₂₅H₂₂O₇, 434.1366; found, 434.1392.

2,4'-Diacetoxy-4-hydroxy-6-methoxybenzophenone (**39**). To a solution of **38** (0.47 g, 1.1 mmol) in dioxane (20 ml) was added 10% Pd/C (57 mg), and the resulting suspension was stirred vigorously overnight under a hydrogen atmosphere at room temperature. The catalyst was filtered off through Celite, and the filtrate was evaporated under reduced pressure. The crude product was suspended in hexane and filtered to afford **39** (0.31 g, 83%).

39: amorphous white solid; mp 132.0–134.0 °C (EtOH); NMR $\delta_{\rm H}$ (CDCl₃): 7.82 (2H, d, J = 8.6 Hz), 7.15 (2H, d, J = 8.6 Hz), 6.28 (1H, brs), 6.24 (1H, brs), 3.56 (3H, s), 2.32 (3H, s), 1.98 (3H, s); NMR $\delta_{\rm C}$ (CDCl₃): 192.9, 169.6, 168.9, 159.5, 159.2, 154.4, 149.7, 135.7, 131.1, 121.6, 113.6, 102.8, 97.3, 96.1, 55.8, 21.2, 20.6; EIMS m/z (rel. int.

%): 344 (M⁺, 29), 259 (100), 167 (20), 43 (27); HREIMS m/z (M⁺) calcd. for C₁₈H₁₆O₇, 344.0896; found, 344.0888.

2,4'-Diacetoxy-4-hydroxy-6-methoxybenzophenone 4-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside) (40). To a stirred solution of 39 (200 mg, 0.581 mmol) and O-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl) trichloroacetimidate (458 mg, 0.930 mmol) in dry CH₂Cl₂ (5 ml) was added BF₃•OEt₂ (1 drop) at 0 °C. The solution was stirred for 6 h at room temperature. The reaction mixture was diluted with EtOAc and successively washed with NH₄Cl and brine. The organic layer was separated, dried over MgSO₄, and evaporated under reduced pressure. Purification by flash column chromatography on silica gel (CHCl₃/ acetone 15:1) afforded 40 (284 mg, 73%).

40: colorless plates; mp 66.5–68.0 °C (EtOH); $[\alpha]_D^{27}$ –19° (*c* 0.3, MeOH); NMR δ_H (CDCl₃): 7.82 (2H, d, J = 8.6 Hz), 7.15 (2H, d, J = 8.6 Hz), 6.50 (1H, d, J = 1.6 Hz), 6.45 (1H, d, J = 1.6 Hz), 5.25–5.35 (2H, m), 5.17 (1H, d, J = 7.6 Hz), 5.12–5.21 (1H, m), 4.27 (1H, dd, J = 12.3, 5.4 Hz), 4.18 (1H, dd, J = 12.3, 2.0 Hz), 3.91 (1H, m), 3.68 (3H, s), 2.31 (3H, s), 2.09 (3H, s), 2.07 (3H, s), 2.06 (3H, s), 2.04 (3H, s), 1.98 (3H, s); NMR δ_C (CDCl₃): 191.4, 170.4, 170.1, 169.34, 169.3, 168.7, 168.5, 158.8, 158.7, 154.5, 149.6, 135.2, 130.9, 121.6, 117.1, 103.2, 99.1, 96.1, 72.6, 72.3, 71.0, 68.2, 62.0, 56.1, 21.5, 21.2, 20.7, 20.6; FABMS (negative, TEA matrix) m/z (rel. int. %) 674 [M – H]⁻ (5); HRFABMS m/z [M – H]⁻ calcd. for C₃₂H₃₄O₁₆, 674.1847; found, 674.17780.

2,4,4'-Trihydroxy-6-methoxybenzophenone 4-O-β-D-glucopyranoside (6). Compound 40 (136 mg, 0.20 mmol) was dissolved in MeOH (3 ml) and triethylamine (1 ml), and stirred at room temperature for 15 h. To the reaction mixture was added toluene, and the mixture evaporated to dryness. Purification by flash column chromatography on silica gel (CHCl₃/MeOH 5:1) afforded 6 (67 mg, 79%).

6: colorless plates; mp 110.0–112.0 °C (EtOH); $[\alpha]_D^{25} - 35^{\circ}$ (*c* 0.3, MeOH); NMR δ_H (500 MHz, CD₃OD): 7.63 (2H, d, J = 8.8 Hz, H-2' and H-6'), 6.78 (2H, d, J = 8.8 Hz, H-3' and H-5'), 6.35 (1H, d, J = 2.0 Hz, H-5), 6.30 (1H, d, J = 2.0 Hz, H-3), 4.92 (1H, d, J = 7.4 Hz, H-1"), 3.92 (1H, dd, J = 12.0, 2.2 Hz, H-6"b), 3.69 (1H, dd, J = 12.0, 6.1 Hz, H-6"a), 3.63 (3H, s, OCH₃), 3.44–3.49 (3H, m, H-2", H-3" and H-5"), 3.37 (1H, dd, J = 9.4, 9.1 Hz, H-4"); NMR δ_C (CD₃OD): 197.1 (C=O), 164.0 (C-4'), 162.1 (C-4), 160.6 (C-6), 158.8 (C-2), 133.2 (C-2' and C-6'), 131.6 (C-1'), 116.0 (C-3' and C-5'), 111.6 (C-1), 102.1 (C-1"), 97.8 (C-3), 93.3 (C-5), 78.4 (C-5"), 78.0 (C-3"), 74.8 (C-2"), 71.4 (C-4"), 62.6 (C-6"), 56.1 (OCH₃); FABMS (negative, TEA matrix) m/z (rel. int. %) 421 [M – H]⁻ (4); HRFABMS m/z [M – H]⁻ calcd. for C₂₀H₂₁O₁₀, 421.1135; found, 421.1138.

Extraction and isolation of phalerin from the fruits and leaves of P. macrocarpa.

(a) Plant material

Sliced dry fruits of *P. macrocarpa* were purchased from a local market in Yogyakarta, Indonesia, in 2006. The leaves of *P. macrocarpa* were collected in Yogyakarta, Indonesia, in 2009 and air dried. A voucher specimen was deposited at the Laboratory of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Sanata Dharma University, Yogyakarta.

(b) Extraction and isolation of phalerin

The sliced dry fruits of *P. macrocarpa* (2.94 g) were extracted with MeOH (10 ml) for 2 weeks at room temperature and filtered. The filtrate was concentrated to give a residue (0.444 g). The MeOH extract and synthesized **1**, **2** and **4–6** were developed on a silica gel TLC plate (CHCl₃/MeOH 3:1) by the technique of double spotting. One spot with the same R_f value of synthesized **2** was observed in the MeOH extract. There was, however, no corresponding spot to compounds **1** and **4–6** in the MeOH extract. By using synthesized **2** as a reference compound, the residue (0.444 g) was subjected to flash column chromatography on silica gel (CHCl₃/MeOH 3:1), and then applied to preparative TLC (1 mm thickness) on silica gel (CHCl₃/MeOH 3:1) to afford a white solid (28.8 mg):

colorless prisms; mp 101.8–103.5 °C (EtOH); $[\alpha]_D^{27}$ –18° (*c* 0.9, MeOH), –2.7° (*c* 0.15, EtOH); FABMS (negative, TEA matrix) m/z (rel. int. %) 421 [M – H][–] (8); HRFABMS m/z [M – H][–] calcd. for C₂₀H₂₁O₁₀, 421.1135; found, 421.1123. The ¹H- and ¹³C-NMR data for the constituent were identical with those of synthesized **2**.

The dried leaves of *P. macrocarpa* (1.49 g) were extracted with MeOH (10 ml) for 2 weeks at room temperature and filtered. The filtrate was concentrated to give a residue (0.389 g). Under essentially the same conditions, the same compound (30.3 mg) was obtained:

colorless prisms; mp 101.5–103.2 °C (EtOH); $[\alpha]_D^{27}$ –14° (*c* 0.3, MeOH), –2.8° (*c* 0.3, EtOH); FABMS (negative, TEA matrix) m/z (rel. int. %) 421 [M – H][–] (13); HRFABMS m/z [M – H][–] calcd. for C₂₀H₂₁O₁₀, 421.1135; found, 421.1138. The ¹H- and ¹³C-NMR data for the constituent were identical with those of synthesized **2**.

Acknowledgments

We are grateful to Mr. Yusuke Takata of our laboratory, Mr. Kenji Watanabe and Dr. Eri Fukushi of the GC-MS and NMR Laboratory, Faculty of Agriculture, Hokkaido University for their skill and assistance in analysing the NMR and MS data.

References

- Hartati MS, Mubarika S, Gandjar IG, Hamann MT, Rao KV, and Wahyuono S, *Majalah Farmasi Indonesia*, 16, 51–57 (2005).
- Hakim RW, Nawawi A, Adnyana IK, Achmad SA, Makmur L, Hakim EH, Sjah YM, and Kitajima M, *Bull. Soc. Nat. Prod. Chem.* (in Indonesian), 4, 67–70 (2004).
- Oshimi S, Zaima K, Matsuno Y, Hirasawa Y, Iizuka T, Studiawan H, Indrayanto G, Zaini NC, and Morita H, J. Nat. Med., 62, 207–210 (2008).
- 4) Tambunan RM and Simanjuntak P, *Majalah Farmasi Indonesia* (in Indonesian), **17**, 184–189 (2006).
- 5) Zhang YB, Xu XJ, and Liu HM, J. Asian Nat. Prod. Res., 8, 119–123 (2006).
- Faried A, Kurnia D, Faried LS, Usman N, Miyazaki T, Kato H, and Kuwano H, *Int. J. Oncol.*, 30, 605–613 (2007).
- Kurnia D, Akiyama K, and Hayashi H, Biosci. Biotechnol. Biochem., 72, 618–620 (2008).
- Saufi A, von Heimendahl CBI, Alfermann AW, and Fuss E, J. Biosci., 63, 13–16 (2008).
- 9) National Toxicology Program, *Toxicol. Rep. Series*, **61**, 1–53 (2000).
- 10) Cushman M, Nagarathnam D, Gopal D, He HM, Lin CM, and Hame E, J. Med. Chem., 35, 2293–2306 (1992).
- Cho SJ, Roh JS, Sun WS, Kim SH, and Park KD, *Bioorg. Med. Chem. Lett.*, 16, 2682–2684 (2006).
- 12) Song S, Lee H, Jin Y, Ma YM, Bae S, Chung HY, and Suh H, *Bioorg. Med. Chem. Lett.*, **17**, 461–464 (2007).
- Chan KF, Zhao Y, Chow LMC, and Chan TH, *Tetrahedron*, 61, 4149–4156 (2005).
- 14) Alam A, Takaguchi Y, Ito H, Yoshida T, and Tsuboi S, *Tetrahedron*, **61**, 1909–1918 (2005).
- Hongu M, Saito K, and Tsujihara K, Synth. Commun., 29, 2775– 2781 (1999).
- 16) Chen L, Li J, Luo C, Liu H, Xu W, Chen G, Liew OW, Zhu W, Puah CM, Shen X, and Jiang H, *Bioorg. Med. Chem.*, 14, 8295– 8306 (2006).
- Ferrari J, Terreaux C, Sahpaz S, Msonthi JD, Wolfender JL, and Hostettmann K, *Phytochemistry*, 54, 883–889 (2000).
- 18) Elix JA and Jiang H, Aust. J. Chem., 43, 1591-1595 (1990).
- Akiyama T, Hirofuji H, and Ozaki S, Bull. Chem. Soc. Jpn., 65, 1932–1938 (1992).
- 20) Tsujihara K, Hongu M, Saito K, Kawanishi H, Kuriyama K, Matsumoto M, Oku A, Ueta K, Tsuda M, and Saito A, J. Med. Chem., 42, 5311–5324 (1999).
- Jin YL, Kim S, Kim YS, Kim SA, and Kim HS, *Tetrahendron Lett.*, 49, 6835–6837 (2008).
- 22) Kluge M, Schneider B, and Sicker D, *Carbohydr. Res.*, **298**, 147–152 (1997).
- 23) Vutukuri DR, Bharathi P, Yu Z, Rajasekaran K, Tran MH, and Thayumanawan S, *J. Org. Chem.*, **68**, 1146–1149 (2003).