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Transition-metal-catalyzed cross-coupling reactions are very
powerful C�C bond-forming reactions, especially between
C(sp2) centers at which typical SN2 substitutions cannot
operate.[1] Palladium(0) catalysts are the most widely and
reliably used,[1,2] especially if appropriate ligands such as
sterically hindered phosphines are present.[3] Nickel(0) com-
plexes have also found useful applications, but appear to have
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a less general scope.[4] Following the pioneering work of Kochi
and co-workers,[5] iron catalysts have recently been very
actively investigated for their performance in cross-coupling
reactions.[6] Although highly efficient cross-coupling reactions
could be realized between a range of alkyl magnesium
reagents and aryl halides or aryl sulfonates, iron-catalyzed
cross-coupling between two aryl moieties remained problem-
atic owing to extensive homo-coupling reactions of the aryl
magnesium species.[6, 7] We assumed that the homo-coupling
side reaction may arise by the formation of ferrate complexes
with the highly reactive organomagnesium compounds.[7] We
therefore transmetalated the aryl magnesium species to the
corresponding organozinc compounds, which have a lower
tendency to form unstable ate complexes.[8] Unfortunately, no
iron-catalyzed cross-coupling reaction of aryl zinc reagents
with aryl halides could be observed under various reaction
conditions.

We therefore turned our attention to other organometallic
species and found that organocopper compounds[9] of type 1,
prepared by the reaction of functionalized aryl magnesium
chlorides 2[10] with CuCN·2LiCl,[11] react with functionalized
aryl halides 3 in the presence of catalytic amounts of
[Fe(acac)3] (10 mol %) in DME/THF (3:2) between 25 and
80 8C, leading to polyfunctional biphenyls of type 4
(Scheme 1, Table 1 and Table 2).

Remarkably, by using organocopper reagents 1, the
amount of homo-coupling is decreased, and the cross-
coupling reaction occurs readily. The nature of the leaving

Table 1: Cross-coupling of 2-substituted benzophenones with
PhCu(CN)MgCl in the presence of [Fe(acac)3].

Entry X Conversion [%][a]

1 I 100 (<5)[b] , (55)[c]

2 Br 86 (93)[d]

3 Cl 75 (77)[d]

4 OTf 35 (100)[e]

5 OTs 0

[a] Conversion after 30 min (determined by GC). [b] Conversion in the
absence of [Fe(acac)3] after 30 min. [c] Conversion after 48 h in the
absence of [Fe(acac)3]. [d] Conversion after 18 h. [e] Conversion after 2 h
in THF.

Scheme 1. Fe-catalyzed cross-coupling of copper reagents 1 with aryl
iodides 3. FG1 = CO2Et, OMe, OTf; FG2 = CO2Et, COPh, COMe, CN,
CONR2.

Table 2: Fe-catalyzed cross-coupling between functionalized aryl copper
reagents 1 and aryl iodides 3 to give 4.

Entry Aryl copper 1[a] Aryl iodide 3 Product 4 Yield
[%][b]

1 PhCu 93

1a 3a 4a

2 PhCu 80

1a 3b 4b

3 PhCu 86

1a 3c 4c

4 75

1b 3a 4d

5 68

1c 3d 4e

6 86

1d 3a 4 f

7 76

1e 3a 4g

8 72

1d 3e 4h

9 58

1e 3 f 4 i

10 50

1d 3b 4 j

11 62

1 f 3g 4k

[a] The copper reagent is better represented as ArCu(CN)MgCl. [b] Yield
of analytically pure products.
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group of the electrophilic aromatic reagent 3 is also important
(Table 1). Thus, the reaction of PhCu(CN)MgCl (1a) with 2-
iodobenzophenone (3a) is complete within 30 min at 25 8C. In
the absence of [Fe(acac)3], less than 5% of biphenyl 4a is
observed after 30 min, and a conversion of approximately
54% only is observed after 48 h (Table 1, entry 1). The
corresponding bromide (2-bromobenzophenone; Table 1,
entry 2) also reacts fast, but after 30 min leads only to 86%
conversion. A reaction time of 18 h only slightly improves the
conversion (93%). Similarly, 2-chlorobenzophenone does not
lead to complete conversion (75% after 30 min, but only 77%
after 18 h). A significantly slower conversion is observed with
a triflate substituent (X = OTf), but no reaction is observed
with a tosylate (X = OTs) as leaving group. The fact that 2-
chlorobenzophenone is converted indicates that the mecha-
nism of the reaction does not involve a halogen–copper
exchange reaction.[12, 13] Interestingly, the reactivity of aryl
copper with aryl halides is the opposite to that observed for
the FeIII-catalyzed reaction with alkyl magnesium species, for
which aryl iodides are poorer substrates than aryl bromides or
chlorides.[7]

We then investigated the reaction scope and noticed a
remarkable functional-group compatibility and chemoselec-
tivity. The reaction of PhCu(CN)MgCl (1 a) is especially fast
with 2-iodobenzophenone (3 a) (30 min) and the correspond-
ing ketone 4a was obtained in 93 % yield (Table 2, entry 1). 4-
Iodobenzophenone (3 b) reacts at 25 8C within 4 h to give the
desired ketone 4b in 80% yield (Table 2, entry 2). Remark-
ably, a methyl ketone, such as 2-iodophenyl methyl ketone
(3c) undergoes iron-catalyzed cross-coupling without any
competitive deprotonation of the methyl ketone or addition
to the carbonyl function. Func-
tionalized aryl magnesium
reagents that bear an ester
group at C2 or C4, such as 1b,
1c, or 1d also undergo cross-
coupling within a few hours,
leading to the expected products
4d–f in 68–86% yield (Table 2,
entries 4–6). Thereby, the steri-
cally hindered functionalized
2,2’-substituted biphenyl 4d is
prepared in 75% yield (Table 2,
entry 4). Also, Grignard
reagents that bear an electron-
donating group (e.g. 1e) react
well to furnish the ketone 4g in
76% yield (Table 2, entry 7).
Various aryl iodides that bear
electron-withdrawing substitu-
ents at C4 (such as a cyanide
(3e), an amide (3 f), or a ketone (3b)) undergo smooth cross-
coupling and lead to the products 4h–j in 50–70% yield
(Table 2, entries 8–10). Remarkably, copper reagent 1 f, which
bears a triflate group, reacts with ethyl 2-iodobenzoate 3g to
furnish biphenyl 4k in 62% yield (Table 2, entry 11).

We noticed that the presence of an electron-withdrawing
substituent at the aryl iodide accelerates the cross-coupling
reaction and that donor substituents slow down the reaction

considerably. Thus, 4-iodoanisole leads only to some con-
version at 80 8C after 12 h. We also compared the cross-
coupling rate between 2-, 3-, and 4-substituted ethyl iodo-
benzoate (3g–i) with PhCu(CN)MgCl in the presence of
[Fe(acac)3] (10 mol%). Interestingly, the 2- and 4-substituted
iodobenzoates 3 g and 3 i react five times faster than the 3-
substituted ester 3 h (Scheme 2). This may indicate that the
slow step of the cross-coupling is the nucleophilic attack of the
catalytically active species to the benzoates 3g–i.[14]

Heterocyclic copper compounds are also suitable reagents
for this cross-coupling reaction. Thus, organocopper reagents
1g and 1h react under standard conditions with the iodides 3 f
and 3e to furnish functionalized indole 4o and pyridine 4p,
respectively (Scheme 3).

In summary, we have shown that the Fe-catalyzed cross-
coupling reaction between functionalized heteroaryl and aryl
copper reagents derived from the corresponding organo-
magnesium reagents proceeds readily with functionalized aryl
iodides.[15] The electron-poor electrophilic iodides undergo
the cross-coupling reaction more readily. This new procedure
presents an economical way (� 3 times cheaper than Pd-
catalyzed reactions) to perform aryl–aryl cross-couplings.

Scheme 2. Comparison between 2-, 3-, and 4-substituted substrates in
the iron-catalyzed cross-coupling.

Scheme 3. Cross-coupling of heterocyclic copper reagents.
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Furthermore, the synergetic effect between copper and iron
opens new synthetic possibilities that are being actively
investigated in our laboratories.[16]

Experimental Section
Typical procedure (4h): A 25-mL Schlenk tube equipped with a
magnetic stirring bar and a septum was charged with ethyl 4-
iodobenzoate (855 mg, 3.10 mmol) and DME (5 mL), and the
solution was cooled to �20 8C. iPrMgCl (3.3 mL, 3.0 mmol, 0.90m in
THF) was then added, and the reaction mixture was stirred at this
temperature for 15 min. Subsequently, a solution of CuCN·2LiCl
(2.8 mL, 2.8 mmol, 1.0m in THF) was added, and the reaction mixture
was stirred for an additional 10 min. A solution of 4-iodobenzonitrile
(3e) (229 mg, 1.00 mmol) and [Fe(acac)3] (35 mg, 0.10 mmol) dis-
solved in DME (3 mL) was added in one portion, and the reaction
mixture was heated at 80 8C for 3 h. The reaction mixture was
quenched with saturated aqueous NH4Cl and was extracted with
CH2Cl2 (3 � 40 mL). The organic fractions were washed with satu-
rated aqueous NH4Cl/NH3 (9:1) (50 mL) and brine (50 mL), dried
over Na2SO4, filtered, and the solvent was evaporated in vacuo.
Purification by flash chromatography (pentane/Et2O 9:1) furnished
4h as a colorless solid (181 mg, 72 %).
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