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Abstract 1 

Activation of invariant natural killer T lymphocytes (iNKT cells) by α-galactosylceramide 2 

(α-GC) elicits a range of pro-inflammatory or anti-inflammatory immune responses. We 3 

report the synthesis and characterization of a series of α-GC analogues with acyl chains 4 

of varying length and a terminal benzophenone.  These bound efficiently to the 5 

glycolipid antigen presenting protein CD1d, and upon photoactivation formed stable 6 

CD1d-glycolipid covalent conjugates.  Conjugates of benzophenone α-GCs with soluble 7 

or cell bound CD1d proteins retained potent iNKT cell activating properties, with biologic 8 

effects that were modulated by acyl chain length and the resulting affinities of 9 

conjugates for iNKT cell antigen receptors.  Analysis by mass spectrometry identified a 10 

unique covalent attachment site for the glycolipid ligands in the hydrophobic ligand 11 

binding pocket of CD1d.  The creation of covalent conjugates of CD1d with α-GC 12 

provides a new tool for probing the biology of glycolipid antigen presentation, as well as 13 

opportunities for developing effective immunotherapeutics. 14 

 15 

Keywords 16 

CD1d, α-galactosylceramide, benzophenone, invariant Natural Killer T cells17 
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Introduction 1 

 Invariant Natural Killer T (iNKT) cells are a prominent subset of unconventional T cells 2 

that bridge innate and adaptive immunity to contribute to a wide range of immune 3 

responses.1  They recognize and respond to glycolipid antigens presented by CD1d, a 4 

membrane protein specialized for binding and presentation of lipid antigens.2  The most 5 

extensively studied CD1d-presented glycolipid antigens are synthetic forms of α-6 

galactosylceramide (α-GC), which potently stimulate iNKT cell proliferation, expansion 7 

and cytokine secretion.3  In mice, various structural analogues of α-GC have shown 8 

impressive anti-cancer effects4, as well as a broad range of activities in models of 9 

infection, vaccination, autoimmunity and inflammatory diseases.5  Thus, there has 10 

been increasing interest in using α-GC analogues to develop new approaches to 11 

vaccination or immunotherapy.4c, 6  12 

 Despite the potent immune activating properties of α-GC and the 13 

conservation of a CD1d-restricted iNKT cell subset in humans, there has been 14 

limited success so far in translating iNKT cell-based approaches into clinical 15 

applications. This may reflect problems with systemic delivery of glycolipid agonists, 16 

which leads to their uptake and presentation by a wide range of cell types and the 17 

stimulation of unpredictable or antagonistic immune responses.6a, 7    18 

Several approaches to overcoming these problems have been developed that 19 

involve delivery of α-GC by antigen presenting cells (APCs) or soluble recombinant 20 

CD1d proteins loaded ex vivo with the glycolipid. 8  These approaches have shown 21 

potential to stimulate more effective antitumor responses compared to injections of 22 

free glycolipids in mouse models, as well as promising preliminary results in 23 
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preclinical and clinical studies.4c, 6a, 8c, 8d, 9  Also of note is the apparent ability of 1 

these methods to induce substantial iNKT cell activation while triggering less of the 2 

long-term unresponsiveness (anergy) or depletion of iNKT cells that has been a 3 

problem with injections of free glycolipids.10  4 

However, a potential limitation is presented by the readily reversible binding 5 

of glycolipid ligands to CD1d, which is mediated by noncovalent hydrophobic and 6 

hydrogen bonding interactions.2  Rapid dissociation has been reported to result in 7 

half-lives for αGC-CD1d complexes in some in vitro studies as short as a few 8 

minutes or less, which may be further reduced in vivo by the presence of lipid 9 

exchange and binding proteins.11  The relatively short half-life and instability of such 10 

complexes limits the duration and potency of their desirable biologic effects, and the 11 

release of free glycolipids in vivo may contribute to unwanted effects such as iNKT 12 

cell anergy or toxicities including liver damage or sensitization to endotoxic shock.12 13 

Thus, the relative instability of αGC-CD1d complexes remains a suboptimal feature 14 

in approaches that involve ex vivo loading of cells or CD1d proteins with glycolipids, 15 

and can compromise the efficacy and precision of such controlled delivery methods.   16 

In the current study, we have developed an approach to circumvent the 17 

problem of glycolipid dissociation from CD1d by the use of photoactivatable forms 18 

of α-GC to create covalently stabilized and highly active αGC-CD1d conjugates.  A 19 

series of analogues of α-GC containing a benzophenone group at the terminus of 20 

their N-acyl chains was synthesized and optimized for iNKT cell stimulating activity.  21 

Controlled exposure to UV irradiation generated stable covalent conjugates of these 22 

glycolipids with CD1d, and these retained their ability to potently stimulate iNKT 23 
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cells in vitro and in vivo in mice. Specific immunologic properties such as cytokine 1 

production could be modulated by variations in the size of the aliphatic chain 2 

bearing the benzophenone group, which was correlated with the affinity of the 3 

conjugates for the antigen receptors of iNKT cells.  Mass spectrometry identified a 4 

unique site for covalent bond formation in the CD1d protein, enabling detailed 5 

modeling of the structure of the stable conjugates.  The development of controlled 6 

covalent bond formation for stabilization of αGC-CD1d conjugates provides a new 7 

tool for the study of glycolipid antigen presentation, and also forms the basis for 8 

improving immunotherapies based on the targeted delivery of iNKT cell activators. 9 

 10 

Results 11 

Synthesis of BPGCs 12 

Extensive previous work has shown that many modifications of the fatty acyl chain of 13 

α-GC can be tolerated without disruption of glycolipid binding to CD1d or loss of iNKT 14 

cell stimulating activity3, consistent with the large volume of the hydrophobic ligand 15 

binding site of CD1d.2, 13  Thus, we developed a synthetic strategy for introduction of a 16 

photoactivatable moiety on the acyl chain terminus of α-GC to enable the controlled 17 

formation of a covalent bond between the glycolipid and the CD1d protein (Fig. 1).  The 18 

benzophenone group was chosen as it can be activated by UV irradiation to give the 19 

corresponding benzhydril biradical, which we postulated would react with a proximal 20 

C-H bond present in the CD1d protein to form a permanent covalent bond.  A group of 21 

benzophenone-containing derivatives of α-GC (BPGCs) bearing acyl chains of various 22 

lengths (compounds 9-15) were synthesized to determine which would optimally 23 
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7 

 

associate with CD1d and effectively activate iNKT cells.  Based on the resemblance of 1 

benzophenone to a C10 isoprene unit, we synthesized a range of BPGCs which mimic 2 

N-acyl chain lengths from C16 (C6:BP (9)) to C26 (C16:BP (15)), thus spanning the 3 

range found in most highly active α-GC analogues.3  These compounds were readily 4 

prepared via acylation of the parent compound 1 with carboxylic acids (2-8), following 5 

their conversion to the corresponding acid chlorides using oxalyl chloride.  Ensuing 6 

acylation of the amine 1 in a 1:1 mixture of THF and saturated sodium acetate solution 7 

afforded the benzophenone-derivatised glycosphingolipids (BPGCs) 9-15 (Fig. 1). 8 

 9 
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Figure 1: Synthesis of BPGCs.  (a) Structure of the prototypical iNKT cell activating 1 

glycolipid, α-GC C26:0.  (b) General scheme for synthesis of BPGCs with acyl group 2 

spacers of varying length (compounds 9 – 15).  (a) NaH, DMF, 0 ºC to rt; (b) PDC, wet 3 

THF, rt; (c) CaCO3, THF, H2O, 100 ºC, 12 h; (d) NaH, DMF, 0 ºC to rt; (e) (COCl)2, 60 4 

ºC, 2 h; (f) NaOAc, THF, rt, 12 h.  Incorporation of the benzophenone group into 5 

carboxylic acids was accomplished through the use of a flexible ether linkage to allow 6 

rotational freedom and optimal orientation of the aromatic group in the CD1d ligand-7 

binding pocket. To synthesize carboxylic acids (2-8), we used a versatile strategy 8 

involving an SN2 displacement of a bromide using various diols and 3-9 

(bromomethyl)benzophenone (16) or through a variety of bromocarboxylic acids by 3-10 

(hydroxymethyl)benzophenone (17). The monoalkylation of the diols with 3-11 

(bromomethyl)benzophenone (16), which was obtained using published procedures14, 12 

was achieved in reasonable yields by using the diols in excess.  Oxidation of the 13 

corresponding alcohols to the acids with pyridinium dichromate (PDC) was sluggish and 14 

only afforded compounds 2-5 in average yields.  In contrast, alkylation of the alcohol 17 15 

with the bromocarboxylic acids in DMF and sodium hydride as base proceeded 16 

smoothly to afford the desired carboxylic acids 6-8 in quantitative yields (see 17 

Supplemental Information for further details of synthesis and characterization). 18 

 19 

Stimulation of iNKT cells by BPGC analogs 20 

 A variety of in vitro biological assays were performed to assess the iNKT cell activating 21 

properties of the BPGCs upon presentation by CD1d, and to determine the effect of the 22 

varying acyl chain lengths and the presence of a bulky terminal benzophenone group on 23 

their biologic activities.  A standard assay using co-culture of mouse bone marrow-24 

derived dendritic cells (BMDCs) and a murine iNKT cell hybridoma was used to assess 25 

the activity and relative potencies of BPGCs (Fig. 2a).15  This showed significant iNKT 26 

cell stimulating activity for all BPGCs tested, with a substantial impact of the length of 27 

fatty acyl chain.  Optimal iNKT stimulation in the mouse cell culture system was 28 
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achieved with 13, which along with several other BPGCs was significantly more potent 1 

than the standard α-GC (C26:0), which is generally considered a highly potent iNKT cell 2 

activator both in vitro and in vivo.4a, 15  A similar in vitro analysis was carried out using a 3 

canonical human iNKT cell clone co-cultured with HeLa cells transfected to express 4 

human CD1d (Fig. 2b).16  This also revealed strong activity of BPGCs as measured by 5 

IFN-γ secretion, which was similar to or greater than that stimulated by C26:0.  As for 6 

the mouse culture system, compounds 12 and 13 showed the greatest potency in this 7 

assay, although length of the fatty acyl tail had much less apparent impact in the human 8 

system. 9 

To directly assess activity in vivo, we analyzed serum cytokine levels following 10 

intravenous injection of selected BPGCs.  For this analysis, we tested 9 which was a 11 

relatively weak activator of murine iNKT cells in vitro, and 13 and 15 which were more 12 

potent than C26:0 in both mouse and human cell culture assays.  Mice were injected 13 

with 4 nmoles of each glycolipid and bled after 2, 10 and 24 hours to quantitate serum 14 

IFN-γ and IL-4, as previously described.15  Significant levels above baseline for serum 15 

IL-4 were detected with 13 and 15 at two hours, which declined to undetectable levels 16 

by 10 hours (Fig. 2c).  The IL-4 levels were several fold higher for 13 and 15 compared 17 

to C26:0, indicating a rapid and powerful activation of iNKT cells.  Consistent with this, 18 

IFN-γ levels showed a sustained rise with 13 and 15 with a peak at 10 hours that closely 19 

resembled the response to C26:0, while 9 did not stimulate detectable levels above 20 

background for either cytokine tested.  Thus, BPGCs retained their iNKT cell activating 21 

properties in vivo, and the potencies of different analogues varied depending on the 22 

length of their acyl chains. 23 
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10 

 

 1 

Figure 2: iNKT stimulatory activity of BPGCs.  (a) Responses of mouse iNKT cell 2 

hybridoma DN3A4-1.2 cultured with bone marrow derived dendritic cells from C57BL/6 3 

mice and the indicated concentrations of BPGCs or α-GC C26:0.  IL-2 secretion was 4 

measured in supernatants after 18 hours of culture.  Representative dose-response 5 

curves are shown on the left for three of the seven BPGCs and standard α-GC C26:0.  6 
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Concentrations stimulating 50% of the maximum response (EC50) were determined for 1 

each glycolipid, and reciprocal values are plotted on the right.  (b) Similar analysis as in 2 

(a) except using human iNKT clone HDE3 and HeLa cells expressing human CD1d with 3 

measurement of secreted IFNγ as the readout for activation.  (c) In vivo activities of 9, 4 

13 and 15 were determined by quantitating serum IL-4 and IFN-γ 2, 10 and 24 hours 5 

post glycolipid injection.  Peak values for serum IL4 (left) and IFN-γ (right) were found at 6 

2 and 10 hours respectively. 7 

All symbols and bars are means for triplicate samples, and error bars are ±1 SD.  *P < 8 

0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 for comparisons to vehicle treated mice 9 

(two-way ANOVA with Dunnett’s multiple comparison test).  All data are representative 10 

of at least three separate experiments. 11 

 12 

Formation of covalent CD1d-glycolipid conjugates by photoactivation 13 

The known photochemical properties of benzophenones predicted that loading of 14 

BPGCs into CD1d proteins followed by exposure to UV irradiation should form 15 

covalently stabilized protein-glycolipid conjugates.  We validated this initially using a 3-16 

fold molar excess of 14C-labelled analogue of 13, compound 26 (Scheme 2, SI) to load 17 

soluble recombinant mCD1d protein.  Aliquots of the loaded protein were then exposed 18 

to a 365 nm UV lamp for times ranging from 0 to 90 minutes, followed by denaturation 19 

(1% SDS at 100° C for 5 min) and separation by SDS-PAGE.  Staining of the gel with 20 

Coomassie blue revealed intact protein in all samples, which ran at the predicted size of 21 

~57 kDa for monomeric soluble CD1d (Fig. 3a).  Autoradiography of the same gel 22 

revealed the presence of the 14C label co-migrating with CD1d protein in the samples 23 

exposed to UV light, but not in the unexposed sample (Fig. 3b).  Maximum association 24 

of radiolabel, indicating the formation of stable protein-glycolipid conjugates that were 25 

resistant to denaturation, was achieved following 30 to 60 minutes of UV exposure, 26 
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corresponding to a delivered dose range of 400 – 600 mJoules/cm2.  Radiometric 1 

analysis showed that approximately 70% of CD1d molecules were conjugated to 14C 2 

labeled 26 after 60 minutes of UV exposure (Supplemental Figure S1).  3 
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 1 

 2 
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Figure 3: Covalent conjugation of BPGCs to mCD1d.  (a) Coomassie stained gel 1 

and (b) autoradiograph of denaturing SDS-PAGE after exposing mCD1d: 14C-labelled 2 

analogue of 13, compound 26 (Scheme 2, SI) complexes (~57 kDa) for various lengths 3 

of time.  (c) Diagrammatic representation of click reaction of DBCO-TAMRA dye with 4 

azide-linked-25 (SI) either loaded non-covalently or covalently conjugated to CD1d 5 

protein.  (d) Coomassie stained and fluorescent images of denaturing SDS-PAGE gel of 6 

fluorescently tagged noncovalent-complexes (0 min UV exposure) and covalent-7 

conjugates (60 min UV exposure) of mCD1d fusion protein (~78 kDa). (e) Complexes 8 

(No UV, left) or conjugates (UV, right) loaded with the indicated BPGC or α-GC-C26:0 9 

were coated on high binding plates and incubated for 3 days at room temperature either 10 

without (white bars) or with (black bars) washing twice per day with PBS + 0.1% Triton 11 

X-100.  Residual glycolipid binding to mCD1d was detected by ELISA using biotinylated 12 

monoclonal antibody L363.  *P < 0.001 for multiple t tests of comparisons of washed 13 

versus unwashed samples with each glycolipid.  (f) Splenocytes (2 x 105 per well in 0.2 14 

ml complete medium) were stimulated in vitro for 18 hours with complexes (hatched 15 

bars) and conjugates (solid bars) immobilized on high binding plates.  Supernatants 16 

were collected and assayed for IFN-γ by ELISA.  (g) JAWS II cells (5 x 104 per well) 17 

pulsed overnight with 100 nM glycolipids (C26:0 or 13) were either exposed to UV (~400 18 

mJ/cm2) or left untreated.  Cells were stained with L363-AlexaFluor647 either directly 19 

(solid black bars) or after multiple washes (hatched bars) to allow dissociation and 20 

analyzed by flow cytometry.  ****P < 0.0001, two-way ANOVA with Bonferroni correction 21 

for indicated comparisons.  (h) JAWS II cells were exposed to UV (600 mJ/cm2) either 22 

before (black symbols) or after (white symbols) pulsing with vehicle, C26:0 or 13 at 100 23 

nM concentration.  Cells were washed thrice during 24 hours of incubation and 24 

adoptively transferred i.v. into mice (3 x 105 cells per mouse, 4 mice per group).  Blood 25 

samples were obtained after 2, 12 and 24 hours to quantitate serum IL-4 and IFN-γ.  **P 26 

< 0.01, two-way ANOVA with Bonferroni correction for indicated comparisons.  Data 27 

plotted in (e) – (f) are shown as means for a minimum of three replicates, and error bars 28 

are ± 1 SD.  All experiments were performed at least three times. 29 

 30 
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Further analysis of conjugate formation was carried out in studies using 1 

compound 25 (synthesis described in SI), an analogue of 13 carrying an azido group at 2 

the 6’- position of the saccharide head group (Fig. 3c).  Complexes formed between this 3 

glycolipid and soluble mCD1d were either irradiated with UV λ365 or not, and then 4 

incubated with fluorescent DBCO-TAMRA, which reacts with the azido group of the 5 

glycolipid.17  The samples were then denatured and analyzed by SDS-PAGE.  While 6 

gels stained with Coomassie blue showed similar CD1d protein in both samples 7 

(migrating at ~78 kDa, consistent with the mCD1d fusion protein used for this 8 

experiment; see Online Methods for details), only the sample exposed to UV had a 9 

fluorescent signal co-migrating with CD1d (Fig. 3d).  This confirmed the formation of 10 

stable conjugates following photoactivation of the benzophenone moiety in CD1d-11 

glycolipid complexes.  In addition, the ability of the DBCO-TAMRA reagent to couple to 12 

the azido group was consistent with correct orientation of the 13 in the CD1d lipid 13 

binding groove, with the carbohydrate head-group exposed and accessible at the 14 

surface of the protein. 15 

To confirm the correct conformation and stability of covalent mCD1d-BPGC 16 

conjugates, we tested reactivity with mAb L363, which binds specifically to CD1d loaded 17 

with α-GC in a manner that closely mimics the TCRs of iNKT cells.18  Plate immobilized 18 

mCD1d proteins were loaded with BPGCs, then either UV irradiated or not and tested 19 

for binding of L363.  This showed binding to levels comparable to that with C26:0 20 

loaded mCD1d (Fig. 3e).  Furthermore, after repeated washing with buffer containing 21 

mild detergent to remove reversibly bound glycolipids, we observed significant loss of 22 

L363 binding in samples without UV irradiation.  In contrast, UV exposed samples 23 
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loaded with BPGCs showed no significant loss of L363 binding, indicating covalent bond 1 

formation.  As expected, L363 binding to mCD1d loaded with C26:0 was reversible 2 

under these conditions with or without UV exposure.  To further characterize the 3 

biologic activity of these complexes or conjugates, we also assessed their ability to 4 

stimulate iNKT cell activation in mouse splenocytes (Fig. 3f).  The UV treated stable 5 

conjugates retained their iNKT cell stimulating activity at levels comparable to 6 

noncovalent complexes, indicating that UV exposure and covalent bond formation did 7 

not adversely alter TCR recognition.  Analysis of all seven BPGCs in this assay showed 8 

an influence of the acyl chain spacer length on potency of stimulation, with 13 generally 9 

showing the strongest stimulation. 10 

In addition to the analyses of loading and photo-crosslinking to purified 11 

recombinant CD1d proteins, we also assessed the formation of stabilized mCD1d-12 

glycolipid conjugates on intact CD1d-expressing antigen presenting cells.  We used the 13 

murine immortalized dendritic cell line JAWS II for this, since it expresses mCD1d and is 14 

capable of glycolipid antigen presentation.19  Incubation of these cells with either C26:0 15 

or 13 generated strong surface staining with mAb L363, which for both glycolipids was 16 

greatly reduced following incubation for 1 day in the absence of the glycolipids.  In 17 

contrast, exposure of the cells to UV irradiation following culture with the 13 eliminated 18 

any loss of L363 staining with subsequent culture, whereas UV irradiation of C26:0 19 

loaded cells did not prevent decay of L363 binding under the same conditions (Fig. 3g).  20 

This strongly suggested that stabilized covalent CD1d-glycolipid conjugates were 21 

produced by UV photoactivation of BPGCs in living cells.  This was further evaluated by 22 

testing the ability of JAWS II cells loaded with 13 and UV treated to stimulate iNKT cell 23 
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responses in vivo following adoptive transfer of the cells into mice (Fig. 3h).  We 1 

detected strong serum cytokine responses in mice receiving cells bearing the putative 2 

covalently stabilized conjugates, and a reduced level of IL-4 relative to IFN-γ was 3 

observed when compared to injection of cells presenting noncovalent complexes (i.e., 4 

JAWS II cells without UV photoactivation or loaded with C26:0). 5 

 6 

Impact of conjugation on TCR affinity and biologic activity in vivo 7 

By eliminating dissociation of glycolipid binding to CD1d, we anticipated that conjugation 8 

should increase the overall affinity of cognate interactions with iNKT cell TCRs.  To 9 

assess this, fluorescent tetramers of soluble mCD1d loaded with C26:0 or BPGCs were 10 

prepared with and without covalent crosslinking.  Binding avidities of tetramers to the 11 

TCRs of mouse iNKT cell hybridoma line DN3A4-1.2 were quantified by measuring 12 

equilibrium binding to the cells over a range of concentrations, as previously 13 

described.15  Extrapolation of the equilibrium dissociation constant (KD) values showed 14 

maximum avidities for C26:0 and 15 loaded noncovalent complexes, while avidities 15 

declined progressively for BPGCs with shorter acyl tail spacers (Fig. 4a).  This trend 16 

was not evident with the binding of covalent conjugate tetramers, as the conjugates with 17 

shorter acyl chain variants of BPGCs showed enhanced and more uniform avidities.  18 

These results indicated that dissociation of the glycolipids with shorter acyl tails had a 19 

major impact in TCR avidity, which was reversed by covalent stabilization of the 20 

glycolipid-protein interaction.  One apparent exception was the 9 conjugate, which 21 

showed a distinctly lower TCR avidity than the other conjugates tested despite covalent 22 

stabilization. 23 
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 1 

Figure 4: Affinity for iNKT cell TCR and effects on cytokine profiles.  (a) 2 

Equilibrium binding of mCD1d tetramers loaded with BPGCs over a range of tetramer 3 

concentrations was used to assess avidities of complexes (not UV irradiated, left) and 4 

conjugates (UV irradiated, right) for TCRs of mouse iNKT cell hybridoma DN3A4-1.2.  5 

Cells stained with tetramers for 1 hour at room temperature were analyzed by flow 6 

cytometry.  Normalized representative binding curves are shown for three BPGC loaded 7 

tetramers, and for standard C26:0 loaded tetramers (not UV irradiated) for comparison 8 

(dashed lines).  Bar graphs show reciprocal of KD values (1/EC50) to summarize results 9 

for all tetramers.  (b) Serum cytokine levels following i.v. injection of mice with 10 

complexes (open bars) or conjugates (filled bars) loaded with the indicated BPGCs.  11 

Serum levels are shown at 2 hours post injection for IL-2, TNF-α and IL-4, and at 10 12 

hours for IFN-γ.  Background levels of cytokines in sera from mice injected with inert 13 

aqueous vehicle (gray bars), and levels for mice injected with 4 nmoles of free C26:0 14 

glycolipid (horizontal dashed lines) are shown for reference. Bars represent means for 15 

groups of 4 animals each, and error bars show 1 SD.  ****P < 0.0001 for conjugate 16 
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versus complex in the indicated comparisons (2-way ANOVA with Bonferroni’s multiple 1 

comparisons test).  NS, not significant (P > 0.05).  Differences were not significant for 2 

other comparisons shown between complexes and conjugates. 3 

  4 

We next assessed the in vivo activities of soluble mCD1d-BPGC complexes and 5 

conjugates using three different BPGCs that varied in their affinities for iNKT cell TCRs.  6 

After a single i.v. injection of mCD1d complexes or conjugates loaded with 9, 13 or 15 7 

(30 µg of mCD1d protein containing ~0.4 nmoles of each glycolipid), serum levels of IL-8 

2, TNF-α, IL-4 and IFN-γ were determined at 2, 10 and 24 hours after administration 9 

(Fig. 4b, and Supplemental Fig. S2).  Injection of C26:0 as a free glycolipid was used 10 

as a standard which is known to activate iNKT cell-dependent release of various 11 

cytokines, such as IL-2, TNF-α and IL-4 which peak in serum at approximately 2 hours, 12 

and IFN-γ which peaks at 10-12 hours after the injection.20  The administration of 13 

conjugates formed with 13 or 15 activated secretion of all four cytokines, including 14 

levels of IL-2, TNF-α and IL-4 at 2 hours and IFN-γ at 10 hours, that equaled or 15 

exceeded those stimulated by free C26:0.  Noncovalent complexes gave similar 16 

stimulation as conjugates at 2 hours, but the level of IFN-γ at 10 hours was significantly 17 

higher with conjugates for 13, and also for conjugates with 9 which did not stimulate any 18 

detectable serum cytokines at 2 hours.  These findings confirmed the iNKT cell 19 

activating properties of soluble complexes and conjugates in vivo, and also were 20 

consistent with the ability of covalent conjugation to stabilize the shorter 9 and 13 21 

glycolipids, extending the duration of their bioactivity.  In addition, covalently stabilized 9 22 

conjugates showed a remarkable skewing of the cytokine response such that only IFN-γ 23 

was detected among the cytokines measured. 24 
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 1 

Figure 5: Mapping of covalent attachment site.  (a) Peptide mapping summaries 2 

from nano-LC-ES-MSE analyses are shown for unloaded mCD1d fusion protein (native) 3 

and for protein-glycolipid conjugates containing either 9 or 13, focusing on the lipid 4 

binding region comprising the α1 and α2 regions of CD1d. Amino acid sequences of 5 

mCD1d α1 through α2 domains are shown in single letter code.  Bold text indicates 6 

residues forming the lipid binding pocket, blue shading indicates residues mapped with 7 

a high degree of confidence, and grey shading indicates residues mapped with a good 8 

degree of confidence.  Residues highlighted in yellow indicate amino acids that were not 9 
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observed in any detected peptides.  Peptides containing the four amino acids 1 

underlined in red in both conjugates were detected with high confidence in the native 2 

protein but, were absent in both conjugates.  (b) MSE analysis of the doubly charged ion 3 

m/z 661.33 observed at 30.9 min elution time in the analysis of a reduced, 4 

carbamidomethylated, PNGase-F treated tryptic digest of the 9 conjugate.  The 5 

molecular ion is consistent with the tryptic peptide containing the 255YVVR258 residues 6 

modified by a single C6 glycolipid moiety.  Labelled ions in the left panel show loss of 7 

water from a cleaved C6 BPGC entity, while the right panel highlights evidence for the 8 

peptide with the y’’1 ion for the C-terminal arginine at m/z 175 and the a1-ion for the N-9 

terminal tyrosine at m/z 136. The ion at m/z 195 is consistent with loss of the 10 

benzophenyl group from the BPGC molecule.  (c) The mCD1d protein structure 11 

previously deduced from X-ray crystallography (PDB number 3HE6) is shown as a 12 

ribbon diagram in green, and the two valine residues comprising the proposed covalent 13 

attachment site are shown as bright pink spheres.  The view on the left shows the intact 14 

α1 and α2 domains with α-GC C26:0 (green and red spheres) bound in the lipid binding 15 

groove.  In the view on the right, the α-helices forming the roof of the groove have been 16 

removed, and the bound glycolipid is shown as pink and red spheres.   17 

 18 

Analysis of conjugation site by peptide mapping 19 

Peptide mapping analyses of samples of native mCD1d and mCD1d conjugates with 9 20 

and 13 were performed to identify possible sites of conjugation. Samples with or without 21 

enzymatic deglycosylation were digested with trypsin, or with trypsin plus chymotrypsin.  22 

Digested samples were analysed by online nano-liquid chromatography-electrospray 23 

tandem mass spectrometry (nano-LC-ES-MSE) (Supplemental Fig.S4).  For native 24 

mCD1d samples, peptides covering the entirety of the glycolipid binding domains were 25 

consistently mapped with a high degree of confidence for all but three residues (R156, 26 

M218 and M219) of the putative binding site.  Both the 9 and 13 conjugated samples 27 

produced very similar data to that of the native mCD1d, with the notable exception that 28 
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ions covering the unmodified region 255YVVR258 were not observed (Fig. 5a, and 1 

Supplemental Tables S1 – S3).  Instead, molecular ions consistent with the presence 2 

of a 13 or 9 modification were detected (Supplemental Figures S4 and S5), and 3 

fragmentation of these modified peptides produced signals corresponding to both the N-4 

terminal tyrosine and the C-terminal arginine, as well as y”- and b-ions consistent with 5 

modified VVR and YVV (Fig. 5b).  Although definitive evidence for covalent modification 6 

of a specific residue was not obtained, these data strongly supported the site of 7 

conjugation to be in the region 255YVVR258, with one or both valine residues at the base 8 

of the F’ pocket of mCD1d being directly involved in the formation of potential 9 

bioconjugation products (Fig. 5C and Supplemental Fig. S6). 10 

 11 

Modelling BPGC analogue binding modes. 12 

To confirm the feasibility of the putative conjugation site identified in mCD1d, the 13 

binding modes of 9 and 13 were modelled into the published crystal structure of the 14 

ternary complex of CD1d with α-GC C26:0 and the Vα14-Vβ8.2 iNKT cell TCR (PDB 15 

entry code 3HE6) (Fig. 5c and Fig. 6).  Briefly, compound 13 was docked without its 16 

benzophenone group, which was deleted prior to docking. The binding of the modified 17 

benzophenone group (i.e., diphenylmethanol, formed by the benzophenone group after 18 

conjugation) was predicted in a separate docking run considering that the flexible linker 19 

in the BPGC analogues would only minimally restrain possible binding conformations of 20 

the end group.  The most favorable docking pose showed excellent shape 21 

complementarity and non-polar contacts in the binding site while linked covalently to the 22 

V257 side chain in the F` pocket. The diphenylmethanol pose and the sugar moiety of 23 
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13 docked without the benzophenone end group were then connected by predicting an 1 

optimal conformation for the flexible linker between them through docking the linker 2 

segment (with constraints). Models of the full 9 and 13 structures were generated 3 

through splicing in the appropriate linkers of the two BPGC analogues, and were then 4 

refined using Prime complex structure refinement in Schrödinger software (Fig. 6). 5 

 6 

Figure 6: Molecular docking of 13 and 9 in mCD1d.  (a, b) Two views of the 7 

binding model of 13 and co-crystallized ɑ-GC (from PDB code 3HE6). The inset 8 

compares the binding models of 13 (C11:BP) and 9 (C6:BP).  The modified end in the 9 

F` pocket is covalently attached to V257 (residue V125 in the structure with PDB code 10 

3HE6).  (c) Interactions near the sugar moiety of 13.  A TCR interaction shared between 11 

α-GC C26:0 in the crystal structure and both 9 and 13 models was the hydrogen-12 
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bonding interaction of the galactose 3’’-OH with N30α.  Additional stabilizing interactions 1 

with the sugar moiety of the bound BPGCs included hydrogen bonds with TCR residues 2 

R95α and D29α and with D284 of mCD1d. The binding site that in the crystal structure 3 

is occupied by the vicinal diol of the phytosphingosine chain of α-GC was occupied in 4 

the BPGC bound models by a less bulky amide group. This allowed reorientation of the 5 

TCRα R95 side chain (R95α) into the same region, forming a favourable stacking 6 

interaction between the guanidinium of the arginine and the amide of the ligand.  The 7 

guanidinium of R95α was also sandwiched between the mCD1d residues D284 and 8 

D211, salt-bridging with both aspartates.  Other interactions stabilizing the predicted 9 

BPGC binding orientation were apparent, such as hydrogen bonds between the amide 10 

group and residues S207 and T287 of mCD1d, and between the C3 hydroxyl of the 11 

phytosphingosine chain and residue T290 of mCD1d.  (d) CD1d surface in the region of 12 

the modified terminal, colored by electrostatic potential (blue indicates nonpolar and red 13 

indicates polar surfaces). The end group forms favourable non-polar contacts with I229, 14 

V249, F251, W264, W273, L274, I278 and L281 (residue numbers are based on the 15 

mCD1d-fusion protein).   16 

 17 

The final refined structures of 9 and 13 glycolipids after docking showed similar 18 

binding modes except for the linker region, as expected (Fig. 6, inset).  Compared to 19 

the corresponding sugar moiety of α-GC C26:0 in the crystal structure, the 20 

α-galactopyranosyl group in BPGC analogues was positioned closer to the TCR and 21 

slightly shifted (Fig. 6a).  The lipid chains occupying the A’ and F’ pockets in the models 22 

with bound BPGCs were switched compared to the orientation of α-GC C26:0 in the 23 

crystal structure.  Thus, the acyl chain of the covalently bound 9 and 13 was positioned 24 

in the F’ pocket of mCD1d, rather than in the A’ pocket as in the case of the 25 

noncovalently bound α-GC C26:0 (Fig. 6a and b).  This binding orientation allowed 26 

reorientation of the TCRα R95 side chain (R95α) to form a favourable stacking 27 
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interaction between the guanidinium of the arginine and the amide of the ligand, as well 1 

as a number of other stabilizing interactions (Fig. 6c).   The acyl chains of 9 and 13 2 

adopted quite similar orientations in the two BPGC models in spite of their different 3 

lengths, linking the diphenylmethanol moiety covalently bound to the side chain of V257 4 

in a mainly non-polar pocket (Fig. 6d). 5 

 6 

Discussion 7 

In this study we synthesized a series of benzophenone-modified glycolipids that can be 8 

covalently cross-linked to soluble as well as surface expressed CD1d to generate highly 9 

stable conjugates that activate iNKT cells in vitro and in vivo.  By appending a 10 

photoactivatable benzophenone group to the end of the amide linked acyl chain of 11 

α-GC, we generated a family of BPGCs with varying aliphatic spacer lengths.  12 

Screening for biologic activity using a variety of assays for iNKT cell stimulation showed 13 

that all of these BPGCs could be presented by CD1d, with most experiments showing 14 

13 to be optimal for iNKT cell stimulation. Using relatively brief and low energy UV 15 

irradiation, all of the BPGCs could be activated to form stable conjugates with purified 16 

CD1d proteins.  In addition, UV photoactivation could be shown to stabilize BPGC 17 

interactions with CD1d expressed in living cells. By multiple criteria, UV induced 18 

covalent conjugates of BPGCs retained their interactions with iNKT cell TCRs, and 19 

conjugates in either soluble, surface bound or cell associated forms possessed the 20 

ability to activate cytokine secretion by iNKT cells.  21 

Our primary goal in developing BPGCs was to use conjugate formation with 22 

CD1d as a method for improving delivery of iNKT cell activators as potential agents for 23 

immunotherapy.  Particularly in the case of cancer immunotherapy, many studies in 24 
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mouse models have highlighted the potential for iNKT cell activators to deliver striking 1 

anti-cancer effects.4c  However, administration of α-GC as a free glycolipid has the 2 

potential for dose limiting toxicity, and also leads to the rapid development of a long-3 

lived hyporesponsive state (anergy) that interferes with repeated treatments.10, 21 Most 4 

likely, these issues contribute to the limited efficacy of free α-GC injections observed so 5 

far in early phase clinical trials for cancer in humans.9, 22  Approaches to more precisely 6 

deliver α-GC to overcome these problems have been developed, including the 7 

administration of ex vivo glycolipid loaded antigen presenting cells or targeted soluble 8 

recombinant CD1d proteins.4c, 8a, 8c, 8d  These approaches have shown improved 9 

outcomes in animal models, as well as in limited clinical studies in cancer patients4c, 6b, 
10 

23.  However, the ability of α-GC to dissociate from these delivery vehicles after in vivo 11 

injection remains a suboptimal feature.  The use of BPGCs to covalently lock the 12 

glycolipid onto CD1d in an active configuration, as shown in the current study, 13 

represents a method for improving these delivery methods, and achieving more focused 14 

and effective immunotherapy without the limitations or toxic effects of systemic α-GC 15 

injections.  16 

Detailed analysis of the effects of variation in the length of the acyl chain spacer 17 

in the BPGCs revealed some interesting and potentially important findings.  First, we 18 

noted that the 9 and 10 compounds had very low TCR affinity and low stimulatory 19 

activity when not covalently linked to CD1d (Figs. 3f and 4a), presumably because of 20 

their rapid dissociation.  However, with conjugate formation these glycolipids showed 21 

improved affinity and enhanced iNKT cell stimulation.  This suggests that the BPGCs 22 

with shorter acyl chains, even if released by some mechanism after conjugation, should 23 
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be less likely to induce unwanted effects such as iNKT cell anergy or systemic toxicity. 1 

Another notable finding was that 9, which even after conjugation continued to show a 2 

lower TCR affinity than the other BPGCs, also gave a remarkably biased cytokine 3 

response (i.e., significant IFN-γ levels with no detectable IL-4 or other cytokines) when 4 

injected in the form of a conjugate with soluble CD1d protein (Fig. 4b).  This type of 5 

“Th1-biased” cytokine response has been repeatedly associated in previous studies 6 

with analogues of α-GC that provide superior anti-tumor responses in mouse models.24  7 

Thus, through alterations in the length of the acyl chain spacer, it should be possible to 8 

tune the responses to BPGC conjugates in terms of affinity and biologic response to 9 

optimize desired therapeutic outcomes. 10 

Our mapping of the site of covalent bond formation in 9 and 13 conjugates 11 

yielded the surprising finding of a single major conjugation site for both glycolipids.  12 

Another surprising aspect of this result was that the specific region of CD1d that was 13 

implicated was located near the base of the F’ pocket, which in all CD1d-glycolipid 14 

complexes resolved by X-ray crystallography would be predicted to be in greater 15 

proximity to the sphingoid base than the acyl tail of the glycolipid (Fig. 5c).2  However, 16 

this apparent switch in the orientation of the two lipid tails of the glycolipid can be readily 17 

accommodated in energetically favorable poses of the glycolipid in molecular models 18 

(Fig. 6).  Thus, our findings suggest the possibility of greater flexibility in the lipid 19 

binding process of CD1d, which has only been occasionally hinted at in atomic level 20 

structure studies.25  Further structural analyses of CD1d-BPGC conjugates should 21 

enable new types of analyses to expand our understanding of the unique process of 22 
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glycolipid antigen presentation, as well as opportunities for improving immunotherapies 1 

that target iNKT cells. 2 

 3 

EXPERIMENTAL METHODS 4 

 5 

Synthesis and compound characterization.  Full experimental details of the synthesis 6 

and characterization of all compounds used in this study are provided in the 7 

Supplementary Information. 8 

 9 

Mice. Female C57BL/6J (B6) mice 6–8 weeks old were obtained from Jackson 10 

Laboratories or Taconic and maintained in pathogen-free conditions.  All experiments 11 

requiring mice were conducted in compliance with institutional guidelines and under an 12 

authorization delivered by the Institute of Animal Use and Biosafety Committee at Albert 13 

Einstein College of Medicine.  14 

 15 

Cell lines, clones and hybridomas.  HeLa cells transfected with human CD1d 16 

(HeLa.hCD1d) were cultured in DMEM supplemented with 10% FBS, and JAWS II cells 17 

were cultured in α-MEM supplemented with 10% FBS and 20 ng/ml murine GM-CSF.  18 

Mouse splenocytes were maintained in RPMI with 10% FBS.  BMDCs were prepared as 19 

described earlier and cultured in RPMI supplemented with 10% FBS.   Mouse iNKT 20 

hybridoma DN3A4-1.2 was maintained in complete RPMI medium containing 10% 21 

decomplemented serum.26  Human iNKT  clonal HDE3 was clonally expanded by 22 

stimulation with PHA-P in the presence of recombinant human IL-2 at 250 IU/ mL , 23 

recombinant human IL-7 at 10 ng/mL and allogeneic PBMCs (irradiated at 5000 rad), 24 
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and cultures were fed by addition of fresh medium containing IL-7 and IL-2 every 2-3 1 

days.8d, 15   2 

   3 

Recombinant CD1d proteins and monoclonal antibody L363. Single chain β2m-4 

mouse CD1d-hexahistidine (MW ~57 kDa) and human CD1d-β2m-hexahistidine   were 5 

purified from CHO cells stably transfected with respective genes.27 15  Single chain 6 

mCD1d-β2m with a C-terminal single chain immunoglobulin Fv fusion (mCD1d-β2m-7 

ScFv, MW ~78 kDa) was produced in transiently transfected HEK cells and purified as 8 

previously described.8c, 8d  The ScFv moieties of these proteins were specific for the 9 

human tumor associated antigens CEA or C35, although their specific binding 10 

properties were not relevant to experiments in the current study.   11 

To determine the affinity of mCD1d-BPGC tetramers for iNKT-cell TCRs, 1 x 104 12 

DN3A4-1.2 cells were stained with a range of concentrations of tetramers loaded with 13 

the different glycolipids to form complexes.  Soluble mCD1d proteins were prepared and 14 

biotinylated following published methods with minor modifications.28  Glycolipids were 15 

prepared and loaded onto soluble mCD1d as described in the following section.  In 16 

some cases, the loaded mCD1d complexes were converted to covalent conjugates by 17 

exposure to UV irradiation for 60 minutes in solution (400 mJoules/cm2).  Formation of 18 

tetramers, equilibrium binding of tetramers to NKT cells, and measurement of binding by 19 

flow cytometry has been previously described in detail.15 20 

Monoclonal antibody L363, specific for mCD1d with bound α-GC C26:0 and other 21 

related forms of α-GC, has been previously described15, 18, 29  The antibody was purified 22 

from supernatants of the cultured hybridoma line, and was biotinylated using sulfo-NHS 23 
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biotinylation kit or fluorescently tagged with Alexa Fluor 647 (Alexa 647 labelling kit, 1 

Thermo Fisher).  Binding of fluorescently labeled L363 to cells was determined by flow 2 

cytometry using an LSR II cytometer (BD Biosciences) and FlowJo software.15, 19 3 

 4 

CD1d loading and covalent crosslinking. Glycolipids dissolved in DMSO at 1 mg/ml 5 

were diluted to 100 µM concentration in appropriate volumes of PBS and PBS plus 6 

0.1% Triton X-100 to yield final DMSO concentration of 8-10% and 0.05% Triton X-100.  7 

Glycolipids were added to CD1d at a molar ratio of 3:1 in PBS plus 0.05% Triton X-100 8 

(for in vitro applications) or PBS + 0.05% Tween-20 (for in vivo applications), and 9 

incubated for 12-18 hours for complete loading of the complexes.  Loaded complexes 10 

were transferred to ultra-low binding microtiter plate wells and cooled on ice.  A fixed 11 

wavelength UV lamp (Schleicher & Schuell, RAD-FREE long wave UV lamp, λ = 365 12 

nm) was placed directly over wells containing complexes for 1 hour on ice.  Resulting 13 

conjugates were recovered from the wells and excess glycolipid and detergent was 14 

removed using detergent-removal columns (Pierce).    15 

An azide-functionalized 13 was employed to determine the efficiency of covalent 16 

cross-linking.  The azido-13 conjugates and complexes were covalently coupled to 17 

dibenzenecyclooctyne tetramethylrhodamine (DBCO-TAMRA, Click Chemistry Tools) 18 

by Huisgen cycloaddition.17  The ternary complex thus obtained was denatured using 19 

DTT and SDS and run on SDS-PAGE for detection.   To determine stability of 20 

conjugates, the complexes and conjugates were coated onto high binding 96 well plates 21 

and washed with PBS-Tx 0.05% every 12 hours for three days to remove reversibly 22 

bound glycolipids.  Plates were incubated at room temperature between washes. 23 
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For detection of mCD1d-glycolipid complexes and conjugates on glycolipid 1 

pulsed JAWS II cells, the cells were plated at 5 x 104 cells per well in microtiter plates 2 

and cultured with 100 nM of either α-GC C26:0 or 13 for 18 hours, followed by one wash 3 

with medium and then UV irradiation if indicated for 30 minutes (~400 4 

mJ/cm2).  Samples of UV exposed and non-exposed cells were stained with mAb L363 5 

coupled with AlexaFluor 647 and analyzed by flow cytometry using an LSR II flow 6 

cytometer (BD Biosciences) to determine surface bound glycolipid-CD1d complexes or 7 

conjugates (solid black bars), before and after incubation for two days to allow 8 

dissociation of glycolipids. 9 

 10 

In vitro and in vivo iNKT-cell stimulation assays.  To determine the EC50 of BPGCs, 11 

BMDCs from C57BL/6 mice or human CD1d transfected HeLa cells (HeLa.hCD1d) were 12 

cultured in microtiter plate wells (5 x 104 BMDC and 1 x 104 HeLa.hCD1d per well), and 13 

pulsed with varying BPGC concentrations ranging between 50 µM and 0.01 nM in 100 14 

µl of culture medium per well for 3 hours at 37 °C.  Cells were washed once to remove 15 

unbound glycolipid.  The iNKT hybridoma DN3A4-1.2 or human iNKT clone HDE3 were 16 

then added (5 x 104 cells per well in 0.2 ml medium), and the cultures were maintained 17 

for 12 – 18 hours at 37ºC.  Stimulation was determined by measuring supernatant levels 18 

of IL-2 for DN3A4 1.2 or IFN-γ for HDE3 by capture ELISA as described.30  Cytokine 19 

response was plotted against dose and EC50 was calculated using the function log 20 

agonist against response in Prism software. 21 

To determine the serum cytokine levels induced in vivo in mice by administration 22 

of free glycolipids, glycolipid-loaded mCD1d complexes and conjugates, or ex vivo 23 
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glycolipid loaded JAWS II cells, mice were bled at 2, 10 and 24 hours following i.v. 1 

injections and serum samples were prepared.  For free glycolipids, mice (3-5 per group) 2 

received 4 nanomoles of α-GC C26:0, 9, 13 or 15.  For comparison of in vivo activity of 3 

conjugates, complexes and free glycolipids, 30 µg/mouse of complexes or conjugates or 4 

equimolar amounts of free BPGCs (0.4 nanomoles) were injected into mice i.v.  Serum 5 

cytokine levels were measured by capture ELISA.  6 

 7 

Mass spectrometry and proteomic analyses.  Tryptic and chymotryptic peptide digest 8 

mixtures of native mCD1d or conjugates were analysed either directly by on-line nano-9 

liquid chromatography (nano-LC) electrospray (ES) MS and MS/MS, or subjected to N-10 

linked glycan release by PNGase F followed by subdigestion with additional proteases 11 

prior to analysis.  For detailed method see Supplemental Methods section. 12 

 13 

Computational molecular modeling and docking studies.  Binding modes of 9 and 14 

13 glycolipids to mCD1d were predicted using the mCD1d/α-GC/TCR crystal structure 15 

with PDB entry code 3HE6, containing Vα14-Vβ8.2 iNKT TCR (mouse variable, human 16 

constant domains).  The crystal structure was prepared using Protein Preparation 17 

Wizard tools (Schrödinger software package, version 2016-1). For detailed method see 18 

Supplemental Methods section. 19 

 20 

Statistical analysis.  Results are expressed as mean ± SEM.  Statistical significance 21 

between the groups was determined with multiple t tests, one-way-ANOVA or two-way-22 
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ANOVA tests with the Bonferroni correction as indicated.  All statistical analyses were 1 

done using GraphPad Prism software. 2 
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