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a-Effect of an Organoiodinane Oxyanion Nucleophile: Absence of an Unusual Solvent 
Effect 
Robert A. MOSS,* Shanti Swarup, and Shovan Ganguli 
Department of Chemistry, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, 
U. S.A. 

l-Oxido-l,2-benziodoxol-3(1 H)-one (o-iodosyl benzoate) shows a significant a-effect in the cleavage of p-nitrophenyl 
acetate; however, unusual solvent effects are absent in dimethyl sulphoxide-water solvent mixtures. 

In 1969, Jencks observed that ‘the a-effect is not a single, 
distinct entity, and there are so many different factors 
influencing nucleophilic reactivity which are important in 
“a-effect” compounds that one is sometimes tempted to doubt 
the usefulness of the term.’l Time has not completely resolved 
this situation; several factors remain in contention,2 of which 
stabilization of the reaction transition state by an additional 
pair of electrons on the atom a to the nucleophilic centre3 and 
various solvent effects4 currently receive the most attention. 

The high esterolytic and phosphorolytic reactivity of 0-io- 
dosylbenzoate (1) in its preferred, valence tautomeric 1-oxi- 
do-l,2-benziodoxol-3( lH)-one form (2)s suggested that an 
a-effect might contribute to its nucleophilicity. In this 

connection, the recent report of Buncel and Um6 could be 
taken to provide a simple operational criterion for the 
detection of such an effect. However, we report now that 
although (2) does indeed react with p-nitrophenyl acetate 
much more rapidly than 0-nucleophiles of comparable 
basicity, unusual solvent effects in dimethyl sulphoxide-water 
blends are entirely absent. 

We first determined the titrimetric pK, of aqueous (2) as 
7.1. An existing correlation of rate constants vs. p K ,  for 
reactions of a series of phenoxides with p-nitrophenyl acetate 
(PNPA)’ then allows us to extrapolate an expected second 
order rate constant for the cleavage of PNPA by (2) as k ca. 
1 mol-1 dm3 min-1 at 25 “C. In fact, under the conditions 
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Table 1. Kinetic data for p-nitrophenylacetate with I-oxido-1,2- 
benziodoxol-3( lH)-one (2) and p-chlorophenoxide (ArO-) in 
DMSO-water mixtures at 25 "C.a 

Mol. Yo DMSO 
0 

20 
40 
50 
60 
70 
80 
90 

100 

kd 
mol-* dm3s-1 

1 S O  
1.34 
3.98 
7.62 

12.5 
23.4 
45.4 

153 
342 

kArO-l 
mol-1 dm3 s- 

0.685 
0.760 
2.80 
5.90 

13.6 
34.7 
94.8 

334 

1' k2/kArO- 
2.19 
1.76 
1.42 
1.29 
0.92 
0.67 
0.48 
0.46 

a Rate constants were measured spectroscopically at 400 nm, follow- 
ing released p-nitrophenol-p-nitrophenoxide; estimated error < 13% /. 
b From ref. 6. 

employed by Hupe and Jencks7 [0.05 M phosphate buffer, pH 
8, ionic strength (v )  1.0, KCl], we find the measured rate 
constant for this reaction to be 120 mol-1 dm3 min-1, more 
than a hundred times larger than the anticipated rate constant, 
indicating a significant a-effect . 

To characterise further the nucleophilicity of (2) we 
compared it to the common nucleophiles, imidazole and 
hydroxide ion, using Swain-Scott nucleophilicity parameters8 
as a convenient measure. Second order rate constants for 
cleavages of aqueous PNPA by (2) , imidazole, and hydroxide 
ion were spectroscopically determined at various tempera- 
tures between 17 "C and 40 "C, and then extrapolated to 0 "C 
(the standard reference temperatures) via the Arrhenius 
equation. We found the k2 values (mol-1 dm3 s-1, corrected 
for ionization) to be 0.25 for (2), 0.11 (imidazole), and 0.67 
(OH-). From the known8 nucleophilicity constants, n ,  for 
imidazole (3.58) and hydroxide ion (4.23), and the corre- 
sponding experimental rate constants for PNPA cleavages, 
the Swain-Scott relation, in the form of equation (l), gave s = 
1.21 for the susceptibility constant of substrate PNPA. With 
this value of s, and the rate constant for the reaction of (2) with 
PNPA (0.25 mol-1 dm3 s-I), we calculate n = 3.88 as the 
nucleophilicity parameter of (2). We see that (2) is very similar 
in its properties to imidazo1e;g it too provides unusually high 
nucleophilicity toward acyl substrates at an essentially neutral 
PH- 

Recently, Buncel and Um reported that the cleavage of 
PNPA by the a-nucleophile butane-2,3-dione mono-oximate, 
when compared with the normal nucleophile p-chlorophen- 
oxide (ArO-), exhibited a pronounced maximum in rate 
enhancement (a-effect) in dimethyl sulphoxide (DMS0)- 
water mixtures as the medium composition was varied.6 
Although they clearly indicated that a complete interpretation 
of their results would require a kinetic and thermodynamic 
dissection into initial and transition state contributions,6 we 
wondered whether the observed behaviour was general and 
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Figure 1. Relative reactivities, k2/kGrO- (A)  or k,,-/kA,o- (0,) vs. 
mol.% DMSO in water. The data for k2 are in Table 1; the k,,- data 
are taken from ref. 6. 

might be diagnostic for a-effect 0-nucleophiles. Accordingly, 
we determined rate constants for the cleavages of PNPA by 
(2) in DMSO-water blends. The results are presented in Table 
1, where they are compared to analogous data for the 
non-a-effect p-chlorophenoxide nucleophile .6JO.i 

Although the reactivities of both (2) and ArO- are 
enhanced by the incremental solvent changes from water 
toward DMSO, the phenoxide is affected more strongly. For 
example, the reported enhancement in k over the range 0-90 
mol. YO DMSO solvent is a factor of 488 for Ar0-,6 but we 
find only 102 for (2), so that the relative rate constant, 
k2/kArO- actually decreases from 2.19 to 0.46 over this solvent 
interval (Table 1). Most importantly, k2/kArO- is linear 
(correlation coefficient 0.992) in mol. YO DMSO (Figure l), 
and contrasts strikingly with the behaviour of k,,-/kArO- , 
where kox- is the second order rate constant for the cleavage 
of PNPA by the a-nucleophile butane-2,3-dione mono-oxi- 
mate.6 The marked enhancement of relative nucleophilicity in 
solvent mixtures of intermediate composition, abundantly 
evident with the oximate nucleophile, is entirely absent with 
(2). Clearly, an unusual solvent effect on the a-effect does not 
operate with (2); such an effect does not appear to be general 
for oxygen a-nucleophiles. 

The origin of the a-effect of (2) remains unclear. A 
reasonable bonding scheme for (protonated) (2) features a 
planar, nearly linear (ca. 166"), hypervalent three-centre-four- 
electron 0-1-0 unit, with two lone pairs in iodine 5s and 5p 
orbitals, where the latter orbital is perpendicular to the 
molecular plane. 11 The a-effect could therefore arise from 
stabilization of the (2) + PNPA transition state by the iodine p 
electrons.3 However, the necessary overlap between the 
iodine 5p orbital and the 2p orbital on the adjacent nucleo- 
philic oxygen atom is likely to be poor, so that electronic 
stabilization as the origin of the a-effect of (2) must be 
considered provisional in the absence of appropriate calcula- 
tions. 

A solvent effect is not completely precluded. If the large, 
hydrophobic 1-0- moiety of (2) is not strongly hydrated in 
water, it might be unusually nucleophilic compared with 

t The pK, values of (2) (S. Swarup, unpublished work) and 
p-chlorophenoxide1° vary in a similar way with DMSO-water 
composition, so that trends in rate differences do not originate in 
APK,. 
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phenoxides of similar basicity. The observed behaviour of 
k2/kAr~-, for PNPA cleavage in going from water to DMSO 
(Figure l), suggests that the accompanying dehydration of 
ArO- is more important than the dehydration of (2). This 
explains how the reactivity enhancements conferred upon (2) 
in the protic, methanol-like12 Stern layers of cationic micelles 
exceed those experienced by for example, the phenoxide ion. $ 

We thank the U.S. Army Research Office for financial 
support and Professor E. Buncel for helpful discussions. 
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