Linear Total Synthetic Routes to β -D-C-(1,6)-Linked Oligoglucoses and Oligogalactoses up to Pentaoses by Iterative Wittig Olefination Assembly[†]

Alessandro Dondoni,* Alberto Marra, Mamoru Mizuno,[‡] and Pier Paolo Giovannini

Laboratorio di Chimica Organica, Dipartimento di Chimica, Università di Ferrara, Via Borsari 46, 44100 Ferrara, Italy

adn@dns.unife.it

Received December 13, 2001

Two complementary routes, A and B, have been followed for the stepwise iterative assembly of β -D-(1,6)-glucopyranose and galactopyranose residues through methylene bridges. In route A the building block was constituted by 2,3,4-tri-O-benzyl-6-O-tert-butyldiphenylsilyl (O-TBDPS) β -linked galactosylmethylenephosphorane, while in route B the building block was a β -linked formyl C-glycopyranoside with a similar orthogonal protection of hydroxy groups. In route A each cycle consisted of the reaction of the phosphorane building block with a sugar residue bearing a formyl group at the C-5 carbon atom (coupling) and transformation of the O-TBDPS-protected primary alcohol into the formyl group (arming). Accordingly, route A is defined as the aldehyde route. On the other hand, each cycle in route B involved the coupling of the sugar aldehyde building block with a substrate bearing a phosphorus ylide at C-6 and introduction of the phosphonium group in the arming step as a precursor of the ylide functionality. Accordingly, route B is defined as the ylide route. The efficiency of route A proved to be seriously hampered by the 1,2-elimination of BnOH under the basic reaction conditions of the Wittig olefination, giving rise to the formation of substantial amounts of enopyranose. On the other hand, the ylide route B proved to be more efficient since very good yields (70-93%) of the isolated Wittig products were obtained throughout four consecutive cycles. Individual olefins and polyolefins obtained by routes A and B using gluco and galacto substrates were reduced and debenzylated in one pot by H₂/Pd(OH)₂ to give the corresponding β -D-C-(1,6)-linked oligosaccharides up to the pentaose stage. The latter compounds were fully characterized by high-field NMR spectroscopy (500 MHz).

Introduction

Oligosaccharides and glycoconjugates deeply influence many fundamental biological processes in living organisms.¹ They mediate a variety of events, including inflammation, immunological response, fertilization, cancer metastasis, and viral and bacterial infection.² Hence, there is a great need for usable quantities of natural carbohydrates with a well-defined structure and composition for biological studies aiming at a better understanding of those phenomena at the molecular level. Given the intrinsic difficulty to obtain complex natural oligosaccharides and glycoconjugates in a pure and homogeneous form from natural sources because of the presence of mixtures of glycosylated species (glycoforms), a major opportunity is provided by chemical synthesis.³ Complementary synthetic efforts must also be directed toward the supply of structurally modified sugar-containing molecules, the so-called glycomimetics,⁴ which may serve as tools for studying conformational preferences of their parent natural products as well as probes of recognition specificity, and may provide important insight

into the mechanism of glycoside elaboration by carbohydrate-processing enzymes. In turn glycomimetics may become effective inhibitors of those enzymes and therefore evolve into lead compounds of pharmaceutical relevance. The simplest modification that can be made in natural oligosaccharides and glycoconjugates to obtain chemically and enzymatically resistant analogues is the replacement of the oxygen atom of the glycosidic linkage with a methylene group. Many synthetic approaches to these analogues have therefore been devised, most of which have been restricted to *C*-disaccharides.⁵ Only in recent years increasing attention has been addressed to

Dedicated to Professor Albert I. Mayers.

 ¹ On temporary leave from the Noguchi Institute, Tokyo, Japan.
 (1) (a) Varki, A. *Glycobiology* 1993, *3*, 97–130. (b) Lee, Y. C.; Lee,
 R. T. *Acc. Chem. Res.* 1995, *28*, 321–327. (c) Dwek, R. A. *Chem. Rev.* 1996, *96*, 683–720. (d) Bertozzi, C. R.; Kiessling, L. L. *Science* 2001,

 ^{1996, 96, 683-720. (}d) Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357-2364.
 (2) (a) Witczack, Z. J. Curr. Med. Chem. 1995, 1, 392-405. (b) Sears,

 ^{(2) (}a) WITCZaCK, Z. J. CUIT. Med. Chem. 1995, 1, 392–405. (b) Sears,
 P.; Wong, C.-H. Chem. Commun. 1998, 1161–1170. (c) Lis, H.; Sharon,
 N. Chem. Rev. 1998, 98, 637–674.

^{(3) (}a) Paulsen, H. Angew. Chem., Int. Ed. Engl. 1982, 21, 155–224. (b) Schmidt, R. R. Angew. Chem., Int. Ed. Engl. 1986, 25, 212–235. (c) Toshima, K.; Tatsuta, K. Chem. Rev. 1993, 93, 1503–1531. (d) Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem., Int. Ed. Engl. 1996, 35, 1380–1419. (e) Boons, G.-J. Tetrahedron 1996, 52, 1095–1121. (f) Boons, G.-J. Contemp. Org. Synth. 1996, 3, 173–200. (g) Seeberger, P. H.; Danishefsky, S. J. Acc. Chem. Res. 1998, 31, 685–695. (h) Osborn, H. M. I.; Khan, T. H. Tetrahedron 1999, 55, 1807–1850. (h) Davis, B. G. J. Chem. Soc., Perkin Trans. 1 2000, 2137–2160. (i) Seeberger, P. H.; Haase, W.-C. Chem. Rev. 2000, 100, 4349–4393. (j) Jung, K. H.; Müller, M.; Schmidt, R. R. Chem. Rev. 2000, 100, 4443–4463. (m) Koeller, K. M.; Wong, C.-H. Chem. Rev. 2000, 100, 4465–4493. (n) Danishefsky, S. J.; Allen, J. R. Angew. Chem., Int. Ed. 2001, 40, 1576–1624.

⁽⁴⁾ Although it has been recently pointed out that a strict definition of the term glycomimetic has not yet been made (Patel, A.; Lindorst, T. K. J. Org. Chem. **2001**, 66, 2674–2680), this issue has been addressed in earlier publications: (a) Hanessian, S.; Prabhanjan, H. Synlett **1994**, 868–870. (b) Sears, P.; Wong, C.-H. Angew. Chem., Int. Ed. **1999**, 38, 2300–2324.

Synthesis of Oligoglucoses and Oligogalactoses

Figure 1. β -D-(1,6)-Galactans (X = O) and methylene isosteres ($X = CH_2$).

the synthetic challenge of preparing higher oligomers. Thus, engaged with their NMR studies on the preference of the C-glycosidic bond for the exo-anomeric conformation, Kishi and co-workers described the synthesis of various C-trisaccharides with 1,2 and 1,4 methylene bridges.⁶ Sutherlin and Armstrong prepared a collection of 12 stereochemically and structurally diverse C-trisaccharides as potential inhibitors for the cell surface proteins of the bacterium *Helicobacter pylori*,⁷ a pathogen associated with gastritis and peptic ulcers and implicated in gastric carcinoma. Skrydstrup and co-workers reported the synthesis of a branched C-trisaccharide analogue of the high-mannose core which is present in asparaginelinked oligosaccharides.⁸ Also the preparations of mixed O, C-trisaccharides have been carried out in the laboratories of Sinaÿ (O,C-analogue of the Lewisx trisaccharide)9 and Martin (O, C-analogue of methyl 4'-O- β -D-glucopyranosylgentiobioside).¹⁰ Quite recently, we¹¹ and Sinay and co-workers¹² developed iterative synthetic protocols based on Wittig olefination and sugar lactone-alkyne coupling, respectively, which afforded β -D-*C*-(1,6)-oligogalactosides up to the tetrasaccharide term. These works provided the first totally synthetic route to tetrasaccharide methylene isosteres of β -D-(1,6)-galactans, which have been shown by Glaudemans to bind to various monoclonal immunoglobulins¹³ (Figure 1). Subsequently we have developed an improved synthetic protocol yet based on a Wittig

olefination strategy, which allowed us to prepare for the first time a carbon-linked pentasaccharide of this class of carbohydrate mimics.¹⁴ Following these preliminary reports, we describe here in full view the implementation of our iterative strategy.

Results and Discussion

Synthetic Planning. Our intention in the present work was the achievement of an iterative assembly of carbohydrate units through methylene bridges holding the C-1 of one residue and the C-6 of the other. This accomplishment had to be accompanied by full stereochemical control to give exclusively a β -D-linkage to the C-1 carbon atom. Guided by the earlier experience that we acquired in the synthesis of C-(1,6)-disaccharides^{5a} as well as in the related work regarding the preparation of C-glycosyl amino acids¹⁵ via Wittig olefination, it seemed logical to adopt the same synthetic strategy by a suitable adjustment of the tactic. To this aim we envisaged two possible routes (Scheme 1). Route A employs as a building block a sugar derivative, A, carrying a methylenephosphonium group at C-1 and a differentially protected hydroxyl group at C-6. The initial base-promoted reaction of **A** with the sugar aldehyde **B** would lead to the olefin **C** (*coupling*). This can be transformed into the aldehyde D (arming), which in turn will be subjected to the coupling with A to start the second cycle of the iterative process. Route B employs as a building block a suitably protected formyl *C*-glycoside, **E**, which in the first cycle is coupled with a glycopyranose 6-phosphorane derived from the phosphonium species **F**. The resulting olefin **C** would be transformed into the phosphonium salt G, which in turn will be subjected to the subsequent olefination with **E** to start a second cycle. Quite evidently, since the same identical coupling product **C** is obtained by the two routes, one should be able to switch from one route to the other as may be required. Each cycle can be interrupted at the level of the coupling product whose double bond(s) can be reduced to give the target dimer, trimer, and so on.

Synthesis of the Building Blocks. Quite crucial in both routes was the efficient and fast regeneration of the reactive functional group in the arming step, i.e., the formyl group in route A and the phosphorus ylide in route B. This operation appeared to be finalized by an orthogonal protection of the hydroxy groups in the building block types A and E. To this aim it was decided to use the benzyl group and the *tert*-butyldiphenylsilyl group to differentiate the secondary from the primary hydroxy groups. The synthesis of these building blocks involved common intermediates as shown in Scheme 2 starting from a sugar lactone. In particular the galactonolactone 1 was allowed to react with 2-lithiobenzothiazole¹⁶ (2) to give the corresponding ketose 3, which following activation to the O-acetate 4 was deoxygenated to the benzothiazolyl C-glycoside 5. The selective removal of the O-benzyl group from the primary alcohol via acetolysis and transesterification, followed by silylation with tertbutyldiphenylsilyl chloride, afforded the differentially hydroxy-protected glycoside 6. The application of the

^{(5) (}a) Dondoni, A.; Zuurmond, H. M.; Boscarato A. J. Org. Chem. **1997**, *62*, 8114–8124. (b) Rubinstenn, G.; Esnault, J.; Mallet, J.-M.; Sinay, P. *Tetrahedron: Asymmetry* **1997**, *8*, 1327–1336. (c) Andersen, L.; Mikkelsen, L. M.; Beau, J.-M.; Skrydstrup, T. Synlett 1998, 1393- L.; Mirkelsen, L. M.; Beau, J.-M.; Skrydstrup, T. Syntett **1996**, 1395–1395.
 (d) Ravishankar, R.; Surolia, A.; Vijayan, M.; Lim, S.; Kishi, Y. J. Am. Chem. Soc. **1998**, 120, 11297–11303. (e) Bazin, H. G.; Du, Y.; Polat, T.; Linhardt, R. J. J. Org. Chem. **1999**, 64, 7254–7259. (f) Jarreton, O.; Skrydstrup, T.; Espinosa, J.-F.; Jiménez-Barbero, Beau, J.-M. Chem. Eur. J. **1999**, 5, 430–441. (g) Postema, M. H. D.; Calimente, D. Tetrahedron Lett. **1999**, 40, 4755–4759. (h) Griffin, F.
 K.: Paterson D. E: Taylor R. J. K. Angew. Chem. Int. Ed. **1000**, 29 K.; Paterson, D. E.; Taylor, R. J. K. *Angew. Chem.*, *Int. Ed.* **1999**, *38*, 2939–2942. (i) Roy, R.; Dominique, R.; Das, S. K. *J. Org. Chem.* **1999**, *64*, 5408–5412. (j) Bazin, H. G.; Du, Y., Polat, T.; Linhardt, R. J. *J. Org. Chem.* **1999**, *64*, 7254–7259. (k) Zhu, Y.-H.; Demange, R.; Yogel, T. (1999), *64*, 7254–7259. (k) Zhu, Y.-H.; Demange, R.; Yogel, M. (1999), *64*, 7254–7259. (k) Zhu, Y.-H.; Demange, R.; Yogel, M. (1999), *64*, 7254–7259. (k) Zhu, Y.-H.; Demange, R.; Yogel, M. (1999), *64*, 7254–7259. (k) Zhu, Y.-H.; Demange, R.; Yogel, M. (1999), *64*, 7254–7259. (k) Zhu, Y.-H.; Demange, R.; Yogel, M. (1999), *64*, 7254–7259. (k) Zhu, Y.-H.; Demange, R.; Yogel, M. (1999), *64*, 7254–7259. (k) Zhu, Y.-H.; Demange, R.; Yogel, M. (1999), *64*, 7254–7259. (k) Zhu, Y.-H.; Demange, R.; Yogel, M. (1999), *64*, 7254–7259. (k) Zhu, Y.-H.; Demange, R.; Yogel, M. (1999), *64*, 7254–7259. (k) Zhu, Y.-H.; Demange, R.; Yogel, M. (1990), *64*, 7254–7259. (k) Zhu, Y.-H.; Demange, R.; Yogel, M. (1990), *64*, 7254–7259. (k) Zhu, Y.-H.; Demange, R.; Yogel, M. (1990), *7*, 7000, *1*, 7000, Tetrahedron: Asymmetry 2000, 11, 263-282. (l) Pasquarello, C. Picasso, S.; Demange, R.; Malissard, M.; Berger, E. G.; Vogel, P. J. Org. Chem. 2000, 65, 4251-4260. (m) Postema, M. H. D.; Calimente, D.; Liu, L.; Behrmann, T. L. *J. Org. Chem.* **2000**, *65*, 6061–6068. (n) Zhu, Y.-H.; Vogel, P. *Synlett* **2001**, 79–81. (o) Harding, M.; Nelson, A. *Chem. Commun.* **2001**, 695–696.

^{(6) (}a) Haneda, T.; Goekjian, P. G.; Kim, S. H.; Kishi, Y. J. Org. Chem. 1992, 57, 490-498. (b) Wei, A.; Haudrechy, A.; Audin, C.; Jun, H.-S.; Haudrechy-Bretel, N.; Kishi, Y. J. Org. Chem. 1995, 60, 2160-2169.

⁽⁷⁾ Sutherlin, D. P.; Armstrong, R. W. J. Org. Chem. 1997, 62, 5267-5283

⁽⁸⁾ Mikkelsen, L. M.; Krintel, S. L.; Jiménez-Barbero, J.; Skrydstrup, T. Chem. Commun. 2000, 2319-2320.

⁽⁹⁾ Berthault, P.; Birlirakis, N.; Rubistenn, G.; Sinay, P. J. Biomol. NMR 1996, 8, 23-35.

⁽¹⁰⁾ Spak, S. J.; Martin, O. Tetrahedron 2000, 56, 217-224.

⁽¹¹⁾ Dondoni, A.; Kleban, M.; Zuurmond, H.; Marra, A. Tetrahedron Lett. 1998, 39, 7991-7994.

 ⁽¹²⁾ Xin, Y.-C.; Zhang, Y.-M.; Mallet, J.-M.; Glaudemans, C. P. J.;
 Sinay, P. Eur. J. Org. Chem. 1999, 471–476.
 (13) Glaudemans, C. P. J. Chem. Rev. 1991, 91, 25–33.

⁽¹⁴⁾ Dondoni, A.; Mizuno, M.; Marra, A. Tetrahedron Lett. 2000, 41, 6657 - 6660.

^{(15) (}a) Dondoni, A.; Marra, A.; Massi, A. Tetrahedron 1998, 54, 2827-2832. (b) Dondoni, A.; Marra, A. Chem. Rev. 2000, 100, 4395-4421.

^{*a*} BTh = 2-benzothiazolyl.

formyl unmasking protocol to **6** under the conditions required by the benzothiazole ring¹⁶ produced the formyl *C*-galactoside **7**, the first target building block. The conversion of the latter into the galactosylmethylene-phosphonium iodide **8**, the second building block, was carried out by elaboration of the formyl group via reduction to alcohol (NaBH₄), iodination (I₂, PPh₃), and phosphanation (PPh₃).

Aldehyde Route A. We first considered route A more attractive than route B because of the straightforward transformation of the primary hydroxy group into the

formyl group in the arming step (C to D in Scheme 1). Hence, the ylide generated from the phosphonium iodide **8** by treatment with BuLi at -50 °C in THF-HMPA (3: 1) was allowed to react with an excess of the readily available galactose-derived aldehyde 9 according to our earlier protocol^{5a} to give the olefin **10** (mixture of E,Zisomers) in very good yield (70%) (Scheme 3). Then, the silyl protective group was removed and the primary alcohol was oxidized to the aldehyde 11 in excellent overall yield (70%). Treatment of this aldehyde with the ylide of 8 generated as described above revealed the existence of a serious problem in this approach since the desired trisglycosylated bisolefin 12 was isolated in only 36% yield while a side product, 12a (Chart 1), featuring an endocyclic double bond in one pyranose ring was formed in almost comparable amount. This problem became even more dramatic in the subsequent cycle because the side product 14a was isolated in much higher yield (28%) than the desired product 14 (11%). It seems logical to suggest that 12a and 14a are formed by the coupling of the ylide derived from 8 with the enals arising from **11** and **13** by elimination of a molecule of benzyl alcohol. This elimination is due to the basic medium required for the generation of the ylide and by the ylide itself, causing abstraction of the proton at the α -position adjacent to the formyl group. Evidently, this reaction becomes more substantial when the rate of the aldehyde coupling with the phosphorus ylide diminishes as a consequence of the increase of the complexity of the system. It should be noted that the elimination reaction should be especially favored in the case of C-5 formyl galactopyranose derivatives due to the 1,2-transdiaxial arrangement of the hydrogen atom and the C-4 benzyloxy group. It is worth noting that we observed a competing E2 reaction also in the Wittig coupling of a sugar phosphorane with a formyl β -D-*C*-mannopyranoside, an aldehyde featuring the same stereochemical arrangement of the α -hydrogen atom and the adjacent benzyloxy group.^{5a} The elimination of benzyl alcohol from sugarbased aldehydes under the conditions of Wittig reactions has been reported in other instances.¹⁷ Nevertheless, despite the low efficiency of the strategy, the olefins 10,

⁽¹⁶⁾ Extensive work in our laboratory has been dealing with the use of thiazole as formyl protective group (Dondoni, A. *Synthesis* **1998**, 1681–1706). However, the replacement of thiazole with benzothiazole in the synthesis of formyl *C*-glycosides gives rise to considerable economical advantages and produces, in many cases, crystalline compounds which can be more easily purified and handled. The crucial step with the use of benzothiazole remains its cleavage to the formyl group. In particular the hydrolysis of the benzothiazoline in the final step of the unmasking process requires the assistance of silver ion to obtain a good yield of aldehyde.

^{(17) (}a) Nicotra, F.; Ronchetti, F.; Russo, G.; Toma, L. Tetrahedron Lett. **1984**, 25, 5697–5700. (b) Fréchou, C.; Dheilly, L.; Beaupère, D.; Uzan, R.; Demailly, G. Tetrahedron Lett. **1992**, 33, 5067–5070. (c) Heras-López, A. M.; Pino-González, M. S.; Sarabia-García, F.; López-Herrera, F. J. J. Org. Chem. **1998**, 63, 9630–9634.

12, and **14** were transformed into the corresponding β -D-*C*-(1,6)-linked oligogalactoses **15**, **16**, and **17** via treatment with H₂/Pd(OH)₂ (Chart 2). All compounds were characterized through their *O*-acetyl derivatives.

Ylide Route B. We next turned to this route with some confidence because some earlier experiments showed the lack of substantial benzylic elimination.¹¹ While the aldehyde building block **7** was available via the reaction sequence shown in Scheme 2, the substrate phosphonium salt **20**, which was required in the first cycle of this route, was prepared by coupling the iodogalactose **18** with neat triphenylphosphine at 120 °C (Scheme 4). These solvent-free conditions gave the target product in much higher yield and shorter reaction time than those employing a solution of triphenylphosphine in tetramethylenesulfolane

(120 °C, 3 days) as we reported earlier^{5a} for the preparation of the corresponding *gluco* derivative **21**. Hence, also this compound whose use will be described later on in this work was prepared in a similar way as shown in Scheme 4.

нò

н

но

нò

но

Not surprisingly the coupling of the excess aldehyde **7** with the ylide generated from the phosphonium salt **20** under the usual conditions (BuLi in THF–HMPA at –20 °C) afforded the corresponding bisglycosylated olefin **22** in very good yield (81%) (Scheme 5). The preservation of the original configuration at C-5 and C-8 in **22** was confirmed by the $J_{8,9}$ value of 9.3 Hz, in agreement with a β -D-linkage at the anomeric center of one sugar residue

^{*a*} Key: **18**, **20**, $R^1 = OBn$, $R^2 = H$ (*galacto* series); **19**, **21**, $R^1 = H$, $R^2 = OBn$ (*gluco* series).

and the $J_{4.5}$ value of 0.8 Hz consistent with the D-galacto configuration in the other moiety. Moreover, the subsequent arming step requiring the installation of the phosphonium group via desilylation (Bu₄NF), iodination (I₂, PPh₃), and phosphanation (PPh₃) turned out to be a quite effective operation, affording the sugar phosphonium iodide 23 in excellent yield (88%). Quite rewardingly, and with elimination of our anxiety, the corresponding ylide coupled with the aldehyde 7 to give the bisolefin 24 in similarly high yield (87%) without any substantial side product formation. A similar satisfactory scenario appeared in two subsequent cycles, both being characterized by a high-yield arming sequence and Wittig olefination, the latter step leading to the sugar polyolefins 26 and 28 in excellent yields (93 and 92%). After having removed the silyl protective group from compounds 22, 24, 26, and 28, we could reductively debenzylate and saturate the double bond(s) by catalytic hydrogenation to give the β -*C*-(1,6)-linked oligogalactoses **29**–**32** (Chart 3). The complete assignment of the proton signals of the O-acetyl derivative of the galactopentaose 32 by NMR analysis at 500 MHz confirmed the β -D-linkage at the anomeric center of the carbohydrate units B-E, since a $J_{1,2}$ value of 9.3 Hz was observed in each case. Moreover, ROESY experiments indicated a cis-relationship between the H-5 and H-3 protons of all monosaccharide residues, proving that the original D-galacto configuration was retained in each chain elongation step. Evidently, having established the structure of 32, it can be safely assumed that the sugar moieties in the lower oligomers 29-31 have an identical configuration. These results demonstrate that the Wittig reactions in all four consecutive cycles did not affect the configuration of the anomeric carbon atom of the building block 7 nor that of the stereocenters in the various phosphorus ylide intermediates. In closing this section, a comparison of routes A and B appears worthwhile. Route A is plagued by substantial side product formation in the coupling step, which makes the approach unpractical after a few iterative cycles. On the other hand, route B is characterized by high yields in both the coupling and arming steps throughout four consecutive cycles. This indicates that we did not reach the limit of application of the method, and therefore, oligomers higher that 32 can be in principle prepared by this route.

To further prove the scope of route B, attention could now be focused on the synthesis of β -*C*-(1,6)-linked oligoglucoses, i.e., the isosteres of the β -(1,6)-glucooligosaccharides known as gentiooligosaccharides which are found in lichen.¹⁸ The required phosphonium iodide **21** was prepared as shown in Scheme 4 starting from the iodoglucose **19**, while the formyl *C*-glucoside building block **36** having orthogonal protective groups was obtained in a way similar to that of the *C*-galactoside derivative **7** (see Scheme 2) via the benzothiazole-based formylation technique of the gluconolactone **33** through the benzothiazolyl *C*-glucoside intermediates **34** and **35** (Scheme 6).

The construction of the sugar-olefin chain was carried out using the same coupling-arming sequence described above in the galacto series. Scheme 7 shows details of this stepwise oligomerization in which very good yields of products were obtained both in the Wittig olefination step (70-84%) and in the installation of the phosphonium group (56-73%) over four consecutive cycles. Also in this case it was carefully ascertained by NMR analysis of the first adduct 37 that the $\beta\text{-d-linkage}$ was preserved in one sugar moiety ($J_{8,9} = 9.0$ Hz) as well as the D-gluco configuration in the other sugar residue ($J_{4,5} = 10.0$ Hz). The sugar olefin **37** and the polyolefins **39**, **41**, and **43** were transformed via desilylation and hydrogenation into the corresponding C-(1,6)-linked glucose di-, tri-, tetra-, and pentasaccharides 44-47 (Chart 4). All of these compounds were isolated and characterized as their O-acetyl derivatives. In particular the acetate of the glucopentaose 47, which was analyzed by 500 MHz NMR spectroscopy, showed large coupling constant values between the H-1 and H-2 (9.5-9.9 Hz) as well as the H-4 and H-5 protons (9.6-10.1 Hz) of the B-E moieties. These values indicated a transdiaxial arrangement of the above-mentioned protons and therefore a β -D-gluco configuration for the B-E sugar units.

In conclusion, a novel and reasonably efficient method for the synthesis of artificial carbon-linked (1,6)-oligosaccharides has been developed and its scope demonstrated by the synthesis of di-, tri-, tetra-, and pentagalacto and -gluco oligomers. The high yields registered over four consecutive cycles indicated the possibility of access to higher oligomers. Moreover, the method should be extensible to other sugars and readily adaptable to techniques using solid supports or polymer-supported reagents.

Experimental Section

All moisture-sensitive reactions were performed under a nitrogen atmosphere using oven-dried glassware. Solvents were dried over standard drying agent¹⁹ and freshly distilled prior to use. Commercially available powdered 4 Å molecular sieves (5 μ m average particle size) were used without further activation. Reactions were monitored by TLC on silica gel 60 F_{254} with detection by charring with sulfuric acid. Flash column chromatography20 was performed on silica gel 60 (230-400 mesh). Melting points were determined with a capillary apparatus. Optical rotations were measured out at $20~\pm~2~^\circ C$ in the stated solvent; $[\alpha]_D$ values are given in $10^{-1}~deg~cm^2~g^{-1}.~^1H$ (300 and 500 MHz), ^{13}C (75 MHz), and ³¹P (121 MHz) NMR spectra were recorded for CDCl₃ solutions at room temperature unless otherwise specified. Assignments were aided by homo- and heteronuclear two-dimensional experiments. MALDI-TOF mass spectra were acquired using α -cyano-4-hydroxycinnamic acid as the matrix. Sugar lactones $\mathbf{1}^{21}$ and $\mathbf{33}^{22}$ were prepared by oxidation of the corresponding hemiacetal with pyridinium chlorochromate.23 Aldehyde 9²⁴ and iodides 18²⁵ and 19²⁶ were synthesized as described.

- 6412. (22) Kuzuhara, H.; Fletcher, H. J. Org. Chem. **1967**, 32, 2531–2534.
- (22) Kuzuhara, H.; Fletcher, H. J. Org. Chem. 1967, 32, 2531–2534.
 (23) Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 2647–2650.

⁽¹⁸⁾ Corradi da Silva, M. L.; Iacomini, M.; Jablonski, E.; Gorin, P. A. J. *Phytochemistry* **1993**, *33*, 547–552.

⁽¹⁹⁾ Armarego, W. L. F.; Perrin, D. D. *Purification of Laboratory Chemicals*, 4th ed.; Butterworth-Heinemann: Oxford, 1996.
(20) Still, W. C.; Kahn, M.; Mitra, A. *J. Org. Chem.* 1978, 43, 2923–

^{2925.} (21) Dondoni, A.; Scherrmann, M.-C. J. Org. Chem. **1994**, 59, 6404–

Scheme 5

2,3,4,6-Tetra-O-benzyl-1-C-(2-benzothiazolyl)-α-D-ga**lactopyranose (3).** To a cooled (-65 °C), stirred solution of *n*-BuLi (4.2 mL, 6.72 mmol, of a 1.6 M solution in hexane) in anhydrous Et₂O (15 mL) was added dropwise a solution of freshly distilled 2-benzothiazole (0.91 g, 6.72 mmol) in anhydrous Et₂O (8 mL) over a 30 min period. The yellow solution was stirred at -65 °C for 30 min, and then a solution of galactonolactone 1 (2.62 g, 4.86 mmol) in anhydrous Et₂O (20 mL) was added slowly (20 min). After an additional 1 h at -65 °C the mixture was allowed to warm to -50 °C in 30 min and then poured into 100 mL of a 1 M phosphate buffer at pH 7. The layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (2 \times 100 mL). The combined organic layers were dried (Na₂SO₄) and concentrated. The residue was eluted from a column of silica gel with cyclohexane-AcOEt (from 15:1 to 9:1) to give **3** (2.45 g, 75%) as a syrup. $[\alpha]_D =$ -15.8 (c 1.6, CHCl₃). ¹H NMR (300 MHz): δ 8.13–8.05 and 7.91-7.85 (2 m, 2 H, BTh), 7.60-6.97 (m, 22 H, 4 Ph, BTh),

(25) Desire, J.; Prandi, J. Eur. J. Org. Chem. 2000, 3075-3084.

(26) Kleban, M.; Kautz, U.; Greul, J.; Hilgers, P.; Kugler, R.; Dong, H.-Q.; Jaeger, V. *Synthesis* **2000**, 1027–1033.

5.06 and 4.72 (2 d, 2 H, J = 11.3 Hz, PhC H_2), 4.82 and 4.78 (2 d, 2 H, J = 11.5 Hz, PhC H_2), 4.78 and 4.42 (2 d, 2 H, J = 11.0 Hz, PhC H_2), 4.52 (d, 1 H, $J_{2,3} = 9.7$ Hz, H-2), 4.51 and 4.46 (2 d, 2 H, J = 12.0 Hz, PhC H_2), 4.37 (ddd, 1 H, $J_{4,5} = 1.0$, $J_{5,6a} = 8.0$, $J_{5,6b} = 5.5$ Hz, H-5), 4.15 (dd, 1 H, $J_{3,4} = 2.8$ Hz, H-4), 4.10 (dd, 1 H, H-3), 3.73 (dd, 1 H, H-6a), 3.63 (dd, 1 H, H-6b). Anal. Calcd for C₄₁H₃₉NO₆S (673.83): C, 73.08; H, 5.83; N, 2.08. Found: C, 73.26; H, 5.91; N, 2.00.

1-*O*-Acetyl-2,3,4,6-tetra-*O*-benzyl-1-*C*-(2-benzothiazolyl)α-D-galactopyranose (4). To a solution of **3** (4.72 g, 7.00 mmol) in anhydrous CH₂Cl₂ (50 mL) were added at rt distilled triethylamine (10 mL) and acetic anhydride (10 mL). The solution was kept at rt for 24 h and then concentrated to give syrupy **4** (5.01 g, ca. 100%) at least 95% pure by ¹H NMR analysis. An analytical sample was obtained by column chromatography on silica gel (4:1 cyclohexane–AcOEt). [α]_D = +20.4 (*c* 1.4, CHCl₃). ¹H NMR (300 MHz): δ 8.11–8.03 and 7.88–7.80 (2 m, 2 H, BTh), 7.51–6.91 (m, 22 H, 4 Ph, BTh), 5.05 and 4.68 (2 d, 2 H, *J*=11.5 Hz, PhC*H*₂), 4.85 and 4.80 (2 d, 2 H, *J*= 11.0 Hz, PhC*H*₂), 4.56 and 4.48 (2 d, 2 H, *J* = 11.5 Hz, PhC*H*₂), 4.19–4.14 (m, 3 H, H-2, H-3, H-4), 4.04 (ddd, 1 H, *J*_{4.5} = 0.8, *J*_{5.6a} = 8.0, *J*_{5.6b} = 5.3 Hz, H-5), 3.85 (dd, 1 H, *J*_{6a,6b} = 9.0 Hz,

⁽²⁴⁾ Tronchet, J. M. J.; Massoud, M. A. M. Helv. Chim. Acta 1979, 62, 1632–1639.

^a BTh = 2-benzothiazolyl.

H-6a), 3.70 (dd, 1 H, H-6b), 2.22 (s, 3 H, Ac). Anal. Calcd for $C_{43}H_{41}NO_7S$ (715.87): C, 72.15; H, 5.77; N, 1.96. Found: C, 72.33; H, 5.86; N, 1.91.

2-(2,3,4,6-tetra-O-benzyl-β-D-galactopyranosyl)benzothiazole (5). To a stirred mixture of 4 (4.29 g, 6.00 mmol), activated 4 Å powdered molecular sieves (6.0 g), and triethvlsilane (9.6 mL, 60.0 mmol) in anhydrous CH₂Cl₂ (50 mL) was added TMSOTf (1.63 mL, 9.00 mmol). The mixture was stirred at rt for 1.5 h and then diluted with triethylamine (2 mL), filtered through Celite, and concentrated. The residue was eluted from a column of silica gel with 5:1 cyclohexane-AcOEt to give **5** (3.74 g, 95%) as a syrup. $[\alpha]_D = -20.5$ (*c* 1.5, CHCl₃). ¹H NMR (300 MHz): δ 8.11–8.04 and 7.92–7.86 (2 m, 2 H, BTh), 7.56-7.00 (m, 22 H, 4 Ph, BTh), 5.05 and 4.70 $(2 d, 2 H, J = 12.0 Hz, PhCH_2), 4.81 (s, 2 H, PhCH_2), 4.76 (d, 2$ 1 H, $J_{1,2} = 9.5$ Hz, H-1), 4.70 and 4.40 (2 d, 2 H, J = 10.8 Hz, PhC H_2), 4.52 and 4.45 (2 d, 2 H, J = 12.0 Hz, PhC H_2), 4.26 (dd, 1 H, $J_{2,3} = 9.5$ Hz, H-2), 4.09 (dd, 1 H, $J_{3,4} = 2.8$, $J_{4,5} =$ 0.6 Hz, H-4), 3.82 (dt, 1 H, $J_{5,6} = 6.4$ Hz, H-5), 3.80 (dd, 1 H, H-3), 3.68 (d, 2 H, 2 H-6). Anal. Calcd for C₄₁H₃₉NO₅S (657.83): C, 74.86; H, 5.98; N, 2.13. Found: C, 74.78; H, 6.09; N, 2.08.

2-(2,3,4-tri-O-benzyl-6-O-tert-butyldiphenylsilyl-β-D-galactopyranosyl)benzothiazole (6). To a solution of 5 (5.26 g, 8.00 mmol) in acetic anhydride (60 mL) was added a solution of 96% H₂SO₄ (0.8 mL) in acetic acid (28 mL). The reaction mixture was kept at rt for 1.5 h, then diluted with AcOEt (300 mL), washed with H_2O (3 \times 100 mL) and saturated aqueous Na_2CO_3 (2 × 100 mL), dried (Na_2SO_4), and concentrated. The crude 6-O-acetylated derivative was treated with a freshly prepared ~0.1 M solution of CH₃ONa in CH₃OH (50 mL) at rt for 3 h, then neutralized with acetic acid, and concentrated. The residue was eluted from a column of silica gel with 3:1 cyclohexane-AcOEt to give 2-(2,3,4-tri-O-benzyl- β -D-galactopyranosyl)benzothiazole (3.59 g) as a syrup. $[\alpha]_D = -31.6$ (c 1.5, CHCl₃). ¹H NMR (300 MHz): δ 8.12–8.06 and 7.94–7.87 (2 m, 2 H, BTh), 7.58-7.00 (m, 22 H, 4 Ph, BTh), 5.07 and 4.75 (2 d, 2 H, J = 11.8 Hz, PhCH₂), 4.85 (s, 2 H, PhCH₂), 4.76 (d, 1 H, $J_{1,2} = 9.5$ Hz, H-1), 4.72 and 4.41 (2 d, 2 H, J =10.7 Hz, PhCH₂), 4.30 (dd, 1 H, $J_{2,3} = 9.5$ Hz, H-2), 3.98 (dd, 1 H, $J_{3,4} = 2.8$, $J_{4,5} = 0.6$ Hz, H-4), 3.89 (ddd, 1 H, $J_{5,6a} = 6.6$, $J_{6a,6b} = 11.0$, $J_{6a,OH} = 3.4$ Hz, H-6a), 3.81 (dd, 1 H, H-3), 3.67 (ddd, 1 H, J_{5,6b} = 4.9 Hz, H-5), 3.58 (ddd, 1 H, J_{6b,OH} = 8.4 Hz, H-6b), 1.80 (dd, 1 H, OH). Anal. Calcd for C₃₄H₃₃NO₅S (567.71): C, 71.93; H, 5.86; N, 2.47. Found: C, 71.72; H, 5.92; N, 2.38. To a stirred solution of this alcohol in pyridine (60 mL) was added tert-butylchlorodiphenylsilane (2.46 mL, 9.48 mmol). Stirring was continued for an additional 16 h, and then the reaction mixture was diluted with CH₃OH (2 mL) and concentrated. The residue was eluted from a column of silica gel with 10:1 cyclohexane-AcOEt (containing 0.3% triethylamine) to give **6** (4.90 g, 76% from **5**) as a syrup. $[\alpha]_D$ = -15.6 (c 1.0, CHCl₃). ¹H NMR (300 MHz): δ 8.12–8.04 and 7.90-7.82 (2 m, 2 H, BTh), 7.68-7.00 (m, 27 H, 5 Ph, BTh), 5.10 and 4.73 (2 d, 2 H, J = 11.8 Hz, PhCH₂), 4.88 and 4.82 (2 d, 2 H, J = 12.0 Hz, PhC H_2), 4.70 (d, 1 H, $J_{1,2} = 9.5$ Hz, H-1), 4.68 and 4.38 (2 d, 2 H, J = 11.0 Hz, PhCH₂), 4.22 (dd, 1 H, $J_{2,3} = 9.5$ Hz, H-2), 4.14 (dd, 1 H, $J_{3,4} = 2.8$, $J_{4,5} = 0.7$ Hz, H-4), 3.92 (dd, 1 H, $J_{5,6a} = 8.0$, $J_{6a,6b} = 10.0$ Hz, H-6a), 3.83 (dd, 1 H, J_{5.6b} = 5.5 Hz, H-6b), 3.78 (dd, 1 H, H-3), 3.65 (ddd, 1 H, H-5), 1.07 (s, 9 H, t-Bu). Anal. Calcd for C₅₀H₅₁NO₅SSi (806.11): C, 74.50; H, 6.38; N, 1.74. Found: C, 74.72; H, 6.44; N. 1.68

2,6-Anhydro-3,4,5-tri-O-benzyl-7-O-tert-butyldiphenylsilyl-aldehydo-D-glycero-L-manno-heptose (7). A mixture of 6 (1.46 g, 1.81 mmol), activated 4 Å powdered molecular sieves (2.71 g), and anhydrous CH₃CN (18 mL) was stirred at rt for 10 min, and then methyl triflate (307 µL, 2.71 mmol) was added. The suspension was stirred at rt for 20 min and then concentrated to dryness without filtering off the molecular sieves. To a cooled (0 °C), stirred suspension of the crude N-methylbenzothiazolium salt in CH₃OH (18 mL) was added NaBH₄ (103 mg, 2.71 mmol). The mixture was stirred at rt for an additional 10 min, diluted with acetone, filtered through a pad of Celite, and concentrated. To a vigorously stirred solution of the diastereomeric benzothiazolines in CH₂Cl₂ (3 mL) and CH₃CN (15 mL) were added H_2O (1.8 mL) and then AgNO₃ (0.92 g, 5.43 mmol). The mixture was stirred at rt for 15 min, and then diluted with 1 M phosphate buffer at pH 7 (1.8 mL). Stirring was continued for an additional 15 min, and then the reaction mixture was diluted with 1 M phosphate buffer at pH 7 (50 mL) and partially concentrated to remove CH₃CN (bath temperature not exceeding 40 °C). The suspension was extracted with Et₂O (2×100 mL), and the combined organic phases were dried (Na₂SO₄), filtered through a pad of Celite, and concentrated. The residue was eluted from a short column (3 \times 10 cm, diameter \times height) of silica gel with 5:1 cyclohexane-AcOEt to afford syrupy 7 (1.03 g, 81%) ca. 95% pure by ¹H NMR analysis. ¹H NMR (300 MHz): δ 9.59 (d, 1 H, $J_{1,2} = 1.2$ Hz, H-1), 7.66–7.60 and 7.50–7.25 (2 m, 25 H, 5 Ph), 5.00 and 4.67 (2 d, 2 H, J = 11.2 Hz, PhCH₂), 4.90 and 4.69 (2 d, 2 H, J = 10.6 Hz, PhCH₂), 4.81 (s, 2 H, PhCH₂), 4.07 (dd, 1 H, $J_{4,5} = 2.6$, $J_{5,6} = 0.7$ Hz, H-5), 4.06 (dd, 1 H, $J_{2,3}$ = 10.0, $J_{3,4}$ = 9.0 Hz, H-3), 3.88 (dd, 1 H, $J_{6,7a}$ = 8.2, $J_{7a,7b}$ = 10.3 Hz, H-7a), 3.83 (dd, 1 H, $J_{6.7b} = 5.7$ Hz, H-7b), 3.71 (dd, 1 H, H-2), 3.68 (dd, 1 H, H-4), 3.48 (ddd, 1 H, H-6), 1.08 (s, 9 H, t-Bu).

(2,6-Anhydro-3,4,5-tri-O-benzyl-7-O-tert-butyldiphenylsilyl-1-deoxy-D-glycero-L-manno-heptitol-1-yl)triphenylphosphonium Iodide (8). To a cooled (0 °C), stirred solution of aldehyde 7 (3.14 g, 4.48 mmol) in Et₂O (22 mL) and CH₃OH (22 mL) was added NaBH₄ (170 mg, 4.48 mmol). The mixture was stirred at rt for an additional 10 min, then diluted with acetone (1 mL), and concentrated. The residue was suspended in Et_2O (200 mL), washed with H_2O (2 \times 50 mL), dried (Na₂SO₄), and concentrated to afford 2,6-anhydro-3,4,5-tri-O-benzyl-7-O-tert-butyldiphenylsilyl-D-glycero-L-mannoheptitol (3.12 g). ¹H NMR (300 MHz): δ 7.75–7.72, 7.68–7.63, and 7.46-7.25 (3 m, 25 H, 5 Ph), 4.99 and 4.64 (2 d, 2 H, J= 11.4 Hz, PhCH₂), 4.93 and 4.66 (2 d, 2 H, J = 11.0 Hz, PhCH₂), 4.79 (s, 2 H, PhCH₂), 4.03 (dd, 1 H, $J_{4,5} = 2.7$, $J_{5,6} = 0.5$ Hz, H-5), 3.92 (dd, 1 H, $J_{2,3} = J_{3,4} = 9.5$ Hz, H-3), 3.81–3.73 and 3.68–3.61 (2 m, 2 H, 2 H-1), 3.76 (d, 2 H, J_{6,7} = 6.8 Hz, 2 H-7), 3.62 (dd, 1 H, H-4), 3.46 (dt, 1 H, H-6), 3.30 (ddd, 1 H, $J_{1a,2} =$ 2.2, $J_{1b,2} = 5.4$ Hz, H-2), 1.06 (s, 9 H, t-Bu). To a vigorously stirred solution of the crude alcohol, triphenylphosphine (1.76 g, 6.72 mmol), and imidazole (0.91 g, 13.44 mmol) in anhydrous toluene (45 mL) was added iodine (1.71 g, 6.72 mmol). The mixture was stirred at 80 °C for 2 h, then cooled to rt, filtered through a pad of Celite, and concentrated. A solution of the residue in Et₂O (200 mL) was washed with 5% aqueous $Na_2S_2O_3$ (2 \times 50 mL), dried (Na_2SO_4), and concentrated. The residue was eluted from a column of silica gel with 4:1 cyclohexane-AcOEt to give 2,6-anhydro-3,4,5-tri-O-benzyl-7-*Ö-tert*-butyldiphenylsilyl-1-deoxy-1-iodo-D-glycero-L-mannoheptitol (3.18 g). ¹H NMR (300 MHz): δ 7.75–7.60 and 7.44– 7.17 (2 m, 25 H, 5 Ph), 5.01 and 4.65 (2 d, 2 H, J = 11.7 Hz, PhCH₂), 4.98 and 4.72 (2 d, 2 H, J = 10.8 Hz, PhCH₂), 4.78 and 4.73 (2 d, 2 H, J = 11.9 Hz, PhCH₂), 4.02 (dd, 1 H, $J_{4.5} =$ 2.6, $J_{5.6} = 0.5$ Hz, H-5), 3.81 (dd, 1 H, $J_{2,3} = 8.9$, $J_{3,4} = 9.3$ Hz, H-3), 3.79 (d, 2 H, J_{6,7} = 6.8 Hz, 2 H-7), 3.62 (dd, 1 H, H-4), 3.46 (dt, 1 H, H-6), 3.45 (dd, 1 H, $J_{1a,2} = 2.5$, $J_{1a,1b} = 10.6$ Hz, H-1a), 3.30 (dd, 1 H, J_{1b,2} = 6.6 Hz, H-1b), 3.09 (ddd, 1 H, H-2), 1.06 (s, 9 H, t-Bu). A mixture of iodide (3.18 g, 3.91 mmol) and triphenylphosphine (10.25 g, 39.10 mmol) was stirred at 120 °C under a nitrogen atmosphere for 2 h, then cooled to ca. 80 °C, diluted with toluene (20 mL), cooled to rt, and diluted with Et_2O (40 mL). The white solid was filtered, washed with Et_2O, and dried to give $\pmb{8}$ (3.13 g, 65% from 7). Mp 182–183 °C. $[\alpha]_D=-9.3$ (c 0.8, CHCl_3). ¹H NMR (300 MHz): δ 7.83– 7.18 (m, 40 H, 8 Ph), 5.06 and 4.92 (2 d, 2 H, J = 11.4 Hz, PhCH₂), 4.99 and 4.60 (2 d, 2 H, J = 11.2 Hz, PhCH₂), 4.78 (s, 2 H, PhC H_2), 3.98 (dd, 1 H, $J_{4,5} = 2.6$, $J_{5,6} = 0.6$ Hz, H-5), 3.95 (dd, 1 H, $J_{2,3} = J_{3,4} = 9.2$ Hz, H-3), 3.60 (dd, 1 H, H-4), 3.56– 3.45 (m, 2 H, H-1a, H-2), 3.40 (dd, 1 H, $J_{6,7a} = 8.5$, $J_{7a,7b} = 9.8$ Hz, H-7a), 3.28-3.18 (m, 1 H, H-1b), 3.10 (dd, 1 H, $J_{6.7b} = 5.4$ Hz, H-6), 2.91 (dd, 1 H, H-7b), 1.00 (s, 3 H, t-Bu). ³¹P NMR (121 MHz): δ 23.7. Anal. Calcd for C₆₂H₆₄IO₅PSi (1075.16): C, 69.26; H, 6.00. Found: C, 68.98; H, 5.96.

(*E,Z*)-8,12-Anhydro-9,10,11-tri-*O*-benzyl-13-*O*-tert-butyldiphenylsilyl-6,7-dideoxy-1,2:3,4-di-*O*-isopropylideneα-D-*glycero*-L-*manno*-D-*galacto*-tridec-6-eno-1,5-pyranose (10). To a cooled (-50 °C), stirred mixture of 8 (1.08 g,

1.00 mmol) and activated 4 Å powdered molecular sieves (1.0 g) in anhydrous THF (4 mL) and HMPA (2 mL) were added *n*-BuLi (625 µL, 1.00 mmol, of a 1.6 M solution in hexane) and, after 5 min, a solution of 9 (387 mg, 1.50 mmol) in anhydrous THF (2 mL). The mixture was allowed to reach -20 °C in 3 h, then diluted with Et₂O (150 mL), filtered through a pad of Celite, washed with 1 M phosphate buffer at pH 7 (30 mL), dried (Na₂SO₄), and concentrated. The residue was eluted from a column of silica gel with 6:1 cyclohexane-AcOEt (containing 0.5% triethylamine) to give syrupy 10 (0.65 g, 70%) as a ca. 9:1 Z, E mixture. ¹H NMR (300 MHz) of the Z-isomer: δ 7.64– 7.54 and 7.46-7.24 (2 m, 25 H, 5 Ph), 5.77 (dd, 1 H, J_{5,6} = 8.0, $J_{6,7} = 11.2$ Hz, H-6), 5.66 (dd, 1 H, $J_{7,8} = 8.0$ Hz, H-7), 5.48 (d, 1 H, $J_{1,2} = 5.0$ Hz, H-1), 4.99 and 4.65 (2 d, 2 H, J = 11.2 Hz, PhC H_2), 4.91 and 4.62 (2 d, 2 H, J = 11.2 Hz, PhC H_2), 4.76 (s, 2 H, PhC H_2), 4.63 (dd, 1 H, $J_{4,5} = 2.6$ Hz, H-5), 4.27 (dd, 1 H, $J_{2,3} = 2.2, J_{3,4} = 8.0$ Hz, H-3), 4.22 (dd, 1 H, H-2), 4.11 (d, 1 H, $J_{10,11} = 3.0$ Hz, H-11), 4.01 (dd, 1 H, $J_{8,9} = 9.4$ Hz, H-8), 3.84 (dd, 1 H, *J*_{9,10} = 9.4 Hz, H-9), 3.78–3.71 (m, 3 H, H-10, 2 H-13), 3.58 (dd, 1 H, H-4), 3.42 (dd, 1 H, $J_{12,13a} = 5.0$, $J_{12,13b} = 8.5$ Hz, H-12), 1.48, 1.44, 1.42, and 1.33 (4 s, 12 H, 4 CH₃), 1.08 (s, 9 H, t-Bu). Anal. Calcd for C₅₆H₆₆O₁₀Si (927.23): C, 72.54; H, 7.17. Found: C, 72.41; H, 7.25.

(E,Z)-8,12-Anhydro-9,10,11-tri-O-benzyl-6,7-dideoxy-1,2:3,4-di-O-isopropylidene-a-D-glycero-L-manno-D-galactotridec-6-eno-1,5-pyranodialdose (11). A solution of 10 (0.63 g, 0.68 mmol) and n-Bu₄NF·3H₂O (0.32 g, 1.02 mmol) in distilled THF (14 mL) was kept at rt for 3 h, then diluted with 1 M phosphate buffer at pH 7 (20 mL), and extracted with Et_2O (2 × 100 mL). The combined organic layers were dried (Na₂SO₄) and concentrated. The residue was eluted from a column of silica gel with 2:1 cyclohexane-AcOEt to give (E,Z)-8,12-anhydro-9,10,11-tri-O-benzyl-6,7-dideoxy-1,2:3,4-di-O-isopropylidene-α-D-glycero-L-manno-D-galacto-tridec-6-eno-1,5pyranose (0.42 g) as a syrup. ¹H NMR (300 MHz) selected data for the Z-isomer: δ 7.38–7.26 (m, 15 H, 3 Ph), 5.84 (dd, 1 H, $J_{5,6} = 8.0, J_{6,7} = 11.4$ Hz, H-6), 5.76 (dd, 1 H, $J_{7,8} = 7.6$ Hz, H-7), 5.51 (d, 1 H, $J_{1,2} = 5.1$ Hz, H-1), 4.97 and 4.68 (2 d, 2 H, J = 11.8 Hz, PhCH₂), 4.93 and 4.66 (2 d, 2 H, J = 11.2 Hz, PhCH₂), 4.78 and 4.74 (2 d, 2 H, J = 11.8 Hz, PhCH₂), 4.33 (dd, 1 H, $J_{2,3} = 2.4$, $J_{3,4} = 7.9$ Hz, H-3), 4.24 (dd, 1 H, H-2), 4.07 (dd, 1 H, $J_{8,9} = 9.3$ Hz, H-8), 3.59 (dd, 1 H, $J_{9,10} = 9.3$, $J_{10,11} = 2.8$ Hz, H-10), 1.54, 1.44, 1.33, and 1.17 (4 s, 12 H, 4 CH₃). To a vigorously stirred mixture of this alcohol, activated 4 Å powdered molecular sieves (1.2 g), and anhydrous CH₂Cl₂ (12 mL) was added pyridinium chlorochromate (0.40 g, 1.83

mmol). The reaction mixture was stirred at rt for 30 min, then diluted with Et₂O (24 mL) and cyclohexane (12 mL), stirred for an additional 10 min, and eluted from a short column of silica gel (4 × 3 cm, diameter × height) with 2:1 cyclohexane—Et₂O to give syrupy **11** (0.33 g, 70% from **10**) ca. 95% pure by ¹H NMR analysis. ¹H NMR (300 MHz) selected data for the *Z*-isomer: δ 9.60 (s, 1 H, H-13), 7.35–7.26 (m, 15 H, 3 Ph), 5.92 (dd, 1 H, *J*_{5.6} = 8.0, *J*_{6.7} = 11.3 Hz, H-6), 5.84 (dd, 1 H, *J*_{7.8} = 8.0 Hz, H-7), 5.50 (d, 1 H, *J*_{1.2} = 5.1 Hz, H-1), 4.32 (dd, 1 H, *J*_{2.3} = 2.3, *J*_{3.4} = 7.9 Hz, H-3), 4.23 (dd, 1 H, H-2), 4.18 (dd, 1 H, *J*_{8.9} = 9.1 Hz, H-8), 3.82 (dd, 1 H, *J*_{9.10} = 9.3 Hz, H-9), 3.76 (d, 1 H, *J*_{1.12} = 1.2 Hz, H-12), 3.72 (dd, 1 H, *J*_{4.5} = 1.7 Hz, H-4), 3.59 (dd, 1 H, *J*_{10.11} = 2.7 Hz, H-10), 1.44, 1.42, 1.30, and 1.18 (4 s, 12 H, 4 CH₃). MALDI-TOF MS (686.81): *m*/*z* 710.0 (M + Na), 725.9 (M + K).

Trisaccharide 12. Aldehyde 11 (137 mg, 0.20 mmol) was treated with 8 (237 mg, 0.22 mmol) as described for the preparation of 10. The crude product was eluted from a column of silica gel with 4:1 cyclohexane-AcOEt (containing 0.3% triethylamine) to give first 12a (45 mg, 18%) as a syrup. ¹H NMR (300 MHz) selected data: δ 5.92 (dd, 1 H, $J_{5,6} = 8.8$, $J_{6,7}$ = 11.5 Hz, H-6), 5.86 (d, 1 H, $J_{13,14}$ = 11.7 Hz, H-13), 5.70 (dd, 1 H, $J_{7,8} = 8.3$ Hz, H-7), 5.50 (dd, 1 H, $J_{14,15} = 8.9$ Hz, H-14), 5.50 (d, 1 H, J_{1,2} = 4.5 Hz, H-1), 5.10 (dd, 1 H, J_{10,11} = 2.1 Hz, H-11). MALDI-TOF MS (1247.6): m/z1270.9 (M + Na), 1287.0 (M + K). Eluted second was syrupy 12 (98 mg, 36%) as a ca. 9:1 E,Z-mixture. ¹H NMR (300 MHz) selected data for the 6Z,13*E*-isomer: δ 7.66–7.61, 7.44–7.23, and 7.14–6.98 (3 m, 40 H, 8 Ph), 5.86 (dd, 1 H, $J_{12,13} = 7.0$, $J_{13,14} = 16.0$ Hz, H-13), 5.82-5.75 (m, 2 H, H-6, H-7), 5.71 (dd, 1 H, $J_{14,15} = 3.6$ Hz, H-14), 5.46 (d, 1 H, $J_{1,2} = 4.8$ Hz, H-1), 4.05 (dd, 1 H, $J_{7,8} =$ 7.1, $J_{8,9} = 9.4$ Hz, H-8), 3.53 (dd, 1 H, $J_{9,10} = 9.7$, $J_{10,11} = 2.9$ Hz, H-10), 3.43 (ddd, 1 H, $J_{18,19} = 0.6$, $J_{19,20a} = 5.1$, $J_{19,20b} =$ 8.6 Hz, H-19), 1.51, 1.41, 1.30, and 1.28 (4 s, 12 H, 4 CH₃), 1.07 (s, 9 H, t-Bu). MALDI-TOF MS (1355.76): m/z 1379.4 (M + Na), 1395.4 (M + K). Anal. Calcd for C₈₄H₉₄O₁₄Si: C, 74.42; H, 6.99. Found: C, 74.23; H, 7.15.

Trisaccharide 13. Trisaccharide **12** (203 mg, 0.15 mmol) was desilylated and oxidized as described for the preparation of **11** to give syrupy **13** (119 mg, 71%) ca. 95% pure by ¹H NMR analysis. ¹H NMR (300 MHz) selected data for the 13*E*-isomer: δ 9.59 (s, 1 H, H-20), 7.49–7.13 (m, 30 H, 5 Ph), 6.00 (dd, 1 H, $J_{12,13} = 7.0$, $J_{13,14} = 16.0$ Hz, H-13), 5.48 (d, 1 H, $J_{1,2} = 5.0$ Hz, H-1), 1.45, 1.41, 1.32, and 1.09 (4 s, 12 H, 4 CH₃). MALDI-TOF MS (1115.34): *m*/*z* 1138.5 (M + Na), 1154.8 (M + K).

Tetrasaccharide 14. Aldehyde 13 (112 mg, 0.10 mmol) was treated with 8 (161 mg, 0.15 mmol) as described for the preparation of 10. The crude product was eluted from a column of silica gel with 4:1 cyclohexane-AcOEt (containing 0.3% triethylamine) to give first 14a (47 mg, 28%) as a syrup. ¹H NMR (300 MHz) selected data: δ 6.00 (dd, 1 H, J = 6.3, 16.0 Hz), 5.76 (dd, 1 H, J = 7.8, 11.0 Hz), 5.56 (dd, 1 H, J = 8.8, 12.0 Hz), 5.44 (d, 1 H, $J_{1,2} = 4.9$ Hz, H-1), 5.17 (d, 1 H, $J_{17,18}$ = 2.7 Hz, H-18). MALDI-TOF MS (1676.15): m/z 1699.2 (M + Na), 1715.6 (M + K). Eluted second was 14 (20 mg, 11%) slightly contaminated by 14a. An analytical sample was obtained by preparative thin-layer chromatography on silica gel (6:3:1 pentane-CH₂Cl₂-Et₂O). ¹H NMR (300 MHz) selected data: δ 7.66–7.61, 7.53–7.11, and 7.05–6.99 (3 m, 55 H, 11 Ph), 5.47 (d, 1 H, J_{1,2} = 4.6 Hz, H-1), 1.56, 1.41, 1.34, and 1.27 (4 s, 12 H, 4 CH₃), 1.07 (s, 9 H, t-Bu). MALDI-TOF MS (1784.29): 1808.0 (M + Na), 1824.0 (M + K). Anal. Calcd. for C₁₁₂H₁₂₂O₁₈Si: C, 75.39; H, 6.89. Found: C, 75.56; H, 7.01.

9,10,11,13-Tetra-*O*-acetyl-8,12-anhydro-6,7-dideoxy-1,2: 3,4-di-*O*-isopropylidene- α -D-*glycero*-L-*manno*-D-*galacto*trideco-1,5-pyranose (15Ac). Disaccharide 10 (139 mg, 0.15 mmol) was desilylated as described for the preparation of 11. A vigorously stirred mixture of the resulting alcohol, 20% palladium hydroxide on carbon (60 mg), and 1:1 CH₃OH-AcOEt (10 mL) was degassed under a vacuum and saturated with hydrogen (by a H₂-filled balloon) three times. The suspension was stirred at rt for 6 h under a positive pressure of hydrogen (4 bar), then filtered through a plug of cotton, and concentrated. A solution of crude 15 in pyridine (2 mL) and acetic anhydride (2 mL) was kept at rt for 4 h, and then concentrated. The residue was eluted from a column of silica gel with 2:1 cyclohexane–AcOEt to give **15Ac** (62 mg, 70%) as a syrup. [α]_D = -32.1 (*c* 1.9, CHCl₃). ¹H NMR (300 MHz): δ 5.51 (d, 1 H, $J_{1,2} = 5.1$ Hz, H-1), 5.41 (dd, 1 H, $J_{10,11} = 3.3$, $J_{11,12} = 1.1$ Hz, H-11), 5.09 (dd, 1 H, $J_{8,9} = 9.7$, $J_{9,10} = 10.0$ Hz, H-9), 4.99 (dd, 1 H, H-10), 4.58 (dd, 1 H, $J_{2,3} = 2.3$, $J_{3,4} = 6.9$ Hz, H-3), 4.29 (dd, 1 H, H-2), 4.14 (dd, 1 H, $J_{12,13a} = 6.6$, $J_{13a,13b} = 11.5$ Hz, H-13a), 4.12 (dd, 1 H, $J_{4,5} = 1.8$ Hz, H-4), 4.07 (dd, 1 H, $J_{12,13b} = 6.8$, H-13b), 3.84 (dd, 1 H, H-12), 3.69 (ddd, 1 H, $J_{7a,8} = 2.0$, $J_{5,6a} = 2.0$, $J_{5,6b} = 8.4$ Hz, H-5), 3.44 (ddd, 1 H, $J_{7a,8} = 2.0$, $J_{7b,8} = 9.5$ Hz, H-8), 2.17, 2.06, 2.05, and 1.99 (4 s, 12 H, 4 Ac), 1.88-1.76, 1.77-1.65, and 1.50-1.44 (3 m, 4 H, 2 H-6, 2 H-7), 1.52, 1.48, 1.36, and 1.34 (4 s, 12 H, 4 CH₃). Anal. Calcd for C₂₇H₄₀O₁₄ (588.62): C, 55.09; H, 6.85. Found: C, 54.94; H 6.97.

Peracetylated Trisaccharide 16Ac. Trisaccharide 12 (68 mg, 0.05 mmol) was desilylated as described for the preparation of **13**. A vigorously stirred mixture of the resulting alcohol, 20% palladium hydroxide on carbon (30 mg), and 1:1 CH₃OH-AcOÉt (5 mL) was degassed under a vacuum and saturated with hydrogen (by a H₂-filled balloon) three times. The suspension was stirred at rt for 9 h under a positive pressure of hydrogen (4 bar), then filtered through a plug of cotton, and concentrated to give 16. ¹H NMR (CD₃OD, 300 MHz) selected data: δ 5.44 (d, 1 H, $J_{1,2}$ = 4.9 Hz, H-1), 4.59 (dd, 1 H, $J_{2,3}$ = 2.2, J_{3,4} = 7.8 Hz, H-3), 4.30 (dd, 1 H, H-2), 4.16 (dd, 1 H, J_{4,5} = 0.8 Hz, H-4), 1.48, 1.38, 1.33, and 1.32 (4 s, 12 H, 4 CH₃). A solution of crude 16 in pyridine (2 mL) and acetic anhydride (2 mL) was kept at rt for 8 h, and then concentrated. The residue was eluted from a column of silica gel with 1.5:1 cyclohexane-AcOEt to give 16Ac (26 mg, 59%) as a syrup. $[\alpha]_{\rm D} = -20.2$ (c 0.6, CHCl₃). ¹H NMR (300 MHz): δ 5.51 (d, 1 H, $J_{1,2} = 5.1$ Hz, H-1), 5.40 (dd, 1 H, $J_{17,18} = 3.2$, $J_{18,19} = 1.0$ Hz, H-18), 5.29 (dd, 1 H, $J_{10,11} = 3.2$, $J_{11,12} = 0.7$ Hz, H-11), 5.08 (dd, 1 H, $J_{8,9} = 9.8$, $J_{9,10} = 10.0$ Hz, H-9), 5.07 (dd, 1 H, $J_{15,16} = 9.8$, $J_{16,17} = 10.0$ Hz, H-16), 4.98 (dd, 1 H, H-17), 4.97 (dd, 1 H, H-10), 4.58 (dd, 1 H, $J_{2,3} = 2.2$, $J_{3,4} = 7.1$ Hz, H-3), 4.28 (dd, 1 H, $J_{2,3} = 2.2$ Hz, H-2), 4.18–4.03 (m, 3 H, H-4, 2 H-20), 3.85 (dd, 1 H, J_{19,20a} = 5.8, J_{19,20b} = 6.8 Hz, H-19), 3.70-3.66 (m, 1 H, H-5), 3.52-3.48 (m, 1 H, H-12), 3.43-3.32 (m, 2 H, H-8, H-15), 2.18, 2.16, 2.05, 2.04, and 1.97 (5 s, 21 H, 7 Ac), 1.86-1.78 (m, 2 H, 2 H-6), 1.72-1.60 (m, 4 H, 2 H-7, 2 H-14), 1.47-1.42 (m, 2 H, 2 H-13), 1.50, 1.46, 1.35, 1.32 (4 s, 12 H, 4 CH₃). ¹³C NMR (75.1 MHz): δ 20.7, 20.8, 24.3, 25.0, 26.1, 16.0, 26.4, 27.2, 28.4, 61.7, 67.7, 68.6, 69.7, 69.7, 70.5, 70.9, 72.2, 72.9, 73.0, 74.0, 76.9, 77.2, 77.7, 78.3, 96.5, 108.3, 109.1, 169.8, 169.9, 170.2, 170.3, 170.5, 170.7. MALDI-TOF MS (874.90): m/z 898.2 (M + Na), 914.6 (M + K). Anal. Calcd for C40H58O21: C, 54.91; H, 6.68. Found: C, 55.20; H, 6.52.

Peracetylated Tetrasaccharide 17Ac. Tetrasaccharide 14 (89 mg, 0.05 mmol) was desilylated as described for the preparation of 13. A vigorously stirred mixture of the resulting alcohol, 20% palladium hydroxide on carbon (30 mg), and 1:1 CH₃OH-AcOEt (5 mL) was degassed under a vacuum and saturated with hydrogen (by a H_2 -filled balloon) three times. The suspension was stirred at rt for 9 h under a positive pressure of hydrogen (4 bar), then filtered through a plug of cotton, and concentrated to give 17. ¹H NMR (CD₃OD, 300 MHz) selected data: δ 5.48 (d, 1 H, $J_{1,2} = 5.1$ Hz, H-1), 4.59 (dd, 1 H, $J_{2,3} = 2.2$, $J_{3,4} = 8.0$ Hz, H-3), 4.31 (dd, 1 H, H-2), 4.18 (dd, 1 H, $J_{4,5} = 1.3$ Hz, H-4), 1.49, 1.40, 1.32, and 1.29 (4 s, 12 H, 4 CH₃). A solution of crude 17 in pyridine (2 mL) and acetic anhydride (2 mL) was kept at rt for 16 h, and then concentrated. The residue was eluted from a column of silica gel with 1:2 cyclohexane-AcOEt to give 17Ac (35 mg, 61%) as a syrup. $[\alpha]_D = -12.0$ (*c* 0.2, CHCl₃). ¹H NMR (300 MHz) selected data: δ 5.51 (d, 1 H, $J_{1,2}$ = 4.9 Hz, H-1), 5.40 (dd, 1 H, $J_{24,25} = 3.3$, $J_{25,26} = 0.6$ Hz, H-25), 5.28 (dd, 1 H, $J_{17,18} = 3.2$, $J_{18,19} = 0.5$ Hz, H-18), 5.28 (dd, 1 H, $J_{10,11} = 3.2$, $J_{11,12} = 3.2$ 0.5 Hz, H-11), 5.09 (dd, 1 H, $J_{22,23} = J_{23,24} = 9.8$ Hz, H-23), 5.07 (dd, 1 H, $J_{15,16} = J_{16,17} = 9.8$ Hz, H-16), 5.04 (dd, 1 H, $J_{8,9}$ = $J_{9,10}$ = 9.8 Hz, H-9), 4.58 (dd, 1 H, $J_{2,3}$ = 2.2, $J_{3,4}$ = 7.8 Hz, H-3), 4.29 (dd, 1 H, H-2), 3.84 (ddd, 1 H, $J_{26,27a}$ = 5.6, $J_{26,27b}$ = 7.3 Hz, H-26), 3.69-3.66 (m, 1 H, H-5), 2.19, 2.18, 2.16, 2.06, 2.05, 2.04, 1.98, and 1.97 (8 s, 30 H, 10 Ac), 1.87–1.79 (m, 2 H, 2 H-6), 1.73–1.60 (m, 6 H, 2 H-7, 2 H-14, 2 H-21), 1.52–1.43 (m, 4 H, 2 H-13, 2 H-20), 1.51, 1.48, 1.35, and 1.33 (4 s, 12 H, 4 CH₃). MALDI-TOF MS (1161.19): m/z 1184.8 (M + Na), 1201.3 (M + K). Anal. Calcd for $C_{53}H_{76}O_{28}$: C, 54.82; H, 6.60. Found: C, 55.01; H, 6.65.

(Methyl 2,3,4-tri-O-benzyl-6-deoxy-D-galactopyranosid-6-yl)triphenylphosphonium Iodide (20). A mixture of iodide 18 (2.64 g, 4.60 mmol) and triphenylphosphine (12.05 g, 46.00 mmol) was stirred at 120 °C under a nitrogen atmosphere for 4 h, and then cooled to room temperature. A solution of the residue in CH₂Cl₂ (20 mL) was added dropwise to a stirred volume of Et₂O (ca. 1.2 L), and the white solid was filtered, washed with Et₂O, and dried to give 20 (3.42 g, 89%). Mp 93–94 °C. $[\alpha]_D = +50.5 (c \, 0.7, \text{CHCl}_3)$. ¹H NMR (300 MHz): δ 7.81–7.23 (m, 30 H, 6 Ph), 5.14 and 4.89 (2 d, 2 H, J = 11.2 Hz, PhCH₂), 5.09 (ddd, 1 H, $J_{5,6a} = 3.0$, $J_{6a,6b} = J_{6a,P}$ = 16.0 Hz, H-6a), 4.96 (ddd, 1 H, $J_{3,4}$ = 2.6, $J_{4,5} = J_{4,P} = 1.0$ Hz, H-4), 4.92 and 4.82 (2 d, 2 H, J = 11.5 Hz, PhCH₂), 4.85 and 4.67 (2 d, 2 H, J = 12.3 Hz, PhCH₂), 4.45 (dddd, 1 H, J_{5,6b} = 10.7, $J_{5,P}$ = 10.0 Hz, H-5), 4.39 (d, 1 H, $J_{1,2}$ = 3.6 Hz, H-1), 4.07 (dd, 1 H, $J_{2,3} = 10.3$ Hz, H-3), 3.98 (dd, 1 H, H-2), 3.50 (ddd, 1 H, $J_{6b,P} = 10.3$ Hz, H-6b), 2.48 (s, 3 H, CH₃). ³¹P NMR (121 MHz): & 24.9. Anal. Calcd for C46H46IO5P (836.75): C, 66.03, H, 5.54. Found: C, 66.21, H, 5.59.

(Methyl 2,3,4-tri-*O*-benzyl-6-deoxy-D-glucopyranosid-6-yl)triphenylphosphonium Iodide (21). Iodide 19 (5.00 g, 8.70 mmol) was treated with triphenylphosphine (22.82 g, 87.00 mmol) as described for the preparation of 20 to give 21 (6.34 g, 87%) identical in all respects to the product that we prepared using different reaction conditions.^{5a}

Methyl 8,12-Anhydro-2,3,4,9,10,11-hexa-O-benzyl-13-Otert-butyldiphenylsilyl-6,7-dideoxy-α-D-glycero-L-manno-D-galacto-tridec-6-(Z)-eno-1,5-pyranoside (22). To a cooled (-20 °C), stirred mixture of aldehyde 7 (1.05 g, 1.50 mmol), iodide 20 (0.84 g, 1.00 mmol), activated 4 Å powdered molecular sieves (1.5 g), anhydrous THF (12 mL), and anhydrous HMPA (4 mL) was added n-BuLi (0.62 mL, 1.00 mmol, of a 1.6 M solution in hexane) by a syringe-pump apparatus over 4 h. After that period the reaction mixture was diluted with Et₂O (150 mL), filtered through a pad of Celite, washed with 1 M phosphate buffer (30 mL), dried (Na₂SO₄), and concentrated. The residue was eluted from a column of silica gel with 15:1 cyclohexane-AcOEt to give 22 (1.28 g, 81%) as a syrup. $[\alpha]_D = +5.7$ (c 1.5, CHCl₃). ¹H NMR (300 MHz) selected data: δ 7.68-7.56 (m, 4 H, Ar), 7.48-7.15 (m, 36 H, Ar), 5.87 (dd, 1 H, $J_{5,6} = 9.0$, $J_{6,7} = 11.2$ Hz, H-6), 5.65 (dd, 1 H, $J_{7,8} = 8.3$ Hz, H-7), 4.66 (d, 1 H, $J_{1,2} = 3.5$ Hz, H-1), 4.59 (dd, 1 H, $J_{4,5} = 0.6$ Hz, H-5), 4.10 (dd, 1 H, $J_{10,11} = 2.9$, $J_{11,12} = 0.6$ Hz, H-11), 3.99 (dd, 1 H, $J_{2,3} = 10.0$ Hz, H-2), 3.97 (dd, 1 H, $J_{8,9} = 9.6$ Hz, H-8), 3.84 (dd, 1 H, $J_{12,13a} = 8.0$, $J_{13a,13b} = 9.6$ Hz, H-13a), 3.83 (dd, 1 H, $J_{3,4} = 2.4$ Hz, H-3), 3.76 (dd, 1 H, $J_{9,10} = 9.3$ Hz, H-9), 3.72 (dd, 1 H, $J_{12,13b} = 5.6$ Hz, H-13b), 3.64 (dd, 1 H, H-10), 3.60 (dd, 1 H, H-4), 3.40 (ddd, 1 H, H-12), 3.27 (s, 3 H, OCH₃), 1.05 (s, 9 H, t-Bu). MALDI-TOF MS (1131.50): m/z 1154.8 (M + Na), 1170.6 (M + K). Anal. Calcd for $C_{72}H_{78}O_{10}$ -Si: C, 76.43; H, 6.95. Found: C, 76.30; H, 7.07.

When the reaction was performed using an excess of phosphonium iodide **20** (1.2 equiv), the *C*-disaccharide **22** was isolated in 61% yield.

(Methyl 8,12-anhydro-2,3,4,9,10,11-hexa-*O*-benzyl-6,7,-13-trideoxy-α-D-*glycero*-L-*manno*-D-*galacto*-tridec-6-(*Z*)eno-1,5-pyranosid-13-yl)triphenylphosphonium Iodide (23). A solution of 22 (1.13 g, 1.00 mmol) and *n*-Bu₄NF-3H₂O (0.95 g, 3.00 mmol) in distilled THF (20 mL) was refluxed for 2 h, then cooled to rt, diluted with 1 M phosphate buffer at pH 7 (40 mL), and extracted with Et₂O (2 × 100 mL). The combined organic layers were dried (Na₂SO₄) and concentrated. The residue was eluted from a column of silica gel with cyclohexane–AcOEt (from 2:1 to 1:1) to give methyl 8,12anhydro-2,3,4,9,10,11-hexa-*O*-benzyl-6,7-dideoxy-α-D-*glycero*-*L*-*manno*-D-*galacto*-tridec-6-(*Z*)-eno-1,5-pyranoside (0.86 g). ¹H NMR (300 MHz) selected data: δ 5.90 (dd, 1 H, J_{5,6} = 8.8, J_{6,7} = 11.2 Hz, H-6), 5.73 (dd, 1 H, J_{7,8} = 8.0 Hz, H-7), 3.36 (s, 3 H, CH₃). To a vigorously stirred solution of the alcohol,

triphenylphosphine (0.50 g, 1.92 mmol), and imidazole (0.26 g, 3.83 mmol) in anhydrous toluene (20 mL) was added iodine (0.49 g, 1.92 mmol). The mixture was refluxed for 1 h, then cooled to rt, filtered through a pad of Celite, and concentrated. A solution of the residue in CH₂Cl₂ (100 mL) was washed with 5% aqueous $Na_2S_2O_3$ (2 $\,\times\,$ 30 mL), dried (Na_2SO_4), and concentrated. Column chromatography of the residue (2:1 CH_2Cl_2 -cyclohexane, and then 9:1 cyclohexane-AcOEt) gave methyl 8,12-anhydro-2,3,4,9,10,11-hexa-O-benzyl-6,7,13-trideoxy-13-iodo-α-D-glycero-L-manno-D-galacto-tridec-6-(Z)-eno-1,5-pyranoside (0.94 g). ¹H NMR (300 MHz) selected data: δ 7.40–7.20 (m, 30 H, 6 Ph), 5.88 (dd, 1 H, $J_{5,6} = 8.8$, $J_{6,7} = 11.7$ Hz, H-6), 5.70 (dd, 1 H, J_{7,8} = 7.2 Hz, H-7), 4.69 (d, 1 H, J_{1,2} = 3.2 Hz, H-1), 4.15 (dd, 1 H, $J_{10,11} = 2.4$, $J_{11,12} = 0.5$ Hz, H-11), 4.02 (dd, 1 H, $J_{2,3} = 10.0$ Hz, H-2), 4.01 (dd, 1 H, $J_{8,9} = 9.3$ Hz, H-8), 3.89 (dd, 1 H, $J_{3,4} = 2.8$ Hz, H-3), 3.77 (dd, 1 H, $J_{9,10} =$ 9.2 Hz, H-9), 3.71 (dd, 1 H, J_{4,5} = 0.5 Hz, H-4), 3.64 (dd, 1 H, H-10), 3.54 (ddd, 1 H, $J_{12,13a} = 6.0$, $J_{12,13b} = 7.2$ Hz, H-12), 3.34 (s, 3 H, CH₃), 3.18 (dd, 1 H, $J_{13a,13b} = 10.0$ Hz, H-13a), 3.14 (dd, 1 H, H-13b). The iodide was treated with triphenylphosphine (2.46 g, 9.37 mmol) as described for the preparation of **20** to give **23** (1.11 g, 88%) as a white solid. Mp 213–214 °C dec (CH₃OH). $[\alpha]_D = +66.1$ (*c* 0.6, CHCl₃). ¹H NMR (300 MHz) selected data: 8 7.78-7.50 and 7.43-7.10 (2 m, 45 H, 9 Ph), 5.57 (dd, 1 H, $J_{5,6} = 8.1$, $J_{6,7} = 11.5$ Hz, H-6), 5.01 (dd, 1 H, $J_{7,8} = 8.5$ Hz, H-7), 4.50 (d, 1 H, $J_{1,2} = 3.5$ Hz, H-1), 4.29 (dd, 1 H, $J_{4,5} = 0.6$ Hz, H-5), 3.92 (dd, 1 H, $J_{2,3} = 10.0$ Hz, H-2), 3.80 (dd, 1 H, $J_{8,9} = 9.4$ Hz, H-8), 3.76 (dd, 1 H, $J_{9,10} = 9.1$, $J_{10,11} = 1.6$ Hz, H-10), 3.64 (dd, 1 H, $J_{3,4} = 2.7$ Hz, H-3), 3.56 (dd, 1 H, H-9), 3.29 (dd, 1 H, H-4), 3.08 (s, 3 H, CH₃). ³¹P NMR (121 MHz): 8 24.9. Anal. Calcd for C74H74IO9P (1265.28): C, 70.25; H, 5.90. Found: C, 70.42; H, 5.99

Trisaccharide 24. The aldehyde **7** (420 mg, 0.60 mmol) was treated with **23** (633 mg, 0.50 mmol) as described for the preparation of **22** to give syrupy **24** (679 mg, 87%) slightly contaminated by the *Z*,*E*-isomer. ¹H NMR (300 MHz) selected data: δ 5.86 (dd, 1 H, $J_{5,6} = 8.3$, $J_{6,7} = 11.5$ Hz, H-6), 5.83 (dd, 1 H, $J_{12,13} = 8.4$, $J_{13,14} = 11.6$ Hz, H-13), 5.71 (dd, 1 H, $J_{7,8} = 7.5$ Hz, H-7), 5.65 (dd, 1 H, $J_{14,15} = 7.5$ Hz, H-14), 4.73 (dd, 1 H, $J_{4,5} = 0.5$ Hz, H-5), 4.68 (d, 1 H, $J_{1,2} = 3.6$ Hz, H-1), 4.31 (dd, 1 H, $J_{1,12} = 0.5$ Hz, H-2), 4.00 (dd, 1 H, $J_{2,3} = 10.1$ Hz, H-2), 3.98 (dd, 1 H, $J_{8,9} = 9.5$ Hz, H-8), 3.28 (s, 3 H, CH₃). MALDI-TOF MS (1560.03): m/z 1582.8 (M + Na), 1599.0 (M + K). Anal. Calcd for C₁₀₀H₁₀₆IO₁₄Si: C, 76.99; H, 6.85. Found: C, 76.81; H, 6.98.

Trisaccharide 25. A solution of 24 (624 mg, 0.40 mmol) and n-Bu₄NF·3H₂O (310 mg, 1.20 mmol) in distilled THF (16 mL) was refluxed for 2 h, then cooled to rt, diluted with 1 M phosphate buffer at pH 7 (20 mL), and extracted with Et₂O (2 \times 80 mL). The combined organic layers were dried (Na₂SO₄) and concentrated. The residue was eluted from a column of silica gel with cyclohexane–AcOEt (from 3:1 to 1:1.5) to give the corresponding alcohol (510 mg) as the pure Z,Z-isomer. $[\alpha]_{D} = +11.3$ (c 0.9, CHCl₃). ¹H NMR (300 MHz) selected data: δ 5.90 (dd, 1 H, J = 8.5, 11.3 Hz), 5.88 (dd, 1 H, J = 9.0, 12.0 Hz), 5.73 (dd, J = 7.6, 11.3 Hz), 5.72 (dd, 1 H, J = 7.8, 12.0 Hz), 3.33 (s, 3 H, CH₃). To a vigorously stirred solution of the alcohol, triphenylphosphine (203 mg, 0.78 mmol), and imidazole (106 mg, 1.55 mmol) in anhydrous toluene (8 mL) was added iodine (197 mg, 0.78 mmol). The mixture was refluxed for 1 h, then cooled to rt, filtered through a pad of Celite, and concentrated. A solution of the residue in CH₂Cl₂ (100 mL) was washed with 5% aqueous $Na_2S_2O_3$ (2 \times 30 mL), dried (Na₂SO₄), and concentrated. Column chromatography of the residue (2:1 CH₂Cl₂-cyclohexane, and then 6:1 cyclohexane-AcOEt) gave the corresponding iodide (510 mg). ¹H NMR (300 MHz) selected data: δ 5.88 (dd, 2 H, J = 8.9, 11.0 Hz), 5.73 (dd, 1 H, J = 7.4, 11.0 Hz), 5.69 (dd, 1 H, J = 7.3, 11.0 Hz), 3.33 (s, 3 H, CH₃). A mixture of iodide and triphenylphosphine (0.94 g, 3.57 mmol) was stirred at 120 °C under a nitrogen atmosphere for 4 h, and then cooled to room temperature. The solid was triturated at rt with 4:1 cyclohexane-Et₂O (20 mL), and then cooled to 0 °C. After 15 min the solution was removed, and the formed syrup was dried under a vacuum to give 25 (557 mg, 82%) as an amorphous solid slightly contaminated by triphenylphosphine. ¹H NMR (300 MHz) selected data: δ 5.91 (dd, 1 H, J = 8.8, 11.5 Hz), 5.75 (dd, 1 H, J = 9.0, 11.3 Hz), 5.73 (dd, 1 H, J = 7.6, 11.5 Hz), 5.02 (dd, 1 H, J = 8.5, 11.3 Hz), 3.29 (s, 3 H, CH₃). ³¹P NMR (121 MHz): δ 24.7.

Tetrasaccharide 26. The aldehyde **7** (273 mg, 0.39 mmol) was treated with **25** (508 mg, 0.30 mmol) as described for the preparation of **22** to give **26** (554 mg, 93%) as a syrup. $[\alpha]_D = -11.3$ (*c* 1.2, CHCl₃). ¹H NMR (300 MHz) selected data: δ 5.83 (dd, 1 H, J = 9.0, 11.6 Hz), 5.81–5.66 (4 dd, 4 H, 2 CH=CH), 5.63 (dd, 1 H, J = 7.5, 11.4 Hz), 3.21 (s, 3 H, CH₃). MALDI-TOF MS (1988.56): *m*/*z* 2012.3 (M + Na), 2027.6 (M + K). Anal. Calcd for C₁₂₈H₁₃₄O₁₈Si: C, 77.31; H, 6.79. Found: C, 77.40; H, 6.88.

Tetrasaccharide 27. The tetrasaccharide **26** (398 mg, 0.20 mmol) was treated as described for the preparation of **25** to give **27** (322 mg, 76%) slightly contaminated by triphenylphosphine. ¹H NMR (300 MHz) selected data: δ 6.00 (dd, 1 H, *J* = 9.0, 12.0 Hz), 3.24 (s, 3 H, CH₃). ³¹P NMR (121 MHz): δ 24.4.

Pentasaccharide 28. To a cooled (-20 °C), stirred mixture of aldehyde 7 (91 mg, 0.13 mmol), iodide 27 (212 mg, 0.10 mmol), activated 4 Å powdered molecular sieves (130 mg), anhydrous THF (3 mL), and anhydrous HMPA (1 mL) was added a solution of n-BuLi (63 µL, 0.10 mmol, of a 1.6 M solution in hexane) in anhydrous THF (0.3 mL) by a syringepump apparatus over 4 h. After that period the reaction mixture was diluted with Et₂O (100 mL), filtered through a pad of Celite, washed with 1 M phosphate buffer at pH 7 (20 mL), dried (Na₂SO₄), and concentrated. The residue was eluted from a column of silica gel with 9:1 cyclohexane-AcOEt to give **28** (222 mg, 92%) as a syrup. $[\alpha]_D = -21.1$ (*c* 1.1, CHCl₃). ¹H NMR (300 MHz) selected data: δ 5.82 (dd, 2 H, J = 8.8, 11.5 Hz), 5.75-5.61 (6 dd, 6 H, 3 CH=CH), 5.10 and 4.67 (2 d, 2 H, J = 11.5 Hz, PhCH₂), 3.19 (s, 3 H, CH₃), 1.04 (s, 9 H, t-Bu). MALDI-TOF MS (2417.10): m/z 2439.8 (M + Na), 2456.2 (M + K). Anal. Calcd for C₁₅₆H₁₆₂O₂₂Si: C, 77.52; H, 6.76. Found: C, 77.76; H, 6.83.

Methyl 2,3,4,9,10,11,13-Hepta-O-acetyl-8,12-anhydro-6,7-dideoxy-α-D-glycero-L-manno-D-galacto-trideco-1,5pyranoside (29Ac). The disaccharide 22 (90 mg, 0.08 mmol) was desilylated, hydrogenated, and acetylated as described for the preparation of 15Ac to give, after column chromatography (1:1 AcOEt-cyclohexane), **29Ac** (43 mg, 82%) as a syrup. $[\alpha]_D$ $= +58.5 (c 1.1, CHCl_3)$. ¹H NMR (C₆D₆, 300 MHz): δ 5.72 (dd, 1 H, $J_{2,3} = 10.8$, $J_{3,4} = 3.3$ Hz, H-3), 5.54 (dd, 1 H, $J_{1,2} = 3.7$ Hz, H-2), 5.53 (dd, 1 H, $J_{4,5} = 1.0$ Hz, H-4), 5.50 (dd, 1 H, $J_{10,11}$ = 3.3, $J_{11,12}$ = 1.2 Hz, H-11), 5.42 (dd, 1 H, $J_{8,9}$ = 9.6, $J_{9,10}$ = 10.2 Hz, H-9), 5.12 (dd, 1 H, H-10), 5.09 (d, 1 H, H-1), 4.08 (d, 2 H, $J_{12,13} = 6.7$ Hz, 2 H-13), 3.61 (ddd, 1 H, $J_{5,6a} = 4.5$, $J_{5,6b} =$ 8.3 Hz, H-5), 3.32 (dt, 1 H, H-12), 3.13 (ddd, 1 H, J_{7a,8} = 2.5, $J_{7b.8} = 7.8$ Hz, H-8), 3.00 (s, 3 H, OCH₃), 1.73, 1.71, 1.69, 1.64, and 1.59 (5 s, 21 H, 7 Ac). Anal. Calcd for $C_{28}H_{40}O_{17}$ (648.63): C, 51.85; H, 6.22. Found: C, 51.60; H, 6.41.

Trisaccharide 30Ac. The trisaccharide **24** (109 mg, 0.07 mmol) was desilylated, hydrogenated, and acetylated as described for the preparation of **15Ac** to give, after column chromatography (2:1 AcOEt-cyclohexane), **30Ac** (52 mg, 80%) as a syrup. [α]_D = +15.5 (*c* 0.7, CHCl₃). ¹H NMR (300 MHz) selected data: δ 5.42 (dd, 1 H, *J* = 0.8, 3.0 Hz), 5.31 (dd, 2 H, *J* = 0.7, 3.2 Hz), 3.40 (s, 3 H, OCH₃). MALDI-TOF MS (934.91): *m*/*z* 958.2 (M + Na), 973.9 (M + K). Anal. Calcd for C₄₁H₅₈O₂₄: C, 52.67; H, 6.25. Found: C, 52.58; H, 6.32.

Tetrasaccharide 31Ac. A solution of **26** (100 mg, 0.05 mmol) and *n*-Bu₄NF·3H₂O (47 mg, 0.15 mmol) in distilled THF (5 mL) was refluxed for 2 h, then cooled to rt, diluted with 1 M phosphate buffer at pH 7 (10 mL), and extracted with Et₂O (2 \times 50 mL). The combined organic layers were dried (Na₂SO₄) and concentrated. The residue was eluted from a column of silica gel with cyclohexane–AcOEt (from 3:1 to 2:1) to give the corresponding alcohol. A vigorously stirred mixture of this alcohol, 10% palladium on carbon (80 mg), and 1:1 CH₃-OH–AcOEt (5 mL) was degassed under a vacuum and saturated with hydrogen (by a H₂-filled balloon) three times. The suspension was stirred at rt for 6 h under a positive pressure of hydrogen (7 bar), then filtered through a plug of

cotton, washed with distilled DMF, and concentrated to give 31. A solution of crude 31 in pyridine (2 mL) and acetic anhydride (2 mL) was kept at rt for 8 h, and then concentrated. The residue was eluted from a column of silica gel with 2:1 AcOEt-cyclohexane to give **31Ac** (55 mg, 90%) as an amorphous solid. $[\alpha]_D = +39.9$ (c 1.0, CHCl₃). ¹H NMR (300 MHz) selected data: δ 5.41 (dd, 1 H, J = 0.6, 3.0 Hz), 3.38 (s, 3 H, OCH₃). MALDI-TOF MS (1221.20): m/z 1244.6 (M + Na), 1260.2 (M + K). Anal. Calcd for C₅₄H₇₆O₃₁: C, 53.11; H, 6.27. Found: C, 53.22; H, 6.30.

Pentasaccharide 32Ac. The pentasaccharide 28 (48 mg, 0.20 mmol) was desilylated, hydrogenated, and acetylated as described for the preparation of **31Ac**. The crude product was eluted from a column of silica gel with AcOEt-cyclohexane (from 2:1 to 4:1) to give 32Ac (26 mg, 86%) as an amorphous solid. $[\alpha]_D = +32.8$ (c 0.6, CHCl₃). ¹H NMR (500 MHz): δ 5.40 (dd, 1 H, $J_{3,4} = 3.5$, $J_{4,5} = 1.1$ Hz, H-4E), 5.34 (dd, 1 H, $J_{3,4} =$ 3.5, $J_{4,5} = 0.7$ Hz, H-4A), 5.31 (dd, 1 H, $J_{2,3} = 10.8$ Hz, H-3A), 5.28 (dd, 3 H, $J_{3,4} = 3.5$, $J_{4,5} = 0.7$ Hz, H-4B, H-4C, H-4D), 5.13 (dd, 1 H, $J_{1,2} = 3.7$, $J_{2,3} = 10.6$ Hz, H-2A), 5.06, 5.04, and 5.03 (3 dd, 4 H, $J_{1,2} = 9.3$, $J_{2,3} = 10.3$ Hz, H-2B, H-2C, H-2D, H-2E), 4.99 (dd, 1 H, H-3E), 4.96, 4.95, and 4.94 (3 dd, 3 H, H-3B, H-3C, H-3D), 4.96 (d, 1 H, H-1A), 4.11 (dd, 1 H, J_{5,6a} = 6.8, $J_{6a,6b} = 11.4$ Hz, H-6aE), 4.06 (dd, 1 H, $J_{5,6b} = 6.5$ Hz, H-6bE), 3.91 (ddd, 1 H, J_{5,6a} = 6.0, J_{5,6b} = 8.0 Hz, H-5A), 3.84 (ddd, 1 H, $J_{5,6a} = J_{5,6b} = 6.5$ Hz, H-5E), 3.52-3.48 (m, 3 H, H-5B, H-5C, H-5D), 3.38 (s, 3 H, OCH₃), 3.38 (ddd, 1 H, J= 2.0, 8.2, 9.3 Hz, H-1E), 3.32 and 3.30 (2 ddd, 3 H, J = 2.0, 8.2, 9.3 Hz, H-1B, H-1C, H-1D), 2.18-1.96 (9 s, 48 H, 16 Ac), 1.72-1.58 and 1.48-1.40 (2 m, 16 H, 4 CH₂CH₂). MALDI-TOF MS (1507.49): m/z 1530.9 (M + Na), 1547.4 (M + K). Anal. Calcd for C₆₇H₉₄O₃₈: C, 53.38; H, 6.28. Found: C, 53.44; H, 6.35.

2-(2,3,4,6-Tetra-O-benzyl-β-D-glucopyranosyl)benzothiazole (34). To a cooled (-65 °C), stirred solution of *n*-BuLi (22.1 mL, 35.35 mmol, of a 1.6 M solution in hexane) in anhydrous Et₂O (80 mL) was added dropwise a solution of freshly distilled 2-benzothiazole (4.78 g, 35.35 mmol) in anhydrous Et₂O (40 mL) over a 30 min period. The yellow solution was stirred at -65 °C for 30 min, and then a solution of gluconolactone 33 (13.60 g, 25.25 mmol) in anhydrous Et₂O (80 mL) was added slowly (30 min). After an additional 1 h at -65 °C the mixture was allowed to warm to -50 °C in 30 min, then diluted with Et_2O (200 mL), and poured into 200 mL of a 1 M phosphate buffer at pH 7. The layers were separated, and the organic phase was filtered to collect the benzothiazolylketose which crystallized during the extraction. The white solid was washed with H₂O and Et₂O (10 mL) and dried to give pure 2,3,4,6-tetra-O-benzyl-1-C-(2-benzothiazolyl)-a-Dglucopyranose (9.87 g, 58%). The combined organic layers were dried (Na₂SO₄) and concentrated. The residue was eluted from a column of silica gel with cyclohexane-AcOEt (from 4:1 to 3:1) to give the benzothiazolylketose (3.40 g, 20%) as a white solid. Mp 115–117 °C (Et₂O). $[\alpha]_D = -19.7$ (*c* 0.4, CHCl₃). ¹H NMR (300 MHz): δ 8.16-8.05 and 7.92-7.86 (2 m, 2 H, BTh), 7.60-6.95 (m, 22 H, 4 Ph, BTh), 4.94 (s, 2 H, PhCH₂), 4.71 (s, 1 H, OH), 4.89 and 4.67 (2 d, 2 H, J = 11.0 Hz, PhCH₂), 4.66 and 4.54 (2 d, 2 H, J = 12.5 Hz, PhCH₂), 4.61 and 4.31 (2 d, 2 H, J = 11.0 Hz, PhCH₂), 4.21 (ddd, 1 H, $J_{4,5} = 1.8$, $J_{5,6a} = 11.0$, $J_{5,6b} = 4.0$ Hz, H-5), 4.07 (dd, 1 H, $J_{2,3} = 10.5$, $J_{3,4} = 8.0$ Hz, H-3), 4.03 (d, 1 H, H-2), 3.86 (dd, 1 H, H-4), 3.83 (dd, 1 H, $J_{6a,6b} = 11.5$ Hz, H-6a), 3.66 (dd, 1 H, H-6b). Anal. Calcd for C41H39NO6S (673.83): C, 73.08; H, 5.83; N, 2.08. Found: C, 73.01; H, 5.90; N, 2.01. To a solution of the benzothiazolylketose (5.60 g, 8.31 mmol) in anhydrous CH₂Cl₂ (50 mL) were added at rt distilled triethylamine (15 mL) and acetic anhydride (15 mL). The solution was kept at rt for 24 h, and then concentrated. The residue was triturated with Et_2O (2 \times 20 mL) to give pure 1-O-acetyl-2,3,4,6-tetra-O-benzyl-1-C-(2benzothiazolyl)-a-D-glucopyranose (5.23 g, 88%). Mp 136-137 °C (cyclohexane). $[\alpha]_D = +27.0$ (c 1.1, CHCl₃). ¹H NMR (300 MHz): δ 8.11-8.05 and 7.92-7.86 (2 m, 2 H, BTh), 7.55-7.00 (m, 22 H, 4 Ph, BTh), 4.99 and 4.93 (2 d, 2 H, J = 11.0 Hz, PhC H_2), 4.90 and 4.68 (2 d, 2 H, J = 10.5 Hz, PhC H_2), 4.78 and 4.65 (2 d, 2 H, J = 12.0 Hz, PhCH₂), 4.51 and 4.28 (2 d, 2 H, J = 11.0 Hz, PhCH₂), 4.22 (dd, 1 H, $J_{2,3} = J_{3,4} = 9.5$ Hz,

H-3), 4.11 (dd, 1 H, $J_{4,5} = 9.0$ Hz, H-4), 3.92 (dd, 1 H, $J_{5,6a} =$ 3.2, J_{6a,6b}= 11.8 Hz, H-6a), 3.87-3.78 (m, 2 H, H-5, H-6b), 3.68 (d, 1 H, H-2), 2.25 (s, 3 H, Ac). Anal. Calcd for C43H41NO7S (715.87): C, 72.15; H, 5.77; N, 1.96. Found: C, 72.24; H, 5.71; N, 1.91. To a stirred mixture of acetate (5.73 g, 8.00 mmol), activated 4 Å powdered molecular sieves (8.0 g), and triethylsilane (12.8 mL, 80.0 mmol) in anhydrous CH₂Cl₂ (65 mL) was added TMSOTf (2.17 mL, 12.00 mmol). The mixture was stirred at rt for 1.5 h, then diluted with triethylamine (3 mL) and CH₂Cl₂ (100 mL), and filtered through Celite. The solution was washed with H₂O (30 mL), dried (Na₂SO₄), and concentrated to afford a ca. 1.5:1 mixture of **34** and its α -anomer. The residue was triturated with cyclohexane (2 \times 20 mL) to give pure 34 (3.16 g, 60%) as a white solid. The mother liquor was concentrated, and the residue was treated with a 0.2 M solution of CH₃ONa in CH₃OH (50 mL). After 24 h at rt the reaction mixture was neutralized with acetic acid, concentrated, diluted with CH_2Cl_2 (100 mL), washed with H_2O (20 mL), dried (Na₂SO₄), and concentrated. The residue was triturated with cyclohexane (2 \times 10 mL) to give 34 (1.05 g, 20%) as a white solid. Mp 137–139 °C. $[\alpha]_D = -10.6$ (c 0.8, CHCl₃). ¹H NMR (300 MHz): δ 8.06–8.03 and 7.98–7.95 (2 m, 2 H, BTh), 7.58-7.00 (m, 22 H, 4 Ph, BTh), 4.98 and 4.92 (2 d, 2 H, J = 11.0 Hz, PhCH₂), 4.88 and 4.65 (2 d, 2 H, J =10.8 Hz, PhCH₂), 4.79 (d, 1 H, $J_{1,2} = 9.2$ Hz, H-1), 4.67 and 4.59 (2 d, 2 H, J = 12.2 Hz, PhCH₂), 4.56 and 4.26 (2 d, 2 H, J = 10.5 Hz, PhCH₂), 3.94–3.76 (m, 5 H), 3.70 (ddd, 1 H, $J_{4,5}$ = 10.5, $J_{5,6a} = J_{5,6b} = 3.2$ Hz, H-5). Anal. Calcd for $C_{41}H_{39}$ -NO₅S (657.83): C, 74.86; H, 5.98; N, 2.13. Found: C, 74.92; H, 5.95; N, 2.08.

2-(2,3,4-Tri-O-benzyl-6-O-tert-butyldiphenylsilyl-β-Dglucopyranosyl)benzothiazole (35). To a solution of 34 (4.60 g, 7.00 mmol) in acetic anhydride (50 mL) was added a solution of 96% H₂SO₄ (0.7 mL) in acetic acid (24 mL). The reaction mixture was kept at rt for 1.5 h, then diluted with AcOEt (300 mL), washed with H_2O (3 \times 100 mL) and saturated aqueous Na₂CO₃ (2×100 mL), dried (Na₂SO₄), and concentrated. The crude 6-O-acetylated derivative was treated with a freshly prepared ~0.1 M solution of CH₃ONa in CH₃OH (50 mL) at rt for 3 h, then neutralized with acetic acid, and concentrated. The residue was eluted from a column of silica gel with 2.5:1 cyclohexane-AcOEt to give 2-(2,3,4-tri-O-benzyl- β -D-glucopyranosyl)benzothiazole (2.94 g) as a white solid. Mp 131–132 °C (Et₂O). $[\alpha]_D = -23.4$ (*c* 0.7, CHCl₃). ¹H NMR (300 MHz): δ 8.13–8.07 and 7.94–7.88 (2 m, 2 H, BTh), 7.65–6.90 (m, 17 H, 3 Ph, BTh), 5.00 and 4.94 (2 d, 2 H, J = 10.5 Hz, PhCH₂), 4.83-4.77 (m, 1 H, H-1), 4.88 and 4.73 (2 d, 2 H, J= 10.5 Hz, PhCH₂), 4.59 and 4.27 (2 d, 2 H, J = 11.0 Hz, PhCH₂), 3.98-3.72 (m, 5 H), 3.61 (ddd, 1 H, $J_{4,5} = 10.0$, $J_{5,6a} = 2.5$, $J_{5,6b} = 1.5$ Hz, H-5). Anal. Calcd for $C_{34}H_{33}NO_5S$ (567.71): C, 71.93; H, 5.86; N, 2.47. Found: C, 72.02; H, 5.80; N, 2.36. To a stirred solution of this alcohol in pyridine (50 mL) was added tert-butylchlorodiphenylsilane (2.02 mL, 7.77 mmol). Stirring was continued for an additional 16 h, and then the reaction mixture was diluted with CH₃OH (2 mL) and concentrated. A solution of the residue in CH_2Cl_2 (200 mL) was washed with 1 M phosphate buffer at pH 7 (50 mL), dried (Na₂SO₄), and concentrated. The residue was triturated with CH₃CN (2 \times 10 mL) to give **35** (3.00 g, 53% from **34**) as a white solid. The mother liquor was concentrated and eluted from a column of silica gel with 10:1 cyclohexane-AcOEt (containing 0.3% triethylamine) to give $\mathbf{35}$ (0.67 g, 12% from $\mathbf{34}$) as a white solid. Mp 125–126 °C (cyclohexane). $[\alpha]_D = +32.6$ (c 0.9, CHCl₃). ¹H NMR (300 MHz): δ 8.13–8.07 and 7.94–7.88 (2 m, 2 H, BTh), 7.85-7.00 (m, 27 H, 5 Ph, BTh), 4.99 and 4.82 (2 d, 2 H, J = 11.0 Hz, PhCH₂), 4.98 and 4.94 (2 d, 2 H, J = 11.0 Hz, PhCH₂), 4.83 (d, 1 H, $J_{1,2} = 9.5$ Hz, H-1), 4.59 and 4.24 (2 d, 2 H, J = 10.5 Hz, PhCH₂), 4.07 (dd, 1 H, $J_{3,4} = 9.3$, $J_{4,5} = 9.5$ Hz, H-4), 4.04 (dd, 1 H, $J_{5,6a} = 2.8$, $J_{6a,6b} = 11.5$ Hz, H-6a), 3.99 (dd, 1 H, $J_{5,6b} = 2.0$ Hz, H-6b), 3.92 (dd, 1 H, $J_{2,3} = 9.0$ Hz, H-3), 3.81 (dd, 1 H, H-2), 3.57 (ddd, 1 H, H-5), 1.11 (s, 9 H, t-Bu). Anal. Calcd for C₅₀H₅₁NO₅SSi (806.11): C, 74.50; H, 6.38; N, 1.74. Found: C, 74.46; H, 6.57; N, 1.86. **2,6-Anhydro-3,4,5-tri-***O***-benzyl-***7-O***-tert-butyldiphenyl**-

silyl-aldehydo-D-glycero-D-gulo-heptopyranose (36). Ben-

zothiazolyl *C*-glucoside **35** (2.42 g, 3.00 mmol) was treated as described for the preparation of **7**. After a similar workup the residue was eluted from a short column (3×10 cm, diameter \times height) of silica gel with 5:1 cyclohexane–AcOEt to afford syrupy **36** (1.94 g, 92%) ca. 95% pure by ¹H NMR analysis. ¹H NMR (300 MHz): δ 9.62 (d, 1 H, $J_{1,2} = 1.5$ Hz, H-1), 7.55–7.15 (m, 25 H, 5 Ph), 4.95 (s, 2 H, PhCH₂), 4.94 and 4.81 (2 d, 2 H, J = 11.0 Hz, PhCH₂), 4.86 and 4.70 (2 d, 2 H, J = 10.5 Hz, PhCH₂), 4.02–3.97 (m, 2 H, 2 H-7), 3.89 (dd, 1 H, $J_{3,4} = 8.2$, $J_{4,5} = 9.0$ Hz, H-4), 3.83 (dd, 1 H, $J_{2,3} = 10.0$ Hz, H-2), 3.81 (dd, 1 H, $J_{5,6} = 9.5$ Hz, H-5), 3.70 (dd, 1 H, H-3), 3.42 (ddd, 1 H, $J_{6,7a} = J_{6,7b} = 2.0$ Hz, H-6), 1.11 (s, 9 H, *t*-Bu).

Methyl 8,12-Anhydro-2,3,4,9,10,11-hexa-O-benzyl-13-Otert-butyldiphenylsilyl-6,7-dideoxy-a-D-glycero-D-gulo-Dgluco-tridec-6-(Z,E)-eno-1,5-pyranoside (37). The aldehyde 36 (1.05 g, 1.50 mmol) was treated with 21 (0.84 g, 1.00 mmol) as described for the preparation of 22 to give, after column chromatography on silica gel (10:1 cyclohexane-AcOEt), syrupy **37** as a ca. 7:1 mixture of *Z*,*E*-isomers (0.95 g, 84%). Analytical samples of (Z)-37 and (E)-37 were obtained by column chromatography on silica gel (15:1 cyclohexane-AcOEt). Eluted first was (Z)-37. $[\alpha]_{D} = +0.7$ (c 1.5, CHCl₃). ¹H NMR (C₆D₆, 300 MHz): δ 8.05–6.95 (m, 40 H, 8 Ph), 5.80 (dd, 1 H, $J_{5,6} = 7.0$, $J_{6,7} = 11.0$ Hz, H-6), 5.72 (dd, 1 H, $J_{7,8} =$ 7.2 Hz, H-7), 5.11 and 4.95 (2 d, 2 H, J = 11.5 Hz, PhCH₂), 5.01 and 4.82 (2 d, 2 H, J = 11.5 Hz, PhCH₂), 4.94 (s, 2 H, PhC H_2), 4.80 (dd, 1 H, $J_{4,5} = 10.0$ Hz, H-5), 4.78 and 4.71 (2 d, 2 H, J = 11.0 Hz, PhCH₂), 4.75 and 4.64 (2 d, 2 H, J = 11.5Hz, PhC H_2), 4.68 (d, 1 H, $J_{1,2} = 3.5$ Hz, H-1), 4.56 and 4.48 (2 d, 2 H, *J* = 12.0 Hz, PhC*H*₂), 4.50 (dd, 1 H, *J*_{8,9} = 9.0 Hz, H-8), 4.27 (dd, 1 H, $J_{2,3} = 9.8$, $J_{3,4} = 8.8$ Hz, H-3), 4.04 (dd, 1 H, $J_{10,11} = J_{11,12} = 9.5$ Hz, H-11), 4.03 (dd, 1 H, $J_{12,13a} = 1.0$, $J_{13a,13b}$ = 12.0 Hz, H-13a), 3.92 (dd, 1 H, $J_{12,13b}$ = 1.5 Hz, H-13b), 3.71 (dd, 1 H, J_{9,10} = 9.5 Hz, H-10), 3.57 (dd, 1 H, H-2), 3.47 (dd, 1 H, H-9), 3.41 (dd, 1 H, H-4), 3.20 (ddd, 1 H, H-12), 3.13 (s, 3 H, OCH₃), 1.20 (s, 9 H, t-Bu). Anal. Calcd for C₇₂H₇₈O₁₀Si (1131.50): C, 76.43; H, 6.95. Found: C, 76.61; H, 7.04. Eluted second was (*E*)-**37**. $[\alpha]_D = +5.0$ (*c* 1.5, CHCl₃). ¹H NMR (C₆D₆, 300 MHz) selected data: δ 6.32 (dd, 1 H, $J_{6,7} = 15.5$, $J_{7,8} = 5.5$ Hz, H-7), 6.24 (dd, 1 H, $J_{5,6} = 4.5$ Hz, H-6), 4.69 (d, 1 H, $J_{1,2} =$ 3.5 Hz, H-1), 4.43 (dd, 1 H, $J_{8,9} = 9.3$ Hz, H-8), 4.30 (dd, 1 H, $J_{2,3} = 9.5, J_{3,4} = 9.2$ Hz, H-3), 4.04 (d, 2 H, $J_{12,13} = 2.0$ Hz, 2 H-13), 3.97 (dd, 1 H, $J_{10,11} = 8.7$, $J_{11,12} = 9.0$ Hz, H-11), 3.80 (dd, 1 H, $J_{4,5} = 9.2$ Hz, H-5), 3.69 (dd, 1 H, $J_{9,10} = 9.3$ Hz, H-10), 3.62 (dd, 1 H, H-2), 3.42 (dd, 1 H, H-4), 3.37 (dd, 1 H, H-9), 3.28 (dt, 1 H, H-12), 3.18 (s, 3 H, OCH₃), 1.20 (s, 9 H, *t*-Bu). MALDI-TOF MS (1131.50): *m*/*z*1154.5 (M + Na), 1170.6 (M + K). Anal. Calcd for C₇₂H₇₈O₁₀Si: C, 76.43; H, 6.95. Found: C, 76.68; H, 7.06.

(Methyl 8,12-anhydro-2,3,4,9,10,11-hexa-O-benzyl-6,7,-13-trideoxy-α-D-glycero-D-gulo-D-gluco-tridec-6-(Z,Ě)-eno-1,5-pyranosid-13-yl)triphenylphosphonium Iodide (38). A solution of 37 (905 mg, 0.80 mmol) and *n*-Bu₄NF 3H₂O (757 mg, 2.40 mmol) in distilled THF (16 mL) was refluxed for 2 h, then cooled to rt, diluted with 1 M phosphate buffer at pH 7 (30 mL), and extracted with Et₂O (2×100 mL). The combined organic layers were dried (Na₂SO₄) and concentrated. The residue was eluted from a column of silica gel with 2:1 cyclohexane-AcOEt to give methyl 8,12-anhydro-2,3,4,9,10,-11-hexa-O-benzyl-6,7-dideoxy-a-D-glycero-D-gulo-D-gluco-tridec-6-(Z,E)-eno-1,5-pyranoside (543 mg). ¹H NMR (300 MHz) selected data for the *Z*-isomer: δ 5.79 (dd, 1 H, $J_{5,6} = 6.5$, $J_{6,7}$ = 11.5 Hz, H-6), 5.61 (dd, 1 H, $J_{7,8} = 8.5$ Hz, H-7), 4.54 (d, 1 H, $J_{1,2} = 3.5$ Hz, H-1), 4.16 (dd, 1 H, $J_{4,5} = 9.5$ Hz, H-5), 3.41 (s, 3 H, CH₃), 2.54 (dd, 1 H, $J_{13a,OH} = J_{13b,OH} = 6.9$ Hz, OH). MALDI-TOF MS (893.10): m/z 915.5 (M + Na), 931.6 (M + K). To a vigorously stirred solution of the alcohol, triphenylphosphine (320 mg, 1.22 mmol), and imidazole (166 mg, 2.43 mmol) in anhydrous toluene (12 mL) was added iodine (310 mg, 1.22 mmol). The mixture was refluxed for 1 h, then cooled to rt, filtered through a pad of Celite, and concentrated. A solution of the residue in CH₂Cl₂ (100 mL) was washed with 5% aqueous $Na_2S_2O_3$ (2 $\,\times\,$ 30 mL), dried (Na_2SO_4), and concentrated. The residue was eluted from a column of silica gel with CH₂Cl₂-cyclohexane (from 2:1 to 10:1) to give methyl 8,12-anhydro-2,3,4,9,10,11-hexa-O-benzyl-6,7,13-trideoxy-13iodo-α-D-glycero-D-gulo-D-gluco-tridec-6-(Z,E)-eno-1,5-pyranoside (537 mg). ¹H NMR (300 MHz) selected data for the Z-isomer: δ 5.72–5.67 (m, 2 H, H-6, H-7), 4.56 (d, 1 H, $J_{1,2}$ = 3.5 Hz, H-1), 4.01 (dd, 1 H, $J_{2,3} = 10.0$, $J_{3,4} = 8.5$ Hz, H-3), 3.53 (dd, 1 H, H-2), 3.43 (s, 3 H, CH₃). MALDI-TOF MS (1002.99): m/z 1026.9 (M + Na), 1043.1 (M + K). A mixture of iodide and triphenylphosphine (1.40 g, 53.50 mmol) was stirred at 120 °C under a nitrogen atmosphere for 4 h, cooled to rt, triturated with toluene (10 mL) and then $Et_2O~(3\times10$ mL), and dried to give 38 (570 mg, 56%) as a white solid. ¹H NMR (300 MHz) selected data for the Z-isomer: δ 5.47 (dd, 1 H, J_{5,6} = 5.0, J_{6,7} = 11.5 Hz, H-6), 5.12 (dd, 1 H, J_{7,8} = 5.5 Hz, H-7), 4.57 (d, 1 H, $J_{1,2} = 3.5$ Hz, H-1), 3.86 (dd, 1 H, $J_{2,3} = 9.5$, $J_{3,4} = 9.0$ Hz, H-3), 3.45 (dd, 1 H, H-2), 3.17 (dd, 1 H, $J_{4,5} =$ 10.0 Hz, H-4), 3.10 (s, 3 H, CH₃). Anal. Calcd for C₇₄H₇₄IO₉P (1265.28): C, 70.25; H, 5.90. Found: C, 70.51; H, 6.04.

Trisaccharide 39. The aldehyde **36** (182 mg, 0.26 mmol) was treated with **38** (253 mg, 0.20 mmol) as described for the preparation of **22** to give, after column chromatography on silica gel (6:1 cyclohexane–AcOEt), syrupy **39** as a ca. 1.5:1 mixture of *Z*,*E*-isomers (219 mg, 70%). ¹H NMR (300 MHz) selected data for the 6*Z*,13*Z*-isomer: δ 5.85 (dd, 1 H, *J*_{5,6} = 5.0, *J*_{6,7} = 11.0 Hz, H-6), 5.79 (dd, 1 H, *J*_{7,8} = 4.5 Hz, H-7), 5.78–5.71 (m, 2 H, H-13, H-14), 3.35 (s, 3 H, OCH₃), 1.23 (s, 9 H, *t*-Bu). ¹H NMR (300 MHz) selected data for the 6*Z*,13*E*-isomer: δ 6.31 (dd, 1 H, *J*_{5,6} = 5.0, *J*_{6,7} = 11.0 Hz, the form t

Trisaccharide 40. The trisaccharide **39** (780 mg, 0.50 mmol) was treated as described for the preparation of **38**. The crude product was eluted from a column of silica gel with 1:1 CH_2Cl_2 -acetone to give **40** (618 mg, 73%) as an amorphous solid ca. 95% pure by TLC and NMR analysis.

Tetrasaccharide 41. The aldehyde **36** (363 mg, 0.52 mmol) was treated with **40** (677 mg, 0.40 mmol) as described for the preparation of **22** to give, after column chromatography on silica gel (9:1 cyclohexane–AcOEt), **41** as a syrup (596 mg, 75%). MALDI-TOF MS (1988.56): m/z 2012.3 (M + Na), 2027.6 (M + K). Anal. Calcd for C₁₂₈H₁₃₄O₁₈Si: C, 77.31; H, 6.79. Found: C, 77.09; H, 6.90.

Tetrasaccharide 42. The tetrasaccharide **41** (595 mg, 0.30 mmol) was treated as described for the preparation of **38**. The crude product was eluted from a column of silica gel with 1:1 CH_2Cl_2 -acetone to give **42** (396 mg, 62%) as an amorphous solid ca. 95% pure by TLC and NMR analysis.

Pentasaccharide 43. The aldehyde **36** (91 mg, 0.13 mmol) was treated with **42** (212 mg, 0.10 mmol) as described for the preparation of **28** to give, after column chromatography on silica gel (9:1 cyclohexane–AcOEt), **43** as a syrup (180 mg, 75%). MALDI-TOF MS (2417.10): m/z 2439.8 (M + Na), 2455.6 (M + K). Anal. Calcd for C₁₅₆H₁₆₂O₂₂Si: C, 77.52; H, 6.76. Found: C, 77.79; H, 6.88.

Methyl 2,3,4,9,10,11,13-Hepta-*O*-acetyl-8,12-anhydro-6,7-dideoxy- α -D-*glycero*-D-*gulo*-D-*gluco*-trideco-1,5-pyranoside (44Ac). The disaccharide 37 (113 mg, 0.10 mmol) was desilylated as described for the preparation of **38** to give, after column chromatography (2:1 cyclohexane–AcOEt), methyl 8,-12-anhydro-2,3,4,9,10,11-hexa-*O*-benzyl-6,7-dideoxy- α -D-*glycero*-D-*gulo*-D-*gluco*-tridec-6-(*Z*,*E*)-eno-1,5-pyranoside. A mixture of this alcohol, 20% palladium hydroxide on carbon (100 mg), and 1:1 CH₃OH–AcOEt (5 mL) was degassed under a vacuum and saturated with hydrogen (by a H₂-filled balloon) three times. The suspension was stirred at rt for 6 h under a positive pressure of hydrogen (7 bar), then filtered through a plug of cotton, washed with CH₃OH and H₂O, and concentrated to give **44**. [α]_D = +56.0 (*c* 0.8, CH₃OH) (lit.^{5a} [α]_D = +61 (*c* 0.6, CH₃OH); lit.²⁷ [α]_D = +88 (*c* 1, CH₃OH)). A solution of **44** and

⁽²⁷⁾ Rouzaud, D.; Sinaÿ, P. J. Chem. Soc., Chem. Commun. 1983, 1353-1354.

4-(dimethylamino)pyridine (5 mg) in pyridine (2 mL) and acetic anhydride (2 mL) was kept at rt for 8 h, and then concentrated. The residue was eluted from a column of silica gel with 1:1 cyclohexane-AcOEt to give 44Ac (57 mg, 88%) as a white solid. Mp 175–176 °C (AcOEt–cyclohexane). $[\alpha]_D = +69.5$ (*c* 0.9, CHCl₃) (lit.²⁷ mp 172 °C). $[\alpha]_D = +55$ (*c* 1, CHCl₃) (lit.^{5m} mp 166–168 °C). $[\alpha]_D = +15.3$ (*c* 0.6, CHCl₃) (lit.^{5h} $[\alpha]_D = +65$ $(c 0.5, \text{CHCl}_3)$; lit.^{5a} $[\alpha]_D = +63 (c 0.7, \text{CHCl}_3)$). ¹H NMR (300 MHz): δ 5.42 (dd, 1 H, $J_{2,3} = J_{3,4} = 9.8$ Hz, H-3), 5.16 (dd, 1 H, $J_{9,10} = J_{10,11} = 9.5$ Hz, H-10), 5.02 (dd, 1 H, $J_{11,12} = 9.7$ Hz, H-11), 4.90–4.79 (m, 4 H), 4.23 (dd, 1 H, $J_{12,13a} = 5.5$, $J_{13a,13b}$ = 12.5 Hz, H-13a), 4.07 (dd, 1 H, $J_{12,13b}$ = 2.0 Hz, H-13b), 3,73 (ddd, 1 H, $J_{4,5} = 9.5$, $J_{5,6a} = 7.0$, $J_{5,6b} = 1.5$ Hz, H-5), 3.61 (ddd, 1 H, H-12), 3.38 (ddd, 1 H, $J_{7a,8} = 10.0$, $J_{7b,8} = 1.0$, $J_{8,9} = 9.0$ Hz, H-8), 3.35 (s, 3 H, OCH₃), 2.10–1.99 (7 s, 21 H, 7 Ac), 1.84– 1.74 and 1.46-1.38 (2 m, 4 H, 2 H-6, 2 H-7). Anal. Calcd for C₂₈H₄₀O₁₇ (648.63): C, 51.85; H, 6.22. Found: C, 51.72; H, 6.20.

Trisaccharide 45Ac. The trisaccharide 39 (78 mg, 0.05 mmol) was desilylated as described for the preparation of 40. A mixture of the resulting alcohol, 20% palladium hydroxide on carbon (70 mg), and 1:1 CH₃OH-AcOEt (5 mL) was degassed under a vacuum and saturated with hydrogen (by a H2-filled balloon) three times. The suspension was stirred at rt for 8 h under a positive pressure of hydrogen (7 bar), then filtered through a plug of cotton, washed with distilled DMF and H₂O, and concentrated to give 45 as an amorphous solid. $[\alpha]_{D} = +40.5$ (c 0.4, H₂O). A solution of **45** and 4-(dimethylamino)pyridine (5 mg) in pyridine (2 mL) and acetic anhydride (2 mL) was kept at rt for 12 h, and then concentrated. The residue was eluted from a column of silica gel with cyclohexane-AcOEt (from 1:1 to 1:2) to give 45Ac (38 mg, 81%) as a white solid. Mp 168–169 °C (AcOEt–cyclohexane). $[\alpha]_D$ = +37.1 (c 1.1, CHCl₃). ¹H NMR (300 MHz) selected data: δ 5.45 (dd, 1 H, $J_{2,3} = 10.0$, $J_{3,4} = 10.5$ Hz, H-3), 5.06 (dd, 1 H, $J_{17,18} = 9.0, J_{18,19} = 10.5$ Hz, H-18), 4.84 (dd, 1 H, $J_{1,2} = 5.5$ Hz, H-2), 4.24 (dd, 1 H, $J_{19,20a} = 5.0$, $J_{20a,20b} = 12.5$ Hz, H-20a), 4.12 (dd, 1 H, $J_{19,20b} = 2.5$ Hz, H-20b), 3.65 (ddd, 1 H, H-19), 3.37 (s, 3 H, OCH₃), 2.13-1.99 (10 s, 30 H, 10 Ac). MALDI-TOF MS (934.91): *m*/*z* 958.0 (M + Na), 974.4 (M + K). Anal. Calcd for C41H58O24: C, 52.67; H, 6.25. Found: C, 52.79; H, 6.30.

Tetrasaccharide 46Ac. The tetrasaccharide **41** (80 mg, 0.04 mmol) was desilylated and hydrogenated as described for the preparation of **45** to give **46** as an amorphous solid. $[\alpha]_D = +32$ (*c* 0.5, H₂O). A solution of **46** and 4-(dimethylamino)-pyridine (10 mg) in pyridine (2 mL) and acetic anhydride (2

mL) was kept at rt for 12 h, and then concentrated. The residue was eluted from a column of silica gel with 1:1 cyclohexane–AcOEt to give **46Ac** (34 mg, 69%) as a white solid. Mp 86–90 °C (AcOEt–cyclohexane). [α]_D = +30 (c 0.3, CHCl₃). ¹H NMR (300 MHz) selected data: δ 5.45 (dd, 1 H, $J_{2,3} = J_{3,4} = 9.5$ Hz, H-3), 4.22 (dd, 1 H, $J_{26,27a} = 2.5$, $J_{27a,27b} = 12.0$ Hz, H-27a), 4,10 (dd, 1 H, $J_{26,27b} = 5.5$ Hz, H-27b), 3.74–3.71 (m, 1 H, H-5), 3.65 (ddd, 1 H, H-26), 2.13–1.99 (13 s, 39 H, 13 Ac). MALDI-TOF MS (1221.20): m/z 1244.0 (M + Na), 1260.3 (M + K). Anal. Calcd for C₅₄H₇₆O₃₁: C, 53.11; H, 6.27. Found: C, 53.34; H, 6.38.

Pentasaccharide 47Ac. The pentasaccharide 43 (73 mg, 0.03 mmol) was desilylated and hydrogenated as described for the preparation of **45** to give **47** as an amorphous solid. $[\alpha]_D =$ +6.3 (c 0.3, H_2O). A solution of 47 and 4-(dimethylamino)pyridine (5 mg) in pyridine (1 mL) and acetic anhydride (1 mL) was kept at rt for 16 h, and then concentrated. The residue was eluted from a column of silica gel with 2:1 AcOEtcyclohexane to give 47Ac (28 mg, 60%) as a white solid. Mp 196–198 °C (CH₃OH). $[\alpha]_D = +24.4$ (*c* 0.4, CHCl₃). ¹H NMR (500 MHz) selected data: δ 5.43 (dd, 1 H, $J_{2,3} = 9.9$, $J_{3,4} = 9.4$ Hz, H-3A), 5.17 (dd, 1 H, $J_{2,3} = J_{3,4} = 9.4$ Hz, H-3E), 5.11 and 5.10 (2 dd, 3 H, $J_{2,3} = J_{3,4} = 9.4$ Hz, H-3B, H-3C, H-3D), 5.03 (dd, 1 H, $J_{4,5} = 10.1$ Hz, H-4E), 4.89 (d, 1 H, $J_{1,2} = 3.7$ Hz, H-1A), 4.88 (dd, 1 H, $J_{1,2} = 9.9$ Hz, H-2E), 4.87 (dd, 1 H, $J_{4,5}$ = 9.6 Hz, H-4A), 4.86 (dd, 1 H, H-2A), 4.83, 4.82, 4.81, and 4.80 (4 dd, 6 H, J = 9.5, 9.5 Hz, H-2B, H-2C, H-2D, H-4B, H-4C, H-4D), 4.20 (dd, 1 H, $J_{5,6a} = 5.6$, $J_{6a,6b} = 12.2$ Hz, H-6aE), 4.10 (dd, 1 H, $J_{5,6b}$ = 2.3 Hz, H-6bE), 3.71 (ddd, 1 H, $J_{5,6a}$ = 2.0, J_{5.6b} = 8.5 Hz, H-5A), 3.64 (ddd, 1 H, H-5E), 3.37 (s, 3 H, OCH₃), 2.10-1.99 (14 s, 48 H, 16 Ac). MALDI-TOF MS (1507.49): m/z 1530.4 (M + Na), 1547.1 (M + K). Anal. Calcd for C₆₇H₉₄O₃₈: C, 53.38; H, 6.28. Found: C, 53.50; H, 6.33.

Acknowledgment. Generous financial support from MURST-COFIN-2000 (Italy) is gratefully acknowledged. We thank Mr. Paolo Formaglio (University of Ferrara) for assistance in the NMR measurements and Dr. Carla Marchiorro (GlaxoWellcome Medicines Research Laboratory, Verona, Italy) for the 500 MHz NMR experiments. Thanks are due to Dr. M. Kleban and Dr. H. M. Zuurmond for exploratory work on route A, and to Ms. M. Bovolenta for some experiments on route B.

JO011142U