
Lactols in Stereoselection 2. Stereoselective Synthesis of Disubstituted Cyclic Ethers.

Katsuhiko Tomooka, Kenji Matsuzawa, Keisuke Suzuki^{*}, and Gen-ichi Tsuchihashi^{*}

Department of Chemistry, Keio University, Hiyoshi, Yokohama 223, Japan

<u>Summary</u>: Direct reaction of lactols with organometals (Met. = Al, Ti, Zn, Sn) in the presence of Lewis acid provides disubstituted tetrahydrofurans and tetrahydropyrans with high diastereoselectivity.

Lactols exhibit two distinct types of reactivity in the reaction with nucleophiles. One is the behavior as the hydroxy aldehydes (path A), whose usefulness in the remote stereocontrol has been described.¹⁾ Another possible reactivity is the formal substitution of the hydroxyl group at C(1) to give the cyclic ethers (path B). Although a number of related reactions have been reported for the C(1)-activated derivatives (e.g. Cl, OAc, OMe, etc),²⁾ little is known about the direct reaction of lactol itself.³⁾ In the course of our research on the use of lactols in stereoselection, we became interested in the latter reaction conditions to discriminate the two paths (A or B). In this report, we wish to describe the diastereoselective direct introduction of various groups to γ - and δ -lactols leading to 2,5- and 2,6-disubstituted tetrahydrofurans and tetrahydropyrans <u>2</u>.

The clue to modulate the reactivity to the path B lies in the employment of Lewis acid. Combined use of the Lewis acid $(BF_3 \cdot OEt_2 \text{ or TiCl}_4)$ with modestly nucleophilic reagents allows to direct the reaction to the path B. The results are summarized in Table 1. Me₂Zn was inert towards the lactol 1^{1} , but in combination with the Lewis acid it gave the desired product 2 in high yield (Run 1,2,3). When Me₃Al was used as a methylation reagent, coexsistence of Lewis acid dramatically altered the reaction path. Only diol 3 was obtained in the absence of the Lewis acid, while 2 was obtained as the sole product in the presence of BF₃ · OEt₂ (Run 4,5). In the case of MeTiCl₃,⁴) the reaction paths greatly varied with the solvents used (Run 6,7); the tendency can be ascribed to the change in the nucleophilic character by the Lewis basicity of the solvent. In contrast, highly nucleophilic reagents, such as MeMgBr or MeLi, are not suitable for the present reaction, since they only provided complicated reaction mixtures in the presence of BF₃ · OEt₂.

R	<u>2.Nu</u>	wis Acid(2 equiv <u>cleophile(3 equi</u> -78 ^O C → rt.) iPh ₂ t-Bu		⊢ _ ↓	OH Me 3 OH
Run	Nucleophile ^{a)}	Lewis acid ^{a)}	Solvent	Yie	ld (%) ^{b)}
				<u>2</u>	<u>3</u>
1	Me ₂ Zn		CH2C12	0	0 ^{c)}
2	Me ₂ Zn	BF ₃ ·OEt ₂	CH2CI2	82	0
3	Me ₂ Zn	TiCl ₄	снусту	73	10
4	Me ₃ A1		CH2CI2	0	67
5	Me ₃ A1	BF ₃ •OEt ₂	CH2C12	75	0
6	MeTiCl ₃		Et ₂ 0	0	82
7	MeTiCl		CH2C12	41	0
8	MeMgBr		Et ₂ 0	0	73
9	MeMgBr	BF ₃ .OEt ₂	Et ₂ 0	0	0 ^{d)}
10	MeLi	BF3. OEt2	Et ₂ 0	0	0 ^d)

Table 1. Nucleophilic Reaction to Lactol <u>1</u>: Path A vs. Path B.⁵⁾

a) Lactol was treated with Lewis acid followed by nucleophile at -78 ^OC. Temperature was gradually raised to rt. b) Isolated yields. c) Lactol <u>1</u> was recovered quantitatively. d) Complicated reaction mixture. None of <u>1</u>, <u>2</u>, <u>3</u> were observed by TLC.

Further, several organometallic reagents were successfully employed as nucleophiles. Thus, organozinc,⁶⁾ organostannane⁷⁾ reagents gave good results, which are summarized in Table 2. Various groups were introduced to

the C(1) position of lactol $\frac{1}{8}$ to afford the corresponding disubstituted tetrahydrofurans in good yield.⁸

R		1. BF ₃ 2. Nucl	OEt ₂ (2 equiv.) eophile(3 equiv.) t-Bu ^{(-78 °} C→rt.)		$+ \sum_{R=5}^{R'}$	
Run	<u>4,5</u>	R'	Nucleophile	Solvent	Yield (%) ^{a)}	<u>4 / 5</u> b)
1	a	Me	Me ₂ Zn	СН2С12	82	8.1 / 1
2	a	Me	Me ₃ A1	CH2C12	75	10 / 1
3	b	Et	Et ₂ Zn	CH2C12	80	8.6 / 1
4	Ь	Et	Et ₃ A1	CH2C12	61	13 / 1
5	с	CH2=CHCH2-	(CH ₂ =CHCH ₂ -) ₂ SnBr ₂	CH2C12	72 ^{c),d),10}) 12 / 1
6	d	CH2=CH-	(CH ₂ =CH-) ₂ SnBu ₂	CH2C12	66 ^{d)}	47 / 1
7	е	Ph	Ph ₂ Zn	Et ₂ 0	72 ^{d)}	2 / 1

Table 2. Synthesis of 2,5-Disubstituted Tetrahydrofurans. 5),9)

a) Isolated yields. b) Ratios were determined by $HPLC^{11}$ except Run 7. c) The corresponding homoallylic alcohol was obtained (10 % yield) as the byproduct. d) <u>4</u>, <u>5</u> were separable on SiO₂ TLC.

All reactions exhibited a high trans selectivity which is explained by considering the oxonium ion intermediate, where the attack of the nucleophile occurred from the opposite face to the substituent. Interestingly, efficient vinylation of 1 was found to be possible in excellent selectivity by employing $(CH_2=CH_{-})_2SnBu_2^{(7)}$.¹²⁾ Furthermore, the reaction to δ -lactols 6 under similar conditions proceeded in good yield and with excellent trans selectivity (Table 3).⁸⁾

	R	Ĭ,	Synthesis of 2,6- 1.Nucleophile(3 equin 2.BF ₃ ·OEt ₂ (2 equiv.) CH ₂ Ph in CH_2Cl_2	R'		
Run	7,8	<u> </u>	Nucleophile	Temperature ^{a)}	Yield (%) ^{b)}	<u>7 / 8</u> c)
1	a	Me	Me ₂ Zn	0 °C → rt	78	50 / 1
2	Ь	Et	Et ₂ Zn	0 ^o C → rt	82	>100 / 1
3	с	CH2=CHCH2-	(CH ₂ =CHCH ₂ -) ₂ SnBr ₂	-78 ⁰ C → rt	77	70 / 1

a) Temperature was raised to rt during 3 hr. b) Isolated yields. c) Ratios were determined by HPLC.¹¹⁾

The salient feature of the present process lies in the chemoselectivity (path A vs. path B) and in the high diastereoselectivity. Further investigation on the synthetic application of the process is now under way.

References and Notes

- 1) K. Tomooka, T. Okinaga, K. Suzuki, and G. Tsuchihashi, the preceding paper in this issue.
- For recent reports, see: G. H. Posner and S. R. Haines, Tetrahedron Lett., <u>26</u>, 1823 (1985); P. DeShong, G. A. Slough, V. Elango, and G. L. Trainor, J. Am. Chem. Soc., <u>107</u>, 7788 (1985), and references cited therein.
- 3) M. D. Lewis, J. K. Cha, and Y. Kishi, J. Am. Chem. Soc., <u>104</u>, 4976 (1982); C. Brückner, H. Lorey, and H. -U. Reissig, Angew. Chem., Int. Ed. Engl., <u>25</u>, 556 (1986), and references cited therein.
- M. T. Reetz, J. Westermann, and R. Steinbach, Angew. Chem., Int. Ed. Engl., <u>19</u>, 900 (1980).
- 5) All new compounds were fully characterized by ¹H NMR, IR, and high-resolution MS.
- 6) Ph₂Zn: D. Y. Curtin & J. L. Tveten, J. Org. Chem., <u>26</u>, 1764 (1961).
- 7) (CH₂=CH-CH₂-)₂SnBr₂: K. Sisido and Y. Takeda, J. Org. Chem., <u>26</u>, 2301 (1961). (CH₂=CH-)₂SnBu₂: D. Seyferth, Org. Synth. Coll. Vol., <u>4</u>, 258 (1963).
- 8) A typical procedure for the ethylation of 1: To CH_2Cl_2 solution of 1 was added $BF_3 \cdot OEt_2$ (2 equiv.) at -78 °C under an argon atmosphere followed by Et_2Zn (3 equiv. / hexane) and the temperature was gradually raised to rt during 4 hr. Usual extractive workup followed by purification on SiO₂ TLC afforded <u>4b</u> and <u>5b</u> in 80% yield. For the reactions of δ lactols, better results were obtained by reversing the order of the addition (nucleophile followed by BF₃ OEt₂).
- 9) Configuration of each isomer was assigned by the NOE analysis (400MHz NMR spectrum) for the ring protons. The detailed accounts will be described in our forthcoming paper.
- 10) In the absence of the Lewis acid, $(CH_2=CH-CH_2-)_2SnBr_2$ provided only the corresponding diols as a 1 / 1 diastereometric mixture in 85 % yield (via the path A).
- 11) Conditions of HPLC analysis: For <u>4,5</u> <u>a</u>: Develosil ODS-5 (4.6X250, Nomura. Chem. Co.), MeOH / H₂O. For <u>4,5</u> <u>b,c,d</u>, and <u>7,8</u> <u>a,b,c</u>: ZORBAX-SIL (4.6X250, DuPont), hexane / AcOEt.
- 12) It should be noted that the vinylation reaction should be carried out at -78 ^oC for 10 minutes, whose conditions were necessary to suppress the side reactions. Further optimization of the process is currently under investigation.
- 13) Stereochemistry was determined by ¹³C NMR. For the correlation of the stereochemistry with the chemical shifts of C(2), C(6) in 2,6-disubstituted tetrahydropyrans, see: E. L. Eliel. M. Manoharan, K. M. Pietrusiewicz, and K. D. Hargrave, Org. Magn. Reson., <u>21</u>, 94 (1983). For ¹³C NMR signals of C(2), C(6) see below.

δ	7	<u>8</u>	Solvent
Ь	59.58, 66.54	76.56, 73.69	C ₆ D ₆
	72.24, 70.26	79.29, 76.53	CDC1 ₃
	70.43, 70.03	77.31, 76.51	C ₆ D ₆

⁽Received in Japan 23 July 1987; accepted 19 October 1987)