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Summary: Cyclophellitol has been synthesized from L-glucose through an intramolecular 

cycloaddition of a nitrile oxide derived from an oxime. 

Cyclophellitol (111 is a novel g-glucosidase inhibitor isolated from a culture filtrate of a 

mushroom, Phellinus sp. and is expected to inhibit infection of human immunodeficiency 

virus. The absolute structure 1 was established by X-ray crystallographic analysis to disclose the 

fully oxygenated skeleton. 

We report herein the enantiospecific synthesis of cyclophellitol (1) and record a general 

method of entry into the highly oxygenated cyclohexanes (e.g., pseudo-sugar&. The key step in 

this approach is an intramolecular cycloaddition of a nitrile oxide to an olefin. Very recently, the 

synthesis of five- and six-membered carbocycles has been independently reported by using an 

intramolecular nltron cycloaddition.3 

Our synthesis began with the preparation of the xylo-hex-5-enopyranoside 2 from L-glucose 

according to the Sepulchre’s procedure. 4 Stereoselective hydroboration of 2 with 
dicyclohexylborane (TI-IP, 25”C, 1.5h, then H202/NaOH, 50°C, 20 min) gave the Xdopyranoside 

35 (85%; [a]~ -289, which was oxidized [(COC1)2/DMSO/TEA/CH2Cl2, -78’C, 15 minl to an 

aldehyde, followed by a Wittig reaction (Ph3P=CH2/PhH, 25’C, 15 min) to afford the olefin 45 

(75%; [aID 6.5’). This was hydrolyzed U-ICl/aq. dioxane, BOOC, 12h) to an idopyranose, which was 
treated with NH20HaHCl (pyridine, 25”C, lh) to give the oxime 55 (80%). Intramolecular 

cycloaddition of 5 in question was realized by using NaOCl (CH2C12, 25”C, 1.5h) via the 

intermediary nitrile oxide6 to afford the isoxazoline 65 as a single product (70%; [aID -125’). The 

stereochemistry was confirmed by the lH NMR analyses of compounds 6 - 10 and , finally the 

completion of the synthesis presented below. The diastereoselectivity is rationalized by a syn 

periplanar steric interaction between the nitrile oxide and a-benzyloxy group in its transition 

state.7 This isoxazoline could be a key intermediate for syntheses of highly functionalized 
cyclohexanes. Hydrogenolysis (H2/Raney Ni-W4/AcOH/aq. dioxane, 25’C, 1.5h) of 6 gave the 
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keto-diol 75 (80%, [a]~ -55”). After silylation (90%; DEIPS-OTf8/2,6-lutidine/CH2C12, O’C, 0.5h), 

the resulting ketone was reduced (BH3*Me2S/THF, 25’C, 12h) to yield the desired a-alcohol 85 

(60%; [a]~ +24”). The undesired fl-alcohol was obtained in 20% yield, and then recycled to the 
ketone 7 by oxidation [(COC1)2/DMSO/TEAl. Mesylation (MsCl/Py, 25’C, 12h) of 8 provided the 

labile mesylate 95 (75%), which was de-O-benzylated (H2/Pd(OH)2/MeOH) followed by 

epoxidation (MeONa/CHC13, O”C, 10 min) to give the labile epoxide 105 [[a]~ +49" (c 0.14, 

MeOH)]. Deprotection (n-Bu4NF/THF, 25’C, 10 min) completed the synthesis, giving 

cyclophellitol (1) 140% from 9; plates (H20), mp 149-151°C, [c& +103” (c 0.5, H20)l identical with 

that obtained from natural sources by IR, II-I NMR and biological activity (inhibition against 
almond-derived P_glucosidase with IC50 of 0.8 pg/ml).l 

The application of this synthetic strategy using other carbohydrates for the construction of 

other related substances is an exciting prospect. 
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