Carbohydrate Research 345 (2010) 1825-1830

Contents lists available at ScienceDirect

Carbohydrate Research

journal homepage: www.elsevier.com/locate/carres

Synthesis of vicenin-1 and 3, 6,8- and 8,6-di-C-β-D-(glucopyranosyl-xylopyranosyl)-4',5,7-trihydroxyflavones using two direct C-glycosylations of naringenin and phloroacetophenone with unprotected D-glucose and D-xylose in aqueous solution as the key reactions

Shingo Sato*, Tomoyuki Koide

Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa-shi, Yamagata 992-8510, Japan

ARTICLE INFO

Article history: Received 28 December 2009 Received in revised form 30 March 2010 Accepted 1 April 2010 Available online 13 April 2010

Keywords: Direct C-glycosylation Sc(OTf)₃ Naringenin Phloroacetophenone

ABSTRACT

Vicenin-3 was synthesized from naringenin via a short five-step reaction, which included two regioselective direct C-glycosylations with D-glucose and D-xylose (yields: 22% and 30%, respectively) as the key reactions for a total yield of 4.4%. Vicenin-1 was also synthesized from phloroacetophenone via a 10-step reaction, including the same glycosylation described above, for a total yield of 2.7% with a vicenin-3 yield of 1.7%.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Many flavonoids in plants include glycosides that are mostly present as water-soluble O-glycosides and, rarely, as C-glycosides. The C-glycosylflavonoids include a few bis-C-glycosides, mostly flavones. To date, 55 di-C-glycosylflavones have been isolated and their structures determined.¹ Many of them include apigenin (4',5,7-trihydroxyflavone) as the aglycon. Some of these C-glyco-sylflavonoids show bioactivities different from the corresponding O-glycosylflavonoids and their aglycons, because of differences in their stability to hydrolysis.² Although there are a few reports on the efficient synthesis of mono-C-glycosylflavonoids,³ there are no reports on the synthesis of bis-C-glucosylflavonoids except for a recent report.⁴

We have achieved the synthesis of the naturally occurring di-C- β -D-glucosylflavone (vicenin-2, see Fig. 1), di-C- β -D-glucosylflavone, and di-C- β -D-glucosylflavone.⁴ In plants, however, it is rare to find a di-C-glycosylflavone consisting of two alternative sugars as a bis-C-glycoside, which consists of five kinds of D-sugars, such as glucose, galactose, xylose, arabinose, and rhamnose.¹ Three kinds of 6,8-di-C-glycosyl-4',5,7-trihydr-oxyflavones have been isolated from plants: vicenin-1 and -3 [6-Xyl-8-Glc (1), 6-Glc-8-Xyl (2), see Fig. 1], violanthin and isoviolan-

* Corresponding author. Tel./fax: +81 238 26 3121.

thin (6-Glc-8-Rha, 6-Rha-8-Glc), and schaftoside and isoschaftoside (6-Glc-8-Ara, 6-Ara-8-Glc).¹ We have not yet attempted the synthesis of bis-C-glycosides that consist of different sugars.

We previously studied an environmentally friendly method for the direct C-glycosylation of acetylpolyphenol with a nonprotected sugar in an aqueous solution in the presence of scandium trifluoromethanesulfonate [Sc(OTf)₃].⁵ The first synthesis of the three di-C-glycosylflavonoids listed above was achieved by application of our method.⁴ This article describes the total synthesis of **1** and **2** and the application of this direct C-glycosylation method to naringenin and phloroacetophenone.

Vicenin-1 and -3 (**1**, **2**) were isolated from the leaves of *Desmodium styracifolium* MERR (Leguminosae), which has been used as a Chinese folk medicine for cholelithiasis, lithiasis, and inflammation of the liver, among other ailments.⁶ Vicenin-1 (**1**) has also been isolated from *Vitex lucens* (Verb.),⁷ *Arrhenatherum* sp. (Gram.),⁸ *Cymophyllum fraseri* (Cyp.),⁹ *Eminium spiculatum* (Acer.),¹⁰ *Ephedra* sp.

Figure 1. Structure of vicenin-1 (1), -2, and -3 (2).

E-mail address: shingo-s@yz.yamagata-u.ac.jp (S. Sato).

^{0008-6215/\$ -} see front matter \odot 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.carres.2010.04.001

(Ephed.),¹¹ and *Rhynchosia jacobii* (Leg.),¹² and **2** has been isolated from *V. lucens* (Verb.),⁷ *Camellia sinensis* (Thea.),¹³ *Ephedra* sp. (Ephed.),¹¹ and *Premna integrifolia* (Verb.).¹⁴ However, the bioactivity of these compounds has not yet been reported.

The synthesis of **1** and **2** was examined by two methods: (1) a readily available method of two regioselective direct C-glycosylations of naringenin, followed by oxidation, and (2) two direct C-glycosylations of phloroacetophenone, followed by aldol condensation, acid-cyclization, and then oxidation (Scheme 1).

2. Results and discussion

Direct C-glycosylation of naringenin, in which the phenolic hydroxyl groups are partially benzyl protected, has been attempted by our group^{3c} and by Oyama and Kondo,^{3g} whose attempts were unsuccessful. Kondo's group achieved the C-glycosylation of naringenin after reduction of its carbonyl group to a methylene residue. We also tried the direct C-glycosylation of unprotected naringenin with D-glucose in an aqueous solution in the presence of catalytic amounts of Sc(OTf)₃ and found that this method afforded 6- or 8-C-glucosyl-4',5,7-trihydroxyflavanone and 6,8-di-Cglucosyl-4',5,7-trihydroxyflavanone in 17.3% and 19.0% yields, respectively.⁴ Herein, we applied this method to direct C-glycosylation of naringenin with D-glucose and D-xylose in the synthesis of **1** and **2**.

Direct C-glycosylation of naringenin and isolation of the desired glycoside were performed as follows. An aqueous CH_3CN solution (2:1 CH_3CN-H_2O) of naringenin (1 equiv) and D-glucose (2.5 equiv) was refluxed in an oil bath (85 °C) for 12 h in the presence of 0.2 equiv of Sc(OTf)₃. The reaction mixture was diluted with water (50 mL) and was then placed and absorbed onto a column of Diaion CHP2OP resin (ca. 50 mL in water). The resulting resin was washed with water (200 mL) and then eluted with 50% aqueous acetone (100 mL) and 1:1 acetone–MeOH (100 mL). Unabsorbed fractions

included unreacted D-glucose and Sc(OTf)₃. The eluate, with 50% aqueous acetone and acetone-MeOH, including naringenin and naringenin glycosides, was evaporated to give an amorphous solid, which was subjected to silica-gel column chromatography (15:30:2:0.1 and 30:30:5:0.1 acetone-EtOAc-H₂O-AcOH). As a result of this experiment, the naringenin mono-C-glucoside 3 was afforded as a pale-yellow amorphous powder in 22% yield. Since it was unclear whether **3** was 6-C-β-D- or 8-C-β-D-glucopyranosylnaringenin, **3** was acetylated by Ac₂O, pyridine, and *N*,*N*-dimethylaminopyridine (DMAP). Using ¹H NMR spectroscopy, the chemical shift of an aromatic proton of the acetate $\mathbf{3'}^4$ was compared with that of the acetates of 6-*C*-β-D-glucosylnaringenin (hemiphloin) and $8-C-\beta$ -D-glucosylnaringenin (isohemiphloin). Since the chemical shift (δ in CDCl₃) of the acetate **3**' was 6.79,⁴ and that of hemiphloin and isohemiphloin hepta-acetates was 6.79 and 6.56, respectively,¹⁵ mono-C-glycoside **3** was determined to be a 6-C-B-p-glucopyranosyl-4'.5.7-trihydroxyflavanone. This result suggests that the C-glycosylation of naringenin with D-glucose proceeded both regioselectively and stereoselectively.

Next, a second C-glycosylation of **3** with D-xylose was examined. The best conditions were as follows. An aqueous EtOH solution (2:1 EtOH-water) of **3** and 2.5 equiv of D-xylose was refluxed at 80 °C for one day in the presence of 0.5 equiv of Sc(OTf)₃. The reaction mixture was worked up and purified in the same manner as described above. The desired 6-*C*- β -D-glucopyranosyl-8-*C*- β -D-xylopyranosylnaringenin (**4**) was obtained in a yield of 30%. Acetylation (Ac₂O-pyridine-DMAP) of **4** gave deca-acetate **5** in a yield of 80%, and the structure of **4** was confirmed by a detailed analysis of the ¹H and ¹H-¹H correlation NMR spectroscopy of **5**.

Next, synthesis of flavones via oxidation of flavanone acetate **5** was examined. Dichlorodicyanobenzoquinone (DDQ) was previously used in the oxidation reaction.^{3g,4} After oxidation followed by acetylation (Ac₂O–pyridine), separation and purification were

Scheme 1. Synthesis of vicenin-3 (2) via direct C-glucosylation and C-xylosylation of naringenin.

carried out. However, since the separation of products from the resulting hydroquinone acetates was difficult, and the yield was a low 30%, oxidation using iodine was employed.¹⁶ Halogenation of α -H in **5**, followed by elimination of HI due to pyridine, proceeded smoothly. A solution of **5** in pyridine was refluxed for 8 h in the presence of 1 equiv of iodine, followed by re-acetylation (Ac₂O–pyridine) to afford flavone deca-acetate **6** as a yellow amorphous solid in a yield of 91%, which was O-de acetylated by sodium methoxide in dry MeOH and neutralized by Dowex 50Wx8 (H⁺) resin to afford the desired **2** in a yield of 92%. Total synthesis of **2** was achieved via a five-step-reaction, including two direct C-glycosylations from naringenin, in a total yield of 4.4%.

The synthesis of **1** was examined in the same manner as that of **2** (see Scheme 2). Direct C-glycosylation of naringenin with D-xylose gave the desired C- β -D-xylosylnaringenin **7** in a 13% yield, along with a 5% yield of 6,8-di-C- β -D-xylosylnaringenin **8**. Since the chemical shift of an aromatic proton appeared at 6.75 ppm in the ¹H NMR spectrum of the acetate of **7**, the structure of **7** was determined to be 6-C- β -D-xylopyranosylnaringenin, as was **3**. Next, a second C-glycosylation of **7** with D-glucose was examined under the same conditions as those for **2**. However, none of the desired 6-C- β -D-xylosyl-8-C- β -D-glucosylnaringenin **10** was produced. Since this reaction yielded some derivatives of **7**, it was found that **7** was unstable and was converted to spiro-compounds¹⁷ under these harsher reaction conditions. The synthesis of **1** using naringenin as a starting material was, therefore, abandoned.

The synthesis of 1 was changed so that two direct C-glycosylations of phloroacetophenone were the key reactions (Scheme 3). This method can employ a first C-glycosylation with D-glucose and a subsequent C-glycosylation with D-xylose, as well as the synthetic method of 2. The first C-glycosylation of phloroacetophenone, using D-glucose in the manner described above, gave mono-glycoside **11** in a yield of 48%.⁵ The successive second C-glycosylation of **11**⁷ with D-xylose gave the desired bis-C-glycoside **12** in a yield of 29%. Three phenolic hydroxyl groups in 12 were protected with a benzyl group to give **13** in a vield of 61%. Aldol condensation of **13** with *p*-benzyloxybenzaldehyde in the presence of sodium methoxide in dried MeOH gave chalcone 14 in a vield of 90%. A methanolic solution of 14 was refluxed in the presence of Dowex 50Wx8 (H⁺) resin to give flavanone, which was successively O-de-benzylated by hydrogenolysis (H₂/10% Pd-C) and acetylated by Ac₂O-pyridine-DMAP to afford flavanone acetates (a mixture of 5 and its regioisomer). The mixture of flavanone acetates was oxidized by iodine and pyridine followed by acetylation (Ac₂Opyridine-DMAP) to give the desired di-C-glycosylflavone deca-acetates (a mixture of 6 and its regioisomer 15) in a yield of 70%. The mixture of acetates 6 and 15 was separable by preparative HPLC: however, the separation of a mixture of **1** and **2** was much easier. The mixture of acetates was deprotected by NaOMe followed by Dowex 50Wx8 (H⁺) resin treatment to afford a mixture of 1 and 2. The resulting mixture was separated by preparative HPLC (ODS column, 40:60 MeOH-5% AcOH aqueous solution) to give 1 and 2 in a ratio of 62:38. Fortunately, the ratio of the desired 1 was higher. Total yield of the synthesis of **1** from phloroacetophenone was 2.75%, together with a yield of 1.68% of **2**. The ¹³C NMR spectral data for the compounds were in agreement with the data obtained for the natural products⁶ (see Table 1).

We also examined the Wessely–Moser isomerization of **2**. Compound **2**, which was synthesized from naringenin, was refluxed in 6 N HCl for 2 h. After removal of the solvents, HPLC analysis (monitoring: UV 254 nm) of the residual solid showed that **1** and **2** were included at 31% and 40%, respectively. These results showed that acid isomerization of **2** synthesized from naringenin via the fivestep reaction gave **1** in a yield of 31%.

3. Conclusions

We accomplished the first total synthesis of 6-C- β -D-glucosyl-8-C- β -D-xylosyl-4',5,7-trihydroxyflavone, vicenin-3 (**2**) by a short, five-step reaction involving direct C-glycosylation with D-glucose and D-xylose performed twice, followed by oxidation of the acetate using iodine and pyridine, for a total yield of 4.4%. The first total synthesis of a regioisomer of **2**, vicenin-1 (**1**), was achieved by two direct glycosylations of phloroacetophenone with D-glucose and D-xylose, followed by benzyl protection of the phenolic OH group and aldol condensation, acid-catalyzed cyclization, oxidation of flavanone acetate, deprotection, and HPLC separation, via a total 10-step reaction, in a total yield of 2.75%, along with a vicenin-3 yield of 1.68%.

4. Experimental

4.1. General

Sc(OTf)₃ (Taiheiyo Kinzoku Co. Ltd) was purchased and used without any further purification. Reactions were monitored using TLC on 0.25-mm Silica Gel F254 plates (E. Merck), UV light, and a 7% ethanolic solution of phosphomolybdic acid, followed by heat, were used as detection methods. Column chromatography was performed on MCI gel CHP20P® (high porous polymer, 75-150 μm, Mitsubishi Chemical Corp.), and flash column chromatography was performed on silica-gel (40–50 μm, Kanto Reagents Co. Ltd, silica gel 60) to separate and purify reaction products. HPLC analysis and separation were performed using an Inertsil ODS-3 column (GL Science; $5 \mu m$, $4.6 \times 250 mm$ for analytical use, 20×250 mm for preparative use; mobile phase: CH₃CN or MeOH-5% AcOH aqueous solution). Optical rotations were recorded on a JASCO DIP-370 polarimeter. IR spectra were recorded on a Horiba FT-720 spectrometer using KBr disks. NMR spectra were recorded on a Varian Inova 500 spectrometer using Me₄Si as the internal standard. Mass spectral data were obtained by fast-atom bombardment (FAB) using *m*-nitrobenzylalcohol (NBA) or glycerol as the matrix on a JEOL JMS-AX505HA instrument. Elemental analyses were performed on a Perkin-Elmer PE 2400 II instrument. After drying at 80-100 °C under reduced pressure for over 2 h, each product was subjected to elemental analysis.

Scheme 2. Attempt to synthesize vicenin-3 (2) via direct C-xylosylation and C-glucosylation of naringenein.

Scheme 3. Synthesis of vicenin-1 (1) and -3 (2) via two direct C-glycosylations of phloroacetophenone.

Table 1								
¹³ C NMR	spectral	data	for	vicenin-1	and	-3 (1	and	2)

Compound		1		2
Carbon	Natural ^a	Synthetic	Natural ^a	Synthetic
2	164.0	163.9	164.0	163.8
3	102.8	102.8	102.9	102.6
4	182.3	182.1	182.2	182.1
5	161.2	161.1	161.2	161.0
6	108.7	108.7	108.0	107.8
7	159.7	159.5	159.2	158.9
8	103.8	103.7	104.7	104.5
9	154.5	154.7	154.9	154.7
10	102.8	102.8	103.9	103.6
1'	121.8	121.5	121.8	121.5
2′	128.7	128.5	128.5	128.3
3′	116.0	115.9	116.0	115.8
4′	161.3	160.0	161.3	161.1
5′	116.0	115.9	116.1	115.8
6′	128.7	128.5	128.5	128.3
G1	72.0	72.1	74.2	73.9
G2	71.0	71.3	70.6	70.4
G3	79.2	79.5	79.2	78.9
G4	70.2	69.7	70.2	70.0
G5	81.5	81.8	81.3	81.0
G6	60.9	60.5	60.6	60.4
X1	74.6	74.1	75.0	74.7
X2	70.4	70.2	71.9	71.6
X3	78.6	78.8	78.4	78.1
X4	70.4	70.2	71.5	71.2
X5	70.0	69.3	69.9	69.6

^a Measured at 90 °C.

4.2. 6-C-β-D-Glucopyranosylnaringenin (3)

A solution of naringenin (500 mg, 1.83 mmol) and D-glucose (823 mg, 4.57 mmol) in 2:1 CH₃CN-H₂O (50 mL) was refluxed in an oil bath for 12 h in the presence of Sc(OTf)₃ (180 mg,

0.36 mmol). The reaction mixture was diluted with H₂O (50 mL) and passed through a column of MCI GEL CHP20P[®] (2.5 × 100 mm) loaded with water, and the gel was washed with 200 mL of water and eluted with 100 mL of 50% aq acetone and 100 mL of 1:1 acetone–MeOH. The combined eluate was evaporated to give a pale-yellow crude product, which was purified by silica-gel column chromatography (15:30:2:0.1 acetone–AcOEt–H₂O–AcOH) to give **3** (175 mg, 22%) as a pale-yellow amorphous powder. Product **3** was an inseparable 1:1 diastereomeric mixture, with rotamers observed by ¹H NMR spectroscopy.

IR (KBr) v 3400, 2898, 1716, 1643, 1616, 1519, 1458 cm⁻¹. ¹H NMR (DMSO- d_6) δ 2.70 (1H, dd, *J* 17.2, 3.1 Hz, H3a), 3.06 (1H, t, *J* 9.2 Hz, H3'), 3.09 (1H, ddd, *J* 1.6, 6.1, 8.5 Hz, H5'), 3.15 (1H, t, *J* 8.5 Hz, H4'), 3.23 (1H, dd, *J* 12.6, 17.1 Hz, H3b), 3.36 (1H, dd, *J* 6.1, 11.7 Hz, H6'a), 3.64 (1H, d, *J* 11.5 Hz, H6'b), 3.95 (1H, br. t, H2'), 4.46 (1H, *J* 9.8 Hz, H1'), 4.45 (1H, br s, OH), 4.58 (1H, br t, 6'-OH), 4.83 (2H, br s, OH × 2), 5.40 (1H, dd, *J* 12.4, 2.3 Hz, H2), 5.93 (1H, s, H8), 6.78 (2H, d, *J* 8.4, H3',5'), 7.30 (2H, d, *J* 8.4 Hz, H2',6'), 9.58, 10.5, 12.7 (each 3H, s, br s × 2, PhOH × 3). FABMS (negative-ion, *m/z*): 433 (M–H)⁻. Anal. Calcd for C₂₁H₂₂O₁₀. 0.75H₂O: C, 56.31; H, 5.29. Found: C, 56.33; H, 5.52.

4.3. 6-C-β-D-Glucopyranosyl-8-C-β-D-xylopyranosylnaringenin (4)

A solution of **3**, D-xylose, and Sc(OTf)₃ in 2:1 EtOH–H₂O (4 mL) was stirred at 80 °C for one day. The reaction mixture was separated and purified in the same manner as that used for **3** to give **4** (78 mg, 30%) as a pale-yellow amorphous powder. Product **4** was an inseparable 1:1 diastereomeric mixture, with rotamers observed by ¹H NMR spectroscopy.

IR (KBr) ν 3363, 2917, 1626, 1518, 1458 cm⁻¹. ¹H NMR (DMSOd₆) δ 2.80–2.86 (1H, m, H3a), 2.98–3.14 (3H, m), 3.26 (3H, m), 3.50– 3.88 (4H, m), 4.47 (1H, m), 4.60–4.83 (4H, m, OH × 4), 4.90 (1H, m), 4.88–5.02 (3H, OH × 3), 5.36 (0.5H, dd, *J* 2.4, 12.9, H3″), 5.47 (0.5H, dd, *J* 2.8, 12.8, H3″), 6.78 (2H, m, *J* 8.5, H3′,5′), 7.32 (2H, m, *J* 8.5, H2′,6′), 9.25 (1H, br. s, 4′-OH), 9.53 and 9.56 (each 0.5H, s, 7-OH), 12.76 and 12.77 (each 0.5H, s, 5-OH). FABMS (negative-ion, *m*/*z*) 565 (M–H)[–]. Anal. Calcd for $C_{26}H_{30}O_{14}$ ·0.5H₂O: C, 54.25; H, 5.44. Found: C, 54.45; H, 5.66.

4.4. 6-C-β-D-Glucopyranosyl-8-C-β-D-xylopyranosylnaringenin deca-acetate (5)

Flavanone **3** (100 mg, 0.17 mmol) was dissolved in pyridine (0.5 mL) and Ac₂O (0.5 mL), and DMAP (ca. 20 mg) was added to the mixture. The mixture was stirred at room temperature for 16 h. The reaction mixture was poured into ice-cold water (30 mL) and stirred for 0.5 h, and then extracted with AcOEt (10 mL \times 2). The combined organic layer was washed with water and brine and dried over Na₂SO₄. After removal of the organic solvent, the residual solid was purified by silica-gel column chromatography (2:1 AcOEt–*n*-hexane) to give **5** (139 mg, 89%) as a colorless amorphous powder.

IR (KBr) *v* 2943, 1766, 1757, 1656, 1604 cm⁻¹. ¹H NMR (CDCl₃) δ aglycon moiety: 2.32, 2.44, and 2.50 (each 3H, s, ArOAc × 3), 2.79 (1H, dd, *J* 2.7, 16.8, H3a), 2.95 (1H, dd, *J* 14.4, 16.8, H3b), 5.74 (1H, dd, *J* 2.7, 14.4, H2), 7.23 (2H, d, H3',5'), 7.58 (2H, d, *J* 8.6, H2',6'), xylose moiety: 3.27 (1H, t, *J* 10.8, H5a), 3.94 (1H, d, *J* 9.4, H1), 4.25 (1H, t, dd, *J* 5.6, 10.8, H5b), 5.26 (2H, t, *J* 9.3, H3,4), 5.61 (1H, t, *J* 9.4, H2), glucose moiety: 3.77 (1H, dt, *J* 4.5, 9.5, H5), 4.25 (1H, dd, *J* 12.5, 4.5, H6a), 4.43 (1H, dd, *J* 12.5, 4.5, H6b), 4.72 (1H, d, *J* 9.5, H1), 5.61 (1H, t, *J* 9.5, H3), 5.81 (1H, t, *J* 9.5, H2). 1.78, 1.91, 1.99, 2.02, 2.03, 2.04, 2.07 (each 3H, s, OAc × 7). FABMS (positive-ion, *m*/*z*) 987 (M+H)⁺. Anal. Calcd for C₄₆H₅₀O₂₄: C, 55.98; H, 5.11. Found: C, 55.83; H, 5.12.

4.5. 6-C-β-D-Glucopyranosyl-8-C-β-D-xylopyranosyl-4',5,7-trihydroxyflavone deca-acetate (6)

A solution of **5** (50 mg, 0.05 mmol) and iodine (12.6 mg, 0.05 mmol) in pyridine (2 mL) was refluxed for 8 h. The reaction mixture was allowed to cool to room temperature, and it was then filtered. The filtrate was evaporated in vacuo. The residual solid was re-acetylated in the same manner as for the acetylation of 4. The acetylated product was purified by silica-gel column chromatography (2:1 AcOEt-n-hexane) to give **6** (45 mg, 91%) as a paleyellow amorphous powder. $[\alpha]_D^{22}$ –5.19 (*c* 0.385, MeOH). IR (KBr) v 2950, 2864, 1782, 1743, 1652, 1600 cm⁻¹. ¹H NMR (CDCl₃) δ aglycon moiety: 2.35, 2.49, 2.56 (each 3H, s, ArOAc × 3), 6.60 (1H, s, H3), 7.37 (2H, d, J 8.8, H3',5'), 7.99 (2H, d, H2',6'), xylose moiety: 3.41 (1H, t, J 11.1, H5a), 4.39 (1H, dd, J 11.1, 5.6, H5b), 4.50 (1H, d, J 9.8, H1), 5.23 (1H, ddd, J 9.5, 5.6, 11.1, H4), 5.41 (1H, t, J 9.5, H3), 5.68 (1H, t, J 9.5, H2), glucose moiety: 3.80 (1H, dd, J 9.8, 4.7, H5), 3.95 (1H, d, J 12.9, H6a), 4.45 (1H, dd, J 4.7, 12.9, H6b), 4.84 (1H, J 9.8, H1), 5.16 (1H, dt, J 9.8, H4), 5.30 (1H, t, J 9.8, H3), 5.71 (1H, t, J 9.8, H2), 1.76, 1.88, 2.01, 2.02, 2.05, 2.07, 2.10 (each 3H, s, OAc \times 7). FABMS (positive-ion, m/z) 985 (M+H)⁺. Anal. Calcd for C₄₆H₄₈O₂₄: C, 56.10; H, 4.91. Found: C, 55.89; H, 5.13.

4.6. 6-*C*-β-D-Glucopyranosyl-8-*C*-β-D-xylopyranosyl-4′,5,7trihydroxyflavone, vicenin-3 (2)

To a stirred solution of **6** (40 mg, 0.04 mmol) in dry MeOH (1 mL), a 25% NaOMe methanolic solution (0.2 mL) was added dropwise at room temperature, and the mixture was stirred for 1 h. Dowex 50Wx8 (H^+) resin was added to the stirred reaction mixture until the solution pH was neutral. The mixture was filtered and the filtrate was evaporated in vacuo to give **2** (21.1 mg, 91%) as a yellow amorphous powder. ¹H NMR spectroscopy of products **2**,

13, **14**, and **1** was carried out at 80 °C or at 120 °C in DMSO- d_6 because rotamers were not observable.

[α]_D²² +23.3 (*c* 0.275, MeOH). IR (KBr) *v* 3392, 2923, 1653, 1575 cm⁻¹. ¹H NMR (DMSO-*d*₆ + D₂O, at 80 °C) δ 3.24 (1H, t, *J* 10.7), 3.30 (1H, t, *J* 8.6), 3.61 (1H, dd, *J* 3.8, 12.5), 3.69 (1H, dd, *J* 1.6, 12.2), 3.89 (1H, t, *J* 9.2, 9.4), 3.93 (1H, dd, *J* 5.3, 11.1), 4.77 (1H, d, *J* 9.8, H1'), 4.81 (1H, *J* 9.8, H1), 6.71 (1H, s, H3), 9.17 (1H, br s, 7-OH), 10.15 (1H, br s, 4'-OH), 13.64 (1H, s, 5-OH). FABMS (positive-ion, *m*/*z*) 565 (M+H)⁺, (negative-ion, *m*/*z*) 563 (M−H)⁻. Anal. Calcd for C₂₆H₂₈O₁₄·2.5H₂O: C, 51.22; H, 5.47. Found: C, 51.19; H, 5.14.

4.7. 6-C-β-D-Xylopyranosylnaringenin (7) and 6,8-di-C-β-Dxylopyranosylnaringenin (8)

Synthesis and purification were carried out in the same manner as that used for **3** to give **7** (13%) and **8** (5%) as pale-yellow amorphous powders. Products **7** and **8** were an inseparable 1;1 diastereomeric mixtures, with rotamers observed by ¹H NMR spectroscopy.

4.7.1. Data for 7

IR (KBr) v 3352, 2914, 1641, 1516, 1462 cm⁻¹. ¹H NMR (DMSOd₆) δ 2.68 (1H, dd, J 2.9, 17.1, H3a), 3.01 (1H, t, J 10.6, H5"a), 3.09 (1H, t, J 8.4, H3"), 3.24 (1H, dd, J 12.9, 17.1, H3b), 3.33 (1H, ddd, J 4.9, 5.2, 10.6, H4"), 3.70 (1H, dd, J 5.2, 10.6, H5"b), 4.37 (1H, d, J 9.8, H1"), 4.56 (1H, br s, 2-OH), 4.84 (1H, br s, 3-OH), 4.87 (1H, d, J 4.9, 4-OH), 5.39 (1H, dd, J 2.9, 12.7, H2), 5.92 (1H, s, H8), 6.78 (2H, d, J 8.5, H3',5'), 7.30 (2H, d, J 8.5, H2',6'), 9.60 (1H, s, 7-OH), 10.69 (1H, br s, 4'-OH), 12.72 (1H, s, 5-OH). FABMS (positive-ion, m/z) 405 (M+H)⁺. Anal. Calcd for C₂₀H₂₀O₉·0.25H₂O: C, 58.75; H, 5.05. Found: C, 58.85; H, 4.92.

4.7.2. Data for 8

IR (KBr) ν 3396, 2910, 2871, 1628, 1516, 1458 cm⁻¹. ¹H NMR (DMSO- d_6) δ 2.82 (1H, dt, *J* 3.0, 17.3, H3a), 3.02–3.16 (5H, m), 3.43 (1H, m), 3.71–3.79 (2H, m), 4.47–4.53 (2H, m), 4.66–4.84 (2H, m, OH × 2), 4.91–4.96 (4H, m), 5.35 (0.5H, dd, *J* 2.9, 12.7, H3"), 5.45 (0.5H, dd, *J* 2.8, 12.8, H3"), 6.77 and 6.78 (each 1H, d, *J* 8.5, H3',5'), 7.32 (2H, m, *J* 8.5, H2',6'), 9.07 (1H, br s, 4'-OH), 9.53 and 9.56 (each 0.5H, s, 7-OH), 12.80 and 12.81 (each 0.5H, s, H5). FABMS (positive-ion, *m*/*z*) 537 (M+H)⁺. Anal. Calcd for C₂₅H₂₈O₁₃·2H₂O: C, 52.44; H, 5.63. Found: C, 52.60; H, 5.83.

4.8. 6-*C*-β-D-Xylopyranosylnaringenin hexa-acetate (9)

Naringenin mono-C-glycoside 7 (100 mg) was dissolved in pyridine (2 mL), and Ac₂O (2 mL) and the mixture was stirred at room temperature for 16 h. The reaction mixture was poured into icecold water and stirred for 0.5 h and then twice extracted with AcOEt. The organic layer was washed with water and brine, and then dried over anhyd Na₂SO₄. After evaporation, the residue was purified by silica-gel column chromatography (60:1 CHCl₃-EtOH) to afford acetate 9 (151 mg, 93%) as a pale-yellow amorphous solid. IR (KBr) v 2949, 2860, 1778, 1751, 1693, 1618 cm⁻¹. ¹H NMR $(CDCl_3) \delta$ 1.84 and 1.86 (3H, each s, OAc), 2.04 and 2.06 (each 3H, s, $OAc \times 2$), 2.31 and 2.38 (each 3H, s, $OAc \times 2$), 2.43 and 2.44 (3H, each s, OAc), 2.75 (1H, dd, / 2.6 and 16.6 Hz, H-3a), 3.01 (1H, m, H-3b), 3.36 (1H, m, H-5"a), 4.13(1H, d, J 9.5 Hz, H1"), 4.62 (1H, m, H-5"b), 5.02 (1H, t, J 9.5 Hz, H-4"), 5.25 (1H, t, J 9.5 Hz, H-3"), 5.47 (1H, m, H-2), 5.57 (1H, t, J 9.5 Hz, H-2"), 6.77 and 6.78 (1H, s, H-8), 7.15 (2H, d, J 8.6 Hz, H-3',5'), 7.44 (2H, d, J 8.6 Hz, H2',5'). FABMS (positive-ion, m/z) 657 (M+H)⁺. Anal. Calcd for C₃₂H₃₂O₁₅·0.1CHCl₃: C, 57.67; H, 4.84. Found: C, 57.75; H, 4.70.

4.9. 3,5-Di-C-β-D-(xylopyranosyl-glucopyranosyl)phloroacetophenone (12)

Synthesis and purification were performed in the same manner as that used for 4: reaction solvent system, 2:1 EtOH-H₂O; refluxing time, one day. $[\alpha]_D^{22}$ +87.6 (*c* 1.005, MeOH). IR (KBr) *v* 3369, 2923, 1701, 1622 cm⁻¹. ¹H NMR (DMSO-*d*₆) δ 2.58 (3H, s, Ac), 9.07 (1H, br s, OH), 11.50 (1H, s, OH), 12.0 (1H, br s, OH), (xylose moiety) 3.11 (t, J 10.8, H5a), 3.16 (1H, t, J 8.9, H3), 3.45 (1H, ddd, J 10.8, 8.9, 5.6, H4), 3.59 (1H, t, J 8.9, H2), 3.84 (1H, dd, J 5.6, 10.8, H5b), 4.72 (1H, d, J 9.8, H1), glucose moiety: 3.25 (1H, t, J 8.0, H3), 3.26 (1H, m, H6a), 3.32 (1H, t, J 9.0, H4), 3.43 (1H, m, H5), 3.59 (1H, m, H6b), 4.56 (1H, d, J 9.6, H1), 4.74 (1H, br t, 6-OH), 4.93 (1H, d, OH), 4.99 (2H, br t, OH × 2), 5.04 (1H, d, OH). ¹³C NMR (DMSO- d_6) δ sugar moiety: 60.03, 69.22, 69.73, 70.63, 71.70, 72.57, 75.10, 75.61, 77.76, 78.48, 81.29; 104.03, 104.50, and 105.19 (C2, 4, 6), 161.7 (br), 161.06, and 161.58 (C1, 3, 5), 33.31 and 203.85 (Ac). FABMS (negative-ion, *m*/*z*) 461 (M–H)⁻. Anal. Calcd for C₁₉H₂₆O₁₃·H₂O: C, 47.49; H, 5.89. Found: C, 47.19; H, 5.52.

4.10. 2,4,6-Tri-O-benzyl-3,5-di-C-β-D-(xylopyranosyl-glucopyranosyl)phloroacetophenone (13)

[α]_D²² –27.4 (*c* 0.540, MeOH). IR (KBr) *v* 3400, 2921, 2883, 1701, 1577 cm⁻¹. ¹H NMR (DMSO-*d*₆ + D₂O, at 120 °C) δ 2.47 (3H, s, Ac), 4.75 (2H, d, *J* 10.7, PhCH₂), 4.84 and 5.13 (each 1H, d, *J* 10.2 and 10.7, PhCH₂), 5.27 (2H, br s, PhCH₂), glucose moiety: 3.17 (1H, t, *J* 8.8, H4), 3.20 (1H, t, *J* 8.3 H3), 3.21 (1H, m, H5), 3.49 (1H, dd, *J* 5.8, 11.5, H6a), 3.72 (1H, dd, *J* 2.0, 11.7, H6b), 4.24 (1H, t, *J* 8.8, 9.3, H2), 4.68 (1H, d, *J* 9.7, H1), xylose moiety: 3.08 (1H, t, *J* 11.0, 10.5, H5a), 3.14 (1H, t, *J* 9.0, H3), 3.32 (1H, ddd, *J* 5.3, 9.5, 10.0, H4), 3.87 (1H, dd, *J* 5.4, 11.0, H5b), 4.15 (1H, t, *J* 9.0, 9.2, H2), 4.60 (1H, d, *J* 9.7, H1). FABMS (positive-ion, *m*/*z*) 733 (M+H)⁺. Anal. Calcd for C₄₀H₄₄O₁₃·0.5H₂O: C, 64.76; H, 6.13. Found: C, 64.71; H, 6.24.

4.11. 2,4,6-Tri-O-benzyl-3,5-di-C-β-D-(xylopyranosyl-glucopyranosyl)-1-[3-(*p*-benzyloxyphenyl)propenoyl]benzene (14)

[α]_D²² –22.9 (*c* 0.515, MeOH). IR (KBr) ν 3400, 2921, 2879, 1624, 1595, 1577, 1508 cm⁻¹. ¹H NMR (DMSO-*d*₆ + D₂O, at 120 °C) δ 4.77 (2H, d, *J* 9.8, PhCH₂), 4.88 and 5.10 (each 1H, d, *J* 10.7, PhCH₂), 5.16 (2H, s, 4'-PhCH₂), 5.30 (2H, br s, PhCH₂), 6.99 (1H, d, *J* 16.1, *trans*-vinyl H), 7.03 (1H, 2H, d, *J* 8.8, H3',5'), 7.45 (1H, m, *trans*-vinyl H), 7.55 (1H, 2H, d, *J* 8.8, H2',6'), 7.26–7.57 (20H, m, ArH), glucose moiety: 3.16 (1H, t, *J* 9.2, H4), 3.23 (1H, m, H5), 3.23 (1H, t, *J* 9.5, H3), 3.50 (1H, dd, *J* 5.3, 11.9, H6a), 3.73 (1H, dd, *J* 1.7, 11.9, H6b), 4.25 (1H, *t*, *J* 9.2, H2), 4.71 (1H, d, *J* 9.7, H1), xylose moiety: 3.10 (1H, t, *J* 9.4, H2), 4.71 (1H, t, *J* 9.0, H3), 3.32 (1H, ddd, *J* 5.1, 10.0, 10.0, H4), 3.88 (1H, dd, *J* 5.3, 10.9, H5b), 4.16 (1H, t, *J* 9.0, H2), 4.63 (1H, d, *J* 9.7, H1). FABMS (positive-ion, *m*/*z*) 927 (M+H)⁺. Anal. Calcd for C₅₄H₅₄O₁₄·2H₂O: C, 67.34; H, 6.08. Found: C, 67.58; H, 6.36.

4.12. 6-C-β-D-Xylopyranosyl-8-C-β-D-glucopyranosyl-4′,5,7trihydroxyflavone deca-acetate (15)

 $[\alpha]_{D}^{19}$ +16.6 (*c* 0.650, MeOH). IR (KBr) *v* 2943, 2866, 1755, 1653, 1604, 1508 cm⁻¹. ¹H NMR (CDCl₃) δ aglycon moiety: 2.35, 2.48,

2.50 (each 3H, s, ArOAc × 3), 6.66 (1H, s, H3), 7.39 (2H, d, *J* 8.8, H3',5'), 8.07 (2H, d, H2',6'), glucose moiety: 3.77 (1H, ddd, *J* 9.5, 4.0, 2.0, H5), 4.20 (1H, dd, *J* 12.7, 2.0, H6a), 4.28 (1H, dd, *J* 4.0, 12.7, H6b), 4.60 (1H, *J* 10.0, H1), 5.42 (1H, t, *J* 9.5, H3), 5.47 (1H, t, *J* 9.5, H4), 5.74 (1H, t, *J* 9.5, H2), xylose moiety: 3.41 (1H, t, *J* 11.0, H5a), 4.18 (1H, dd, *J* 11.0, 5.6, H5b), 4.73 (1H, d, *J* 9.3, H1), 5.04 (1H, ddd, *J* 9.6, 5.6, 11.1, H4), 5.31 (1H, t, *J* 9.6, H3), 5.62 (1H, t, *J* 9.6, H2), 1.76, 1.88, 1.93, 1.99, 2.05, 2.08, 2.10 (each 3H, s, OAc × 7). FABMS (positive-ion, *m*/*z*) 985 (M+H)⁺. Anal. Calcd for C₄₆H₄₈O₂₄: C, 56.10; H, 4.91. Found: C, 55.99; H, 4.83.

4.13. 6-C-β-D-Xylopyranosyl-8-C-β-D-glucopyranosyl-4′,5,7trihydroxyflavone, vicenin-1 (1)

[α]_D²² +41.3 (*c* 0.450, MeOH). IR (KBr) *v* 3367, 2921, 1653, 1575 cm⁻¹. ¹H NMR (DMSO-*d*₆ + D₂O, at 80 °C) δ 3.64 (1H, br d, *J* 12.0), 3.91 (1H, dd, *J* 5.3, 10.9), 4.65 (1H, d, *J* 8.8), 4.78 (1H, dd, *J* 9.8, 14.7), 6.69 (1H, s, H3), 6.93 (2H, d, *J* 8.5, 3',5'-H), 7.93 (2H, d, *J* 8.5 Hz, H-2',6'), 9.19 (1H, br s, 7-OH), 10.12 (1H, br s, 4'-OH), 13.67 (1H, s, 5'-OH). FABMS (positive-ion, *m*/*z*) 565 (M+H)⁺. Anal. Calcd for C₂₆H₂₈O₁₄·1.2H₂O: C, 53.27; H, 5.24. Found: C, 53.04; H, 5.26.

References

- 1. Maurice, J. C-Glycosylflavonoids. In *The Flavonoids*; Harborne, J. B., Ed.; Chapman and Hall: London, 1994; pp 57–93.
- (a) Zavodnik, L. B. Radiat. Biol. Radiol. 2003, 43, 432–438; (b) Zavodnik, L. B.; Zavodnik, I. B.; Lapshina, E. A.; Shkodich, A. P.; Bryszewska, M.; Buko, V. V. Biochemistry (Moscow) 2000, 65, 946–951; (c) Lin, R. C.; Li, T. K. Am. J. Clin. Nutr. 1998, 68, 1512S; (d) Kawaguchi, K.; Melloalves, S.; Watanabe, T.; Kikuchi, S.; Satake, M.; Kumazawa, Y. Planta Med. 1998, 329, 855–859; (e) Matsubara, Y.; Suekuni, H.; Honda, S.; Kakehi, K.; Murakami, T.; Okamoto, K.; Miyake, H. Jpn. Heart J. 1980, 21, 583; (f) lizuka, Y.; Murakami, T.; Matsubara, Y.; Yokoi, K.; Okamoto, K.; Yokoi, K. Agric. Biol. Chem. 1986, 50, 781; (g) Matsubara, Y.; Savabe, A. J. Synth. Org. Chem. Jpn. 1994, 52, 318–327; (h) Kawasaki, M.; Hayashi, T.; Arisawa, M.; Morita, N.; Berganza, L. H. Phytochemistry 1988, 27, 3709–3711; (i) Ohsugi, T.; Nishida, R.; Fukami, H. Agric. Biol. Chem. 1985, 49, 1897–1900.
- (a) Frick, W.; Schmidt, R. R. Liebigs Ann. Chem. 1989, 565–570; (b) Mahling, J.-A.; Jung, K.-H.; Schmidt, R. R. Liebigs Ann. 1995, 461–466; (c) Kumazawa, T.; Ohki, K.; Ishida, M.; Sato, S.; Onodera, J.-I.; Matsuba, S. Bull. Chem. Soc. Jpn 1995, 68, 1379–1384; (d) Kumazawa, T.; Minatogawa, T.; Matsuba, S.; Sato, S.; Onodera, J.-i. Carbohydr. Res. 2000, 329, 507–513; (e) Kumazawa, T.; Kimura, T.; Matsuba, S.; Sato, S.; Onodera, J.-i. Carbohydr. Res. 2001, 334, 183–193; (f) Lee, D. Y. W.; Zhang, W.-Y.; Karnati, V. V. R. Tetrahedron Lett. 2003, 44, 6857–6859; (g) Oyama, K.-i.; Kondo, T. J. Org. Chem. 2004, 69, 5240–5246; (h) Sato, S.; Hiroe, K.; Kumazawa, T.; Onodera, J.-i. Carbohydr. Res. 2006, 341, 1091–1095.
- Sato, S.; Akiya, T.; Nishizawa, H.; Suzuki, T. Carbohydr. Res. 2006, 341, 964–970.
 Sato, S.; Akiya, T.; Suzuki, T.; Onodera, J.-i. Carbohydr. Res. 2004, 339, 2611–2614.
- Yasukawa, K.; Kaneko, T.; Yamanouchi, S.; Takido, M. Yakugaku Zasshi 1986, 106, 517–519.
- 7. Seikel, M. K.; Chow, J. H. S.; Felman, L. Phytochemistry 1966, 5, 439-455.
- 8. Jay, M.; Ismaili, A. Phytochemistry 1989, 28, 3035-3037.
- 9. Johnson, R. H.; Wallace, J. W. Biochem. Syst. Ecol. 1988, 16, 521-523.
- 10. Shammas, G.; Couladi, M. Sci. Pharm. 1988, 56, 277–281.
- 11. Porter, P. L.; Wallace, J. W. Biochem. Syst. Ecol. 1988, 16, 261-262.
- 12. Seetharamamma, B.; Rao, C. V.; Gunasekar, D. Indian J. Nat. Prod. 1989, 5, 22.
- 13. Chaboud, A.; Raynaud, J.; Dellamonica, G. Pharm. Acta Helv. 1989, 64, 16-18.
- 14. Purushothaman, K. K.; Vasanth, S. Indian Drugs 1986, 23, 482.
- 15. Hillis, W. E.; Horn, D. H. S. Aust. J. Chem. 1965, 18, 531-542.
- (a) Voigtlaender, H.-W.; Haertner, H. Arch. Pharm. 1983, 316, 3, 219–222; (b) Lee, Y.-J.; Wu, T.-D. J. Chin. Chem. Soc. 2001, 48, 201–206.
- (a) Kumazawa, T.; Assahi, N.; Matsuba, S.; Sato, S.; Furuhata, K.; Onodera, J.-i. *Carbohydr. Res.* **1998**, *308*, 213–216; (b) Kumazawa, T.; Chiba, M.; Matsuba, S.; Sato, S.; Onodera, J.-i. *Carbohydr. Res.* **2000**, *328*, 599–603; (c) Sato, S.; Kumazawa, T.; Watanabe, K.-i.; Matsuba, S.; Onodera, J.-i. *Carbohydr. Res.* **2004**, *339*, 429–433; (d) Sato, S.; Miura, M.; Sekito, T.; Kumazawa, T. J. Carbohydr. Chem. **2008**, *27*, 86–102.