

Carbohydrate Research 337 (2002) 207-215

CARBOHYDRATE RESEARCH

www.elsevier.com/locate/carres

A facile regio- and stereoselective synthesis of mannose octasaccharide of the *N*-glycan in human CD2 and mannose hexasaccharide antigenic factor 13b

Yuliang Zhu, Langqiu Chen, Fanzuo Kong*

Research Center for Eco-Environmental Sciences, Academia Sinica, PO Box 2871, Beijing 100085, China

Received 5 September 2001; accepted 14 November 2001

Abstract

A highly concise and effective synthesis of the mannose octas accharide of the N-linked glycan in the adhesion domain of human CD2 was achieved via TMSOTf-promoted selective 6-glycosylation of a trisaccharide 4,6-diol acceptor with a pentas accharide donor, followed by deprotection. The pentas accharide was constructed by selective 3,6-diglycosylation of 1,2-*O*-ethylidene- β -Dmannopyranose with 2-*O*-acetyl-3,4,6-tri-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 2)-3,4,6-tri-*O*-benzoyl- α -D-mannopyranosyl trichloroacetimidate, while the trisaccharide was obtained by selective 3-O-glycosylation of allyl 4,6-*O*-benzylidene- α -D-mannopyranoside with the same disaccharide trichloroacetimidate, followed by debenzylidenation. The mannose hexas accharide antigenic factor 13b was synthesized by condensation of a trisaccharide donor, 2-*O*-acetyl-3,4,6-tri-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 2)-3,4,6-tri-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 3)-4,6-di-*O*-acetyl-2-*O*-benzoyl- α -D-mannopyranosyl trichloroacetimidate, with a trisaccharide acceptor, methyl 3,4,6-tri-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 2)-3,4,6-tri-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 2)-

Keywords: Mannose oligosaccharides; Trichloroacetimidates; Regio- and stereoselective synthesis

1. Introduction

Human CD2, a cell-surface glycoprotein on T lymphocytes and natural killer cells, is important in mediating both cellular adhesion and signal transduction through interactions with its counterreceptor, CD58.¹ The adhesion domain of CD2 bears a single N-linked carbohydrate containing mannose oligosaccharides.² Recny et al. indicated that glycosylation is required for human CD2 adhesion function.³ Moreover, transmembrane CD2 variants with mutations in the consensus N-glycosylation sequence Asn⁶⁵–Gly⁶⁶– Thr⁶⁷ (N65Q³ or T67A⁴) that preclude attachment of the high mannose N-glycan at Asn⁶⁵ could be normally expressed on cell surfaces, but showed neither antibodynor ligand-binding activity. These data suggest that the N-linked adhesion domain glycan on human CD2 plays an important role in maintaining native receptor structure. Wagner and co-workers investigated the solution structure of a fragment containing the high mannose N-glycan by NMR spectrometry.² Bewley and Otero-Quintero reported the important binding of anti-HIV protein cyanovirin-N to high mannose oligosaccharides very recently.⁵ For a study of the details of the recognition mechanism, chemically synthesized oligosaccharides are required because such homogeneous oligosaccharide samples are hardly obtainable from natural sources. We present herein a facile and convergent synthesis of the mannose octasaccharide of the N-glycan in the adhesion domain of human CD2. Meanwhile we also describe an efficient synthesis of mannose hexasaccharide antigenic factor 13b⁶ using a similar strategy and the same synthons.

^{*} Corresponding author. Tel.: + 86-10-62936613; fax: 86-10-62923563.

E-mail address: fzkong@mail.rcees.ac.cn (F. Kong).

2. Results and discussion

Scheme 1 shows the structure of the high-mannose N-glycan of human $CD2_{105}$ containing the D1 D2 isomer of Man-8 as marked with a bracket. Retrosynthetic analysis indicated that the mannose octamer can be obtained by condensation of two moieties, i.e., a mannose pentamer donor and a mannose trimer acceptor. The pentasaccharide then can be constructed from a disaccharide donor and a 1,2-ethylidenated mannose acceptor, while the trisaccharide can be built from the same disaccharide donor and another simple mannose derivative.

We previously reported a highly regio- and stereoselective method⁷ through orthoester formation-rearrangement for the synthesis of oligosaccharides, and some biologically important oligosaccarides such as the phytoalexin elicitor hexasaccharide were efficiently synthesized.⁸ Later on we found that by controlling the reaction conditions, $(1 \rightarrow 6)$ -linked oligosaccharides with 1,2-trans linkages were readily constructed with acylated glycosyl trichloroimidates as the donors and unprotected or partially protected saccharides as the acceptors through orthoester intermediates.9 We also found that $(1 \rightarrow 2)$ -linked mannosyl disaccharides were easily synthesized by self-condensation of benzoylated mannose 1,2-orthoester.¹⁰ Based on these new findings, we designed a concise and effective route for the synthesis of the mannosyl octasaccharide as shown in Scheme 2.

Orthoester **3** was obtained from acetylated mannosyl bromide **1** through the intermediate **2** in high yield (90%) by a previously reported method.¹¹ Self-conden-

Scheme 1.

sation of 3 promoted by catalytic TMSOTf gave the disaccharide 4 in satisfactory yield (66%). Deallylation with PdCl₂, followed by activation with CCl₃CN in the presence of DBU or K₂CO₃, produced the disaccharide donor 5. Regioselective coupling of 5 with allyl 4,6-Obenzylidene- α -D-mannopyranoside (6)¹² resulted in the $(1 \rightarrow 3)$ -linked trisaccharide 7, and subsequent acetylation yielded the trisaccharide 8. The ¹H NMR spectrum of 8 showed H-2 of the reducing mannose at δ 5.42 ppm with $J_{1,2}$ 1.4 and $J_{2,3}$ 2.8 Hz, indicating the 3-selective glycosylation of 6. Debenzylidenation of 8 gave the trisaccharide acceptor 9. For the pentasaccharide donor synthesis, 1,2-O-ethylidene- β -D-mannopyranose (10) was chosen as the starting material since its glycosylation has excellent regioselectivity for both the 6- and 3-positions via orthoester intermediates,^{7b} and its ethylidene group is readily removed for the next reaction. Thus, coupling of 5 (2.2 equiv) with 10 in dichloromethane in the presence of catalytic TMSOTf produced the pentasaccharide 11. It was noted that addition of TMSOTf was performed at -20 °C to ensure that at the initial stage of the reaction, the orthoester was formed with high regioselectivity,^{7b,9} and then it rearranged to the required pentasaccharide along with extension of the reaction time. If TMSOTf was added at room temperature, the reaction was very fast, and the 3,4,6-trisubstituted heptasaccharide was the major product, even if only 2 equiv of 5 were used. Acetylation of 11 gave fully protected pentasaccharide 12, and its ¹H NMR spectrum showed a newly emerged triplet at δ 5.20 ppm with $J_{3,4} = J_{4,5}$ 10 Hz for H-4 confirming the 3,6-glycosylation of 10. Removal of the ethylidene group of 12 with 90% trifluoroacetic acid, followed by acetylation with acetic anhydride in pyridine, selective 1-O-deacetylation with (NH₄)₂CO₃ and subsequent activation with CCl₃CN in the presence of DBU or K₂CO₃ afforded the pentasaccharide donor 14. Selective 6-O-glycosylation of $9^{9,13}$ with 14 produced the octasaccharide 15 as the major product. Acetylation of 15 gave the fully acylated octasaccharide 16, and the structures of 15 and 16 were characterized by mass spectrometry, which showed m/z 3479 [M⁺] and 3521 $[M^+]$, respectively. The ¹³C NMR spectrum of **16** gave eight signals for C-1 from δ 96.0–99.7 ppm, with $^{2}J_{C-1-H-1}$ 170–174 Hz, indicating all α linkages. Deacvlation was conducted at room temperature in ammonia-saturated methanol for one week giving the target mannose octasaccharide 17, whose bioassay is in process.

The synthesis of mannose hexasaccharide antigenic factor 13b was accomplished using a similar strategy and the same synthons, as shown in Scheme 3. Thus, coupling of 2-*O*-acetyl-3,4,6-tri-*O*-benzoyl- α -D-mannopyranosyl trichloroacetimidate (**18**)¹⁰ with methyl 3,4,6-

Scheme 2. Reagents: (a) lutidine, CH_2Cl_2 , 4 Å MS, then MeONa, MeOH; (b) BzCl-pyridine (dry); (c) TMSOTf, CH_2Cl_2 , 4 Å MS; (d) PdCl₂, CH_2Cl_2 ; (e) CCl₃CN, DBU, CH_2Cl_2 ; (f) Ac₂O-pyridine (dry); (g) 99.9:0.1 CH₃OH-CH₃COCl; (h) 90% CF₃COOH; (i) DMF, (NH₄)₂CO₃; (j) NH₃-MeOH.

tri-O-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-Obenzoyl- α -D-mannopyranoside $(19)^{10}$ gave the trisaccharide 20, and subsequent deacetylation afforded the trisaccharide acceptor 21.¹⁰ The trisaccharide donor 26 was obtained from 7 through benzoylation (\rightarrow 22), debenzylidenation (\rightarrow 23), acetylation (\rightarrow 24), deallylation (\rightarrow 25), and trichloroacetimidation. Condensation of 26 with 21 yielded the hexasaccharide 27, and its deacylation gave the antigenic factor 13b.

In summary, we present herein a very effective regioand stereoselective synthesis of the mannose octasaccharide of the N-glycan in human CD2 and the mannose hexasaccharide antigenic factor 13b. Preparation on large scale is possible owing to the relatively simple procedure and convenient raw materials. The method described will be suitable for the preparation of higher mannose oligosaccharides with similar structure.

3. Experimental

General methods.-Optical rotations were determined at 25 °C with a Perkin-Elmer model 241-MC automatic polarimeter. Melting points were determined with a 'Mel-Temp' apparatus. ¹H NMR, ¹³C NMR and ¹H-¹H COSY and ¹H-¹³C COSY spectra were recorded with Bruker ARX 400 spectrometers (400 MHz for ¹H, 100 MHz for ¹³C) at 25 °C for solutions in $CDCl_3$ or D_2O as indicated. Chemical shifts are given in ppm downfield from internal Me₄Si. Mass spectra were measured using MALDI-TOF-MS with CCA as matrix or recorded with a VG PLATFORM mass spectrometer using the ESI mode. IR spectra were recorded with a Hitachi 270-30 spectrometer. Thinlayer chromatography (TLC) was performed on Silica Gel HF₂₅₄ with detection by charring with 30% (v/v) H₂SO₄ in MeOH or in some cases by a UV lamp.

Scheme 3. Reagents: (a) TMSOTf, CH_2Cl_2 , 4 Å MS; (b) 95:5 CH_3OH-CH_3COCl ; (c) BzCl-pyridine (dry); (d) 99.9:0.1 CH_3OH-CH_3COCl ; (e) $Ac_2O-pyridine$ (dry); (f) $PdCl_2$, HOAc-NaOAc; (g) CCl_3CN , DBU, CH_2Cl_2 ; (h) TMSOTf, CH_2Cl_2 , 4 Å MS; (i) NH_3-MeOH .

Column chromatography was conducted by elution of a column (16×240 mm, 18×300 mm, 35×400 mm) of silica gel (100-200 mesh) with EtOAc-petroleum ether (60-90 °C) as the eluent. Solutions were concentrated at < 60 °C under reduced pressure.

Allvl 2-O-acetyl-3,4,6-tri-O-benzoyl-α-D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-O-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 3)$ -4,6-O-benzylidene- α -D-mannopyranoside (7).—The disaccharide donor 5^{10} (1153 mg, 1 mmol) and the monosaccharide acceptor 6 (308 mg, 1 mmol) were dried together under high vacuum for 2 h, then dissolved in anhyd CH₂Cl₂ (50 mL). TMSOTf (15 µL, 0.08 equiv) was added dropwise at -20 °C with N₂ protection. The reaction mixture was stirred for 2 h, during which time the reaction temperature was gradually raised to ambient temperature. Then the mixture was neutralized with triethylamine and concentrated under reduced pressure to an oily residue. Purification by column chromatography (1:1.5 petroleum ether-EtOAc) gave 7 (1194 mg, 92%) as colorless crystals: mp 135–137 °C; $[\alpha]_{D}$ – 2.0° (*c* 0.9, CHCl₃); ¹H NMR (CDCl₃): δ 8.06–7.32 (m, 30 H, Bz–H), 5.95–5.85 (m, 3 H, H-3", H-4", CH₂=CH-CH₂), 5.83 (dd, J_{2,3} 3.0, J_{3,4} 10.0 Hz, 1 H, H-3'), 5.77 (dd, J_{4,5} 10.1 Hz, 1 H, H-4'), 5.61 (dd, J_{2,3} 3.0, J_{1,2} 1.5 Hz, 1 H, H-2'), 5.56 (s, 1 H,

Ph–C*H*), 5.40 (dd, 1 H, C*H*₂=CH–CH₂), 5.30 (dd, 1 H, C*H*₂=CH–CH₂), 5.02 (s, 1 H, H-1"), 4.91 (s, 1 H), 4.90 (s, 1 H), (H-1, H-1'), 4.60–4.50 (m, 2 H), 4.47 (dd, $J_{2,3}$ 2.8, $J_{1,2}$ 1.3 Hz, 1 H, H-2), 4.36 (dd, $J_{3,4}$ 10.0 Hz, 1 H, H-3), 4.29–4.17 (m, 3 H), 4.15–4.05 (m, 3 H), 4.02– 3.95 (m, 3 H), 3.88 (dd, 1 H, CH₂=CH–C*H*₂), 3.82 (dd, $J_{4,5}$ 10.0 Hz, 1 H, H-4), 2.01 (s, 3 H, CH₃CO); ¹³C NMR (CDCl₃): δ 169.29, (CH₃CO), 166.48, 165.89, 165.69, 165.67, 165.45, 165.07, (4 C₆H₅CO), 101.92, (Ph–C), 99.95, 99.39, 98.87, (C-1^{I–III}), 78.66, (C-3), 75.84, 73.32, 71.28, 70.51, 69.83, 69.46, 69.44, 68.91, 67.89, 66.85, 64.14, 63.40, 62.77, 55.01 (C-2,3,4,5,6^{I–III}). Anal. Calcd for C₇₂H₆₆O₂₃: C, 66.56; H, 5.08. Found: C, 66.68; H, 5.01.

Allyl 2-O-acetyl-3,4,6-tri-O-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-O-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 3)$ -2-O-acetyl-4,6-O-benzylidene- α -D-mannopyranoside (8).—Acetic anhydride (1 mL, 10 mmol) was added dropwise to a solution of 7 (1298 mg, 1 mmol) in pyridine (30 mL), and the mixture was stirred overnight at rt. TLC (1.5:1 petroleum ether–EtOAc) indicated that the reaction was complete. The mixture was diluted with CH₂Cl₂, washed with 1 N HCl, water, and satd aq NaHCO₃. The organic layers were combined, dried, and concentrated. Purification by column chromatography (2:1 petroleum ether-EtOAc) quantitatively gave 8 as colorless crystals: mp 130–132 °C; $[\alpha]_{\rm D} - 7.3^{\circ}$ (c 0.9, CHCl₃); ¹H NMR (CDCl₃): δ 8.09– 7.35 (m, 30 H, Bz–H), 5.97 (t, $J_{3,4} = J_{4,5}$ 10.0 Hz, 1 H, H-4"), 5.93-5.85 (m, 2 H, H-3", CH2=CH-CH2), 5.81 (dd, J_{2.3} 3.0, J_{3.4} 10.0 Hz, 1 H, H-3'), 5.72 (t, J_{4.5} 10.1 Hz, 1 H, H-4'), 5.63 (dd, J_{2.3} 3.0, J_{1.2} 1.5 Hz, 1 H, H-2"), 5.55 (s, 1 H, Ph-CH), 5.42 (dd, J₂, 2.8, J₁, 1.4 Hz, 1 H, H-2), 5.32 (dd, 1 H, CH₂=CH-CH₂), 5.24 (dd, 1 H, CH₂=CH-CH₂), 5.05 (d, 1 H, H-1"), 4.96 (s, 1 H), 4.86 (s, 1 H), (H-1, H-1'), 4.60-4.50 (m, 2 H), 4.40 (dd, J_{2.3} 2.8, J_{1.2} 1.3 Hz, 1 H, H-2), 4.36 (dd, J_{3.4} 10.0 Hz, 1 H, H-3), 4.29-4.20 (m, 2 H), 4.15-4.05 (m, 3 H), 4.02–3.95 (m, 3 H), 3.88 (dd, 1 H, CH₂=CH–CH₂), 3.84 (t, J_{4.5} 10.0 Hz, 1 H, H-4), 2.39 (s, 3 H, CH₃CO) 1.97 (s, 3 H, CH₃CO). Anal. Calcd for $C_{74}H_{68}O_{24}$: C, 66.27; H, 5.07. Found: C, 66.40; H, 5.00.

2-O-acetyl-3,4,6-tri-O-benzoyl-α-D-mannopy-Allvl ranosvl- $(1 \rightarrow 2)$ -3,4,6-tri-O-benzovl- α -D-mannopvran $osyl-(1 \rightarrow 3)$ -2-O-acetyl- α -D-mannopyranoside (9).— Acetyl chloride (0.05 mL, 0.7 mmol) was added dropwise to a solution of 8 (1340 mg, 1 mmol) in MeOH (50 mL), and the mixture was stirred overnight at rt. TLC (1.5:1 petroleum ether-EtOAc) indicated that the reaction was complete, and the mixture was concentrated. Purification by column chromatography (1.5:1)petroleum ether-EtOAc) gave 9 (1127 mmg, 90%) as a colorless solid: $[\alpha]_D - 10.3^\circ$ (c 1.3, CHCl₃); ¹H NMR (CDCl₃): δ 8.06–7.26 (m, 30 H, Bz–H), 5.96 (dd, $J_{3,4} = J_{4,5}$ 10.0 Hz, 1 H, H-4"), 5.90–5.78 (m, 3 H, H-4', H-3", CH₂=CH-CH₂), 5.75 (dd, J_{2,3} 3.0, J_{3,4} 10.0 Hz, 1 H, H-3'), 5.65 (dd, J_{2,3} 2.9, J_{1,2} 1.4 Hz, 1 H, H-2"), 5.62 (dd, J_{2.3} 2.8, J_{1.2} 1.4 Hz, 1 H, H-2), 5.38 (s, 1 H, H-1"), 5.28 (dd, 1 H, CH₂=CH-CH₂), 5.20 (dd, 1 H, CH2=CH-CH2), 5.12 (s, 1 H, H-1'), 4.84 (s, 1 H, H-1), 4.64–4.38 (m, 8 H), 4.18 (m, 1 H), 4.14 (dd, J_{2.3} 3.0, J_{3.4} 10.0 Hz, 1 H, H-3), 4.06 (dd, $J_{3,4} = J_{4,5}$ 10.0 Hz, 1 H, H-4), 3.95 (dd, 1 H, CH₂=CH-CH₂), 3.78 (dd, J₂, 2.9, J₁, 1.4 Hz, 1 H, H-2'), 3.70 (dd, 1 H, CH₂=CH-CH₂), 2.22 (s, 3 H, CH₃CO) 2.02 (s, 3 H, CH₃CO); ¹³C NMR (CDCl₂): δ 170.18, 169.84, (2 CH₃CO), 166.28, 166.09, 165.49, 165.47, 164.44, 164.42, (6 C₆H₅CO), 99.97, 99.69, 97.97, (C-1^{I-III}), 78.60, (C-3), 75.64, 72.37, 71.20, 70.83, 69.54, 69.48, 69.10, 68.97, 68.44, 68.07, 67.17, 64.92, 64.89, 62.30, (C-2,3,4,5,6^{I-III}). Anal. Calcd for C₆₇H₆₄O₂₄: C, 64.22; H, 5.11. Found: C, 63.96; H, 5.14.

2-O-Acetyl-3,4,6-tri-O-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 2)-3,4,6-tri-O-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 3)-[-2-O-acetyl-3,4,6-tri-O-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 2)-3,4,6-tri-O-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 6)]-1,2-O-ethylidene- β -D-mannopyranose (11).—The disaccharide donor 5 (1268 mg, 1.1 mmol) and the monosaccharide acceptor 10 (103 mg, 0.5 mmol) were dried together under high vacuum for 2 h, then dissolved in anhyd CH₂Cl₂ (30 mL). TMSOTf (15 µL, 0.08 equiv) was added dropwise at -20 °C with N₂ protection. The reaction mixture was stirred for 3 h, during which time the reaction temperature was gradually raised to ambient temperature. Then the mixture was neutralized with triethylamine and concentrated under reduced pressure to give an oily residue. Purification by column chromatography (1:1.5 petroleum ether-EtOAc) gave 11 (940 mg, 86%) as a colorless solid: mp $141-144 \,^{\circ}C; \, [\alpha]_{D} - 11.5^{\circ} \, (c \, 1.1, \, CHCl_3); \, {}^{1}H \, NMR$ (CDCl₃): δ 7.98–7.25 (m, 60 H, Bz–H), 6.03–5.85 (m, 8 H), 5.67 (dd, J 3.0, J 1.7 Hz, 1 H), 5.64 (dd, J 3.1, J 1.7 Hz, 1 H), 5.53 (s, 1 H), 5.26 (q, 1 H, CH₃-CH), 5.20 (s, 1 H), 5.12 (d, J 1.6 Hz, 1 H), 5.08 (d, J 1.7 Hz, 1 H), 5.05 (d, J 1.7 Hz, 1 H), 4.60-4.46 (m, 13 H), 4.42 (dd, J 3.0, J 1.7 Hz, 1 H), 4.20 (dd, J 3.0, J 1.7 Hz, 1 H), 4.04 (t, J 10.0 Hz, 1 H), 3.98-3.94 (m, 1 H), 3.83 (dd, J 3.2, J 10.0 Hz, 1 H), 3.75–3.68 (m, 1 H), 3.41–3.37 (m, 1 H), 2.01 (s, 3 H, CH₃CO), 2.00 (s, 3 H, CH₃CO), 1.50 (d, 3 H, CH₃-CH). Anal. Calcd for C₁₂₀H₁₀₆O₄₀: C, 65.87; H, 4.85. Found: C, 65.98; H, 4.80.

2-O-Acetyl-3,4,6-tri-O-benzoyl-α-D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-O-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 3)$ -[2-O-acetyl-3,4,6-tri-O-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-O-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-O-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-O-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -6)]-4-O-acetyl-1,2-O-ethylidene- β -D-mannopyranose (12).—Acetic anhydride (1 mL, 10 mmol) was added dropwise to a solution of 11 (2186 mg, 1 mmol) in pyridine (30 mL), and the mixture was stirred overnight at rt. TLC (1.5:1 petroleum ether-EtOAc) indicated that the reaction was complete. The mixture was diluted with CH₂Cl₂, washed with 1 N HCl, water, and satd aq NaHCO₃. The organic layers were combined, dried, and concentrated. Purification by column chromatography (2:1 petroleum ether-EtOAc) quantitatively gave 12 as a colorless solid: mp 138–139 °C; $[\alpha]_D$ -4.5° (c 1.0, CHCl₃); ¹H NMR (CDCl₃): δ 8.09–7.25 (m, 60 H, Bz-H), 6.03-5.82 (m, 7 H), 5.80 (dd, J 3.1, J 10.0 Hz, 1 H), 5.69 (dd, J 3.0, J 1.7 Hz, 1 H), 5.62 (dd, J 3.0, J 1.7 Hz, 1 H), 5.28 (dd, 1 H, CH₃-CH), 5.22 (s, 1 H), 5.20 (t, J 10.0 Hz, 1 H), 5.18 (s, 1 H), 5.09 (s, 1 H), 5.08 (s, 1 H), 5.04 (s, 1 H), 4.63–4.44 (m, 12 H), 4.48 (dd, J 3.0, J 1.7 Hz, 1 H), 4.30 (dd, J 3.1, J 1.6 Hz, 1 H), 4.23 (dd, J 3.0, J 1.5 Hz, 1 H), 3.90-3.80 (m, 2 H), 3.60-3.55 (m, 1 H), 3.46-3.40 (m, 1 H), 2.12 (s, 3 H, CH₃CO), 2.01 (s, 3 H, CH₃CO), 2.00 (s, 3 H, CH₃CO), 1.46 (d, 3 H, CH₃-CH). Anal. Calcd for C122H108O41: C, 65.71; H, 4.85. Found: C, 65.84; H 4.73.

2-O-Acetyl-3,4,6-tri-O-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 2)-3,4,6-tri-O-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 3)-[2-O-acetyl-3,4,6-tri-O-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 2)-3,4,6-tri-O-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 6)]-2,4-di-O-acetyl-D-mannopyranose (13).—Compound 12 (2228 mg, 1 mmol) was treated with 90% F₃CCOOH (10 mL) at rt for 1 h, and the solution was concentrated and co-concentrated with toluene. The residue was dissolved in pyridine (10 mL) and treated with Ac₂O (3 mL) for 2 h. After conventional workup, the residue was subjected to column chromatography (1.5:1 petroleum ether-EtOAc) to yield 2-O-acetyl-3,4,6-tri-O-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6tri-O-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 3)$ -[2-O-acetyl-3,4,6-tri-*O*-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-O-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 6)$]-1,2,4tri-O-acetyl- α , β -D-mannopyranose as a solid (1941 mg, 85%). A solution of the solid (1142 mg, 0.5 mmol) and ammonium carbonate (790 mg, 10 mmol) in DMF (20 mL) was stirred for 12 h at rt, at the end of which time TLC (2:1 petroleum ether-EtOAc) indicated that the reaction was complete. Water was added, and the mixture was diluted with CH₂Cl₂, washed with 1 N HCl, water, and satd aq NaHCO₃. The organic layer was combined, dried, and concentrated. The residue thus obtained was passed through a short silica gel column with 2:1 petroleum ether-EtOAc as the eluent to give 13 as a solid consisting predominantly of the α anomer (1021 mg, 91%): $[\alpha]_D$ – 13.2° (*c* 1.1, CHCl₃); ¹H NMR (CDCl₃): δ 8.01–7.26 (m, 60 H, Bz–H), 5.95–5.83 (m, 7 H), 5.70 (dd, J 3.0, J 10.0 Hz, 1 H), 5.64 (dd, J 3.1, J 1.5 Hz, 1 H), 5.60 (dd, J 3.0, J 1.5 Hz, 1 H), 5.49 (dd, J 3.0, J 1.5 Hz, 1 H), 5.40 (s, 1 H), 5.24 (s, 1 H), 5.22 (t, J 10.0 Hz, 1 H), 5.20 (s, 1 H), 5.08 (s, 1 H), 5.02 (s, 1 H), 4.66-4.37 (m, 14 H), 4.22 (dd, J 3.0, J 1.5 Hz, 1 H), 4.00–3.95 (m, 1 H), 3.77–3.73 (dd, 1 H), 3.58–3.55 (m, 1 H), 2.30 (s, 3 H, CH₃CO), 2.19 (s, 3 H, CH₃CO), 2.01 (s, 3 H, CH₃CO), 2.00 (s, 3 H, CH₃CO); ¹³C NMR (CDCl₃): δ 170.52, 170.04, 169.31, 169.26, (4 CH₃CO), 166.66, 166.53, 166.45, 166.15, 165.70, 165.67, 165.65, 165.55, 165.42, 165.28, 165.11, 164.98, (12 C₆H₅CO), 100.47, 99.76, 99.36, 98.97, 92.36 (C-1^{I-V}), 79.08 (C-3), 77.28, 77.28 (C-2), 72.86, 71.32, 70.59, 70.06, 69.94, 69.73, 69.70, 69.67, 69.64, 69.61,69.58, 69.38, 69.11, 68.47, 68.20, 67.49, 67.12, 66.88, 63.97, 63.86, 63.33, 63.04, (C-2,3,4,5,6^{I-V}). Anal. Calcd for C₁₂₂H₁₀₈O₄₂: C, 65.24; H, 4.81. Found: C, 65.08; H, 4.88.

2-O-Acetyl-3,4,6-tri-O-benzoyl-α-D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-O-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 3)$ - $[2-O-acetyl-3,4,6-tri-O-benzoyl-\alpha-D-mannopyranosyl (1 \rightarrow 2)$ -3,4,6-tri-O-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -6]-2,4-di-O-acetyl- α -D-mannopyranosyl trichloroace*timidate* (14).—The compound 13 (2244 mg, 1 mmol) was dissolved in CH₂Cl₂ (20 mL), and CCl₃CN (0.1 mL, 1 mmol) and DBU (14 µL, 0.1 mmol) were added. The reaction mixture was stirred for 2 h, at the end of which time TLC (2:1 petroleum ether-EtOAc) indicated that the reaction was complete. Concentration of the reaction mixture, followed by purification on a silica gel column with 2:1 petroleum ether-EtOAc as eluent furnished the pentasaccharide donor 14 as crystals in a good yield (2150 mg, 90%): mp 135-137 °C; $[\alpha]_{\rm D} = -9.5^{\circ}$ (c 1.3, CHCl₃); ¹H NMR (CDCl₃): δ 9.03 (s, 1 H, C=NH), 8.10-7.26 (m, 60 H, Bz-H), 6.35 (d, J_{1.2} 1.5 Hz, 1 H, H-1), 6.05 (t, J 10.0 Hz, 1 H), 5.96 (t,

J 10.1 Hz, 2 H), 5.91 (t, J 10.1 Hz, 1 H), 5.88 (dd, J 3.0, J 10.0 Hz, 1 H), 5.85 (dd, J 3.0, J 10.0 Hz, 1 H), 5.80 (dd, J 3.0, J 10.1 Hz, 1 H), 5.74 (dd, J 3.0, J 10.1 Hz, 1 H), 5.68–5.66 (m, 2 H), 5.64 (dd, J 3.0, J 1.5 Hz, 1 H), 5.45 (t, J 10.0 Hz, 1 H), 5.43 (s, 1 H), 5.17 (s, 1 H), 5.09 (s, 2 H), 4.61–4.43 (m, 13 H), 4.33 (dd, J 3.0, J 1.5 Hz, 1 H), 4.30 (dd, J 3.0, J 1.5 Hz, 1 H), 4.22–4.18 (m, 1 H), 3.89–3.84 (m, 1 H), 3.59–3.56 (m, 1 H), 2.26 (s, 3 H, CH₃CO), 2.10 (s, 3 H, CH₃CO), 2.02 (s, 3 H, CH₃CO), 2.00 (s, 3 H, CH₃CO). Anal. Calcd for $C_{124}H_{108}Cl_3NO_{42}$: C, 62.30; H, 4.52. Found: C, 62.45; H, 4.40.

2-O-acetyl-3,4,6-tri-O-benzoyl-α-D-mannopy-Allyl ranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-O-benzoyl- α -D-mannopyran $osyl - (1 \rightarrow 3) - \{2 - O - acetyl - 3, 4, 6 - tri - O - benzoyl - \alpha - D - benzoyl$ mannopyranosyl - $(1 \rightarrow 2)$ - 3,4,6 - tri - O - benzoyl - α - Dmannopyranosyl- $(1 \rightarrow 3)$ -[2-O-acetyl-3,4,6-tri-O-benzo $yl-\alpha$ -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-O-benzoyl- α -D - mannopyranosyl - $(1 \rightarrow 6)$] - 2,4 - di - O - acetyl - α - Dmannopyranosyl- $(1 \rightarrow 6)$ }-2-O-acetyl- α -D-mannopyranoside (15).—The pentasaccharide donor 14 (1193 mg, 0.5 mmol) and the trisaccharide acceptor 9 (626 mg, 0.5 mmol) were dried together under high vacuum for 2 h, then dissolved in anhyd CH₂Cl₂ (30 mL). TMSOTf (7.5 μ L, 0.08 equiv) was added dropwise at -20 °C with N₂ protection. The reaction mixture was stirred for 3 h, during which time the reaction temperature was gradually raised to ambient temperature. Then the mixture was neutralized with triethylamine and concentrated under reduced pressure to an oily residue. Purification by column chromatography (1:1 petroleum ether-EtOAc) gave 15 (1426 mg, 82%) as a colorless solid: $[\alpha]_{\rm D} = -18.0^{\circ}$ (c 0.9, CHCl₃); ¹H NMR (CDCl₃): δ 8.02-7.26 (m, 90 H, Bz-H), 6.29 (t, J 9.9 Hz, 1 H), 6.03 (t, J 9.9 Hz, 1 H), 5.99-5.84 (m, 6 H), 5.78-5.70 (m, 3 H), 5.67–5.60 (m, 3 H), 5.56 (dd, J 3.0, J 1.5 Hz, 1 H), 5.48-5.30 (m, 6 H), 5.25 (s, 1 H), 5.23 (s, 1 H), 5.15 (s, 1 H), 5.12 (s, 1 H), 5.08 (s, 1 H), 5.04 (s, 1 H), 4.94 (s, 1 H), 4.88 (s, 1 H), 4.70–4.40 (m, 23 H), 4.22 (dd, J 3.0, J 1.5 Hz, 1 H), 4.20 (dd, J 3.0, J 9.9 Hz, 1 H), 3.87-3.76 (m, 3 H), 3.70 (t, J 9.9 Hz, 1 H), 3.60-3.45 (m, 3 H), 2.29 (s, 3 H, CH₃CO), 2.20 (s, 3 H, CH₃CO), 2.08 (s, 3 H, CH₃CO), 2.01 (s, 3 H, 2 CH₃CO), 2.09 (s, 3 H, CH₃CO), 1.95 (s, 6 H, 2 CH₃CO); MALDI-TOF MS: Calcd for C₁₈₉H₁₇₀O₆₅: 3478.99 [M]. Found: 3479 [M]. Anal. Calcd for C₁₈₉H₁₇₀O₆₅: C, 65.21; H, 4.89. Found: C, 65.36; H, 4.76.

Allyl 2-O-acetyl-3,4,6-tri-O-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-O-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 3)$ - $\{2$ -O-acetyl-3,4,6-tri-O-benzoyl- α -Dmannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-O-benzoyl- α -Dmannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-O-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-O-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 6)$]-2,4-di-O-acetyl- α -D-mannopyranpyranosyl- $(1 \rightarrow 6)$]-2,4-di-O-acetyl- α -D-mannopyranoside (16).—Acetic anhydride (1 mL, 10 mmol) was added dropwise to a solution of 15 (1043 mg, 0.3 mmol)

213

in pyridine (20 mL), and the mixture was stirred overnight at rt. TLC (1.5:1 petroleum ether-EtOAc) indicated that the reaction was complete. The mixture was diluted with CH₂Cl₂, washed with 1 N HCl, water, and satd aq NaHCO₃. The organic layers were combined, dried, and concentrated. Purification by column chromatography (1.5:1 petroleum ether-EtOAc) gave 16 quantitatively as a colorless solid: $[\alpha]_D - 14.5^\circ$ (c 1.0, CHCl₃); ¹H NMR (CDCl₃): δ 8.02–7.26 (m, 90 H, Bz-H), 6.31 (t, J 9.9 Hz, 1 H), 6.01 (t, J 9.9 Hz, 1 H), 5.98-5.83 (m, 7 H), 5.78-5.70 (m, 3 H), 5.67-5.60 (m, 3 H), 5.56 (dd, J 3.0, J 1.5 Hz, 1 H), 5.48 (t, J 9.9 Hz, 1 H), 5.45–5.30 (m, 5 H), 5.23 (s, 1 H), 5.20 (s, 1 H), 5.12 (s, 1 H), 5.10 (s, 1 H), 5.08 (s, 1 H), 5.03 (s, 1 H), 4.95 (s, 1 H), 4.92 (s, 1 H), 4.70-4.42 (m, 23 H), 4.25 (dd, J 3.0, J 1.5 Hz, 1 H), 4.20 (dd, J 3.0, J 9.9 Hz, 1 H), 3.87–3.76 (m, 2 H), 3.74 (t, J 9.9 Hz, 1 H), 3.60-3.45 (m, 3 H), 2.28 (s, 3 H, CH₃CO), 2.23 (s, 3 H, CH₃CO), 2.08 (s, 3 H, CH₃CO), 2.01 (s, 3 H, 2 CH₃CO), 2.00 (s, 3 H, CH₃CO), 2.09 (s, 3 H, CH₃CO), 1.96 (s, 3 H, CH₃CO); ¹³C NMR (CDCl₃): δ 170.11, 170.08, 169.56, 169.31, 169.82, 169.79, 169.76, (7 CH₃CO), 165.92, 165.89, 165.83, 165.75, 165.56, 165.51, 165.28, 165.20, 165.01, 165.05, 164.99, 164.95, 164.89, 164.68, 164.56, 164.52, 164.48, 164.27, (18 C₆H₅CO), 99.73, 99.53, 99.49, 99.45, 98.90, 98.19, 97.20, 96.03, (C-1^{I-VIII}), 77.76, 77.42, (C-3), 73.59, 73.47, 73.22, 70.46, 70.25, 70.10, 69.85, 69.31, 69.17, 68.47, 68.24, 68.10, 66.70, 66.56, 66.42, 66.17, 65.83, 63.25, 63.05, 62.64, 62.27, 61.90, (C-2,3,4,5,6^{I-VIII}, some signals overlapped); MALDI-TOF MS: Calcd for C₁₉₁H₁₇₂O₆₆: 3521.01 [M]. Found: 3521 [M]. Anal. Calcd for C₁₉₁H₁₇₂O₆₆: C, 65.11; H, 4.89. Found: C, 65.27; H, 4.81.

Allyl α -D-mannopyranosyl- $(1 \rightarrow 2)$ - α -D-mannopyran $osyl-(1 \rightarrow 3)$ -{ α -D-mannopyranosyl-(1 $\rightarrow 2$)- α -D-mannopyranosyl- $(1 \rightarrow 3)$ - $[\alpha - D - mannopyranosyl-<math>(1 \rightarrow 2) - \alpha - D$ mannopyranosyl- $(1 \rightarrow 6)$]- α -D-mannopyranosyl- $(1 \rightarrow 6)$ }- α -D-mannopyranoside (17).—A saturated solution of ammonia in MeOH (5 mL) was added to a solution of 16 (704 mg, 0.2 mol) in MeOH (4 mL). After a week at rt, the reaction mixture was concentrated, and the residue was purified by chromatography on Sephadex LH-20 (MeOH) to afford 17 (230 mg, 85%) as a syrup; ¹H NMR (D₂O): δ 5.87 (m, 1 H, CH₂=CH–CH₂), 5.31 (s, 1 H), 5.28 (dd, 1 H, CH₂=CH-CH₂), 5.25 (s, 1 H), 5.20 (dd, 1 H, CH₂=CH-CH₂), 5.08 (s, 1 H), 4.95 (s, 3 H), 4.80 (s, 1 H), 4.60 (s, 1 H), 4.05–3.53 (m, 50 H); ¹³C NMR (D₂O): δ 136.88, 118.54, (CH₂=CH-CH₂), 101.98, 101.86, 101.86, 100.56, 100.36, 100.28, 98.99, 97.60, (C-1^{I-VIII}), 78.44, 78.38, (C-3), 72.75, 72.26, 70.71, 70.22, 69.85, 69.58, 69.50, 69.08, 66.42, 66.32, 66.24, 66.03, 65.24, 65.03, 64.65, 60.80, 60.68, 60.48, 59.96, 58.23, (C-2,3,4,5,6^{I-VIII}, CH₂=CH-CH₂, some

signals overlapped); MALDI-TOF MS: Calcd for $C_{51}H_{86}O_{41}$: 1354.46 [M]. Found: 1354.66 [M].

2-O-acetyl-3,4,6-tri-O-benzoyl-α-D-mannopy-Allvl ranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-O-benzoyl- α -D-mannopyran $osyl - (1 \rightarrow 3) - 2 - O - benzoyl - 4,6 - O - benzylidene - \alpha - D$ mannopyranoside (22).—Compound 7 was benzoylated with BzCl-pyridine to furnish 22 as a foamy solid in quantitative yield: $[\alpha]_D - 17.7^\circ$ (c 1.0, CHCl₃); ¹H NMR (CDCl₃): δ 8.02–7.33 (m, 35 H, Bz–H), 6.00 (t, J 10.0 Hz, 1 H), 5.87 (m, 1 H, CH₂=CH-CH₂-), 5.84 (dd, J 3.0, J 10.0 Hz, 1 H), 5.78 (t, J 10.0 Hz, 1 H), 5.75 (dd, J 2.8, J 10.0 Hz, 1 H), 5.70 (dd, J_{2.3} 2.9, J_{1.2} 1.3 Hz, 1 H, H-2), 5.58 (s, 2 H, H-1, H-2"), 5.46 (s, 1 H, Ph-CH), 5.33 (dd, 1 H, CH₂=CH-CH₂), 5.26 (dd, 1 H, CH2=CH-CH2), 5.11 (s, 1 H), 5.04 (s, 1 H), (H-1', H-1"), 4.67–4.54 (m, 4 H), 4.36 (dd, J_{2,3} 2.9, J_{1,2} 1.2 Hz, 1 H, H-2'), 4.28 (m, 1 H), 4.23-4.17 (m, 3 H), 4.08 (m, 1 H), 3.99-3.92 (m, 3 H), 3.85 (t, $J_{4,5}$ 10.0 Hz, 1 H, H-4), 2.02 (s, 3 H, CH₃CO); ¹³C NMR (CDCl₃): δ 168.68 (CH₃CO), 165.98, 165.63, 165.30, 165.13, 164.67, 164.67, 164.45, (7 C_6H_5CO), 136.59, 118.18, (CH₂=CH-CH₂-), 101.51, (Ph-C), 99.15, 98.47, 97.27, (C-1^{I-III}), 78.74, (C-3), 75.20, 71.67, 71.52, 70.22, 69.25, 69.06, 69.06, 69.00, 68.34, 68.05, 66.64, 66.29, 63.23, 63.16, 62.16, (C-2,3,4,5,6^{I-III}, CH₂=CH-CH₂-). Anal. Calcd for C₇₉H₇₀O₂₄: C, 67.62; H, 4.99. Found: C, 67.67; H, 5.01.

2-O-acetyl-3,4,6-tri-O-benzoyl-α-D-mannopy-Allyl ranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-O-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 3)$ -2-O-benzoyl- α -D-mannopyranoside (23). Acetyl chloride (0.05 mL, 0.7 mmol) was added dropwise to a solution of the trisaccharide 22 (1402 mg, 1 mmol) in anhyd MeOH (50 mL). The solution was sealed in a flask and stirred for 2 h at rt. The reaction was monitored by TLC until the starting material disappeared, at which time the solution was neutralized with Et₃N, then concentrated to dryness. The residue was passed through a short silica gel column to give 23 (1246 mg, 96%) as foamy solid that was directly used for the further reaction: $[\alpha]_D - 11.8^\circ$ (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃): δ 8.02–7.33 (m, 35 H, Bz–H), 5.96– 5.80 (m, 4 H, H-4', H-4", H-3', CH₂=CH-CH₂-), 5.71 (dd, J_{2,3} 3.0, J_{3,4} 10.0 Hz, 1 H, H-3'), 5.63 (dd, J_{2,3} 2.9, J_{1,2} 1.3 Hz, 1 H, H-2"), 5.60 (dd, J_{2,3} 2.8, J_{1,2} 1.2 Hz, 1 H, H-2), 5.58 (d, J_{1.2} 1.2 Hz, 1 H, H-1), 5.30 (dd, 1 H, CH₂=CH-CH₂), 5.22 (dd, 1 H, CH₂=CH-CH₂), 5.11 (d, 1 H, H-1"), 5.04 (d, 1 H, H-1'), 4.59-4.39 (m, 8 H), 4.28 (t, J_{4.5} 10.0 Hz, 1 H, H-4), 4.20 (dd, J_{2.3} 2.8, J_{3.4} 10.0 Hz, 1 H, H-3), 4.04-3.97 (m, 3 H), 3.96 (dd, J_{2.3} 3.0 Hz, 1 H, H-2'), 3.79 (m, 1 H), 2.05 (s, 3 H, CH₃CO); ¹³C NMR (CDCl₃): δ 168.78 (CH₃CO), 166.21, 165.93, 165.54, 165.20, 164.97, 164.65, 164.48, (7 C₆H₅CO), 133.03, 117.67, (CH₂=CH-CH₂-), 100.38, 98.23, 96.29, (C-1^{I-III}), 76.84, (C-3), 74.47, 72.05, 71.89, 70.32, 69.09, 68.95, 68.84, 68.09, 68.01, 67.62, 67.21, 67.05, 66.83, 63.06, 61.86, (C-2,3,4,5,6^{I-III}, CH₂=CH-CH₂-). Anal. Calcd for $C_{72}H_{66}O_{23}$: C, 66.56; H, 5.08. Found: C, 67.47; H, 5.01.

Allvl 2-O-acetyl-3,4,6-tri-O-benzoyl-α-D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-O-benzoyl- α -D-mannopyran $osyl-(1 \rightarrow 3)-4, 6-di-O-acetyl-2-O-benzoyl-\alpha-D-manno$ pyranoside (24).—Compound 23 was acetylated with Ac₂O-pyridine to furnish 24 as a foamy solid in quantitative yield: $[\alpha]_D - 7.6^\circ$ (c 1.0, CHCl₃); ¹H NMR (CDCl₃): δ 8.02–7.33 (m, 35 H, Bz–H), 5.95–5.78 (m, 4 H, H-4', H-4", H-3", CH₂=CH-CH₂-), 5.63 (dd, J_{2,3} 3.0, J_{3.4} 10.0 Hz, 1 H, H-3'), 5.58 (s, 2 H, H-2, H-2"), 5.53 (t, J_{3,4} 10.0 Hz, 1 H, H-4), 5.37 (s, 1 H, H-1), 5.33 1 H, CH_2 =CH-CH₂), 5.25 (dd, 1 H, (dd. CH₂=CH-CH₂), 5.07 (s, 1 H, H-1), 4.99 (s, 1 H, H-1), 4.52-4.41 (m, 7 H), 4.29-4.15 (m, 4 H), 4.04 (m, 1 H), 3.91 (m, 1 H), 2.13 (s, 3 H, CH₃CO), 2.12 (s, 3 H, CH₃CO), 1.99 (s, 3 H, CH₃CO); ¹³C NMR (CDCl₃): δ 170.19, 169.38, 168.70, (3 CH₃CO), 165.85, 165.58, 165.41, 165.16, 164.78, 164.43, 164.43, (7 C₆H₅CO), 133.18, 118.25, (CH₂=CH-CH₂-), 99.65, 99.36, 96.09, (C-1^{I-III}), 76.80, (C-3), 74.74, 71.33, 69.71, 69.24, 69.14, 69.10, 68.94, 68.45, 68.13, 67.42, 66.57, 66.48, 62.94, 62.82, 62.08, (C-2,3,4,5,6^{I-III}, CH₂=CH-CH₂-). Anal. Calcd for C₇₆H₇₀O₂₅: C, 65.99; H, 5.07. Found: C, 66.17; H, 5.01.

2-O-Acetyl-3,4,6-tri-O-benzoyl-α-D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-O-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 3)$ -4,6-di-O-acetyl-2-O-benzoyl- α,β -D-mannopyranose (25). -To a solution of 24 (691 mg, 0.5 mmol) in 90% AcOH (10 mL) containing sodium acetate (293 mg, 3 mmol) was added PdCl₂ (89 mg, 0.5 mmol), and the mixture was stirred for 12 h, at the end of which time TLC (2:1 petroleum ether-EtOAc) indicated that the reaction was complete. The mixture was diluted with CH₂Cl₂ (30 mL) and washed with water and satd aq NaHCO₃. The organic layer was concentrated under reduced pressure, and the residue thus obtained was passed through a short silica gel column with 2:1 petroleum ether-EtOAc as the eluent to give 25 as a foamy solid (604 mg, 90%): $[\alpha]_{\rm D} = -29.8^{\circ}$ (c 1.2, CHCl₃); ¹H NMR (CDCl₃): δ 8.02–7.23 (m, 35 H, Bz-H), 5.92 (t, J 10.0 Hz, 1 H), 5.86 (t, J 10.0 Hz, 1 H), (H-4', H-4''), 5.79 (dd, J 2.8, J 10.0 Hz, 1 H), 5.61 (dd, J 2.8, J 10.0 Hz, 1 H), (H-3', H-3"), 5.58 (dd, J_{2,3} 2.8, J_{1,2} 1.2 Hz, 1 H, H-2), 5.55 (s, 1 H, H-1), 5.51 (t, J_{3,4} 10.0 Hz, 1 H, H-4), 5.39 (dd, J_{2.3} 2.8, J_{1.2} 1.2 Hz, 1 H, H-2"), 5.36 (s, 1 H, H-1"), 4.99 (s, 1 H, H-1'), 4.60-4.39 (m, 7 H), 4.23 (m, 2 H, H-3, H-2'), 4.16 (m, 1 H), 4.05 (m, 1 H), 2.10 (s, 3 H, CH₃CO), 2.09 (s, 3 H, CH₃CO), 1.96 (s, 3 H, CH₃CO); ¹³C NMR (CDCl₃): δ 170.32, 169.44, 168.73, (3 CH₃CO), 165.90, 165.73, 165.40, 165.19, 164.81, 164.52, 164.44, (7 C₆H₅CO), 99.46, 99.44, 91.71, (C-1^{I-III}), 76.70, (C-3), 73.98, 71.51, 69.66, 69.42, 69.24, 69.15, 68.97, 68.39, 67.37, 66.68, 66.57, 63.03, 62.87, 62.15, (C-2,3,4,5,6^{I-III}). Anal. Calcd for C₇₃H₆₆O₂₅: C, 65.28; H, 4.92. Found: C, 65.07; H, 5.01.

2-O-Acetyl-3,4,6-tri-O-benzoyl-α-D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-O-benzovl- α -D-mannopyranosyl- $(1 \rightarrow 3)$ -4,6-di-O-acetyl-2-O-benzoyl-α-D-mannopyranosyl trichloroacetimidate (26).-Compound 25 (537 mg, 0.4 mmol) was dissolved in CH₂Cl₂ (20 mL), then CCl₃CN (0.1 ml, 2 mmol) and DBU (14 µL, 0.18 mmol) were added. The reaction mixture was stirred for 2 h, at the end of which time TLC (2:1 petroleum ether-EtOAc) indicated that the reaction was complete. Concentration of the reaction mixture, followed by purification on a silica gel column with 2:1 petroleum ether-EtOAc as the eluent furnished 26 as crystals in good yield (535 mg, 90%): ¹H NMR (CDCl₃): δ 8.79 (s, 1 H, N=H), 8.02-7.23 (m, 35 H, Bz-H), 6.52 (s, 1 H, H-1), 5.95 (t, J 10.0 Hz, 1 H), 5.89 (t, J 10.0 Hz, 1 H), (H-4', H-4"), 5.79–5.75 (m, 2 H, H-2, H-3"), 5.66 (t, J_{34} 10.0 Hz, 1 H, H-4), 5.62 (dd, J_{2.3} 3.0, J_{3.4} 10.0 Hz, 1 H, H-3'), 5.56 (dd, J_{2,3} 2.8, J_{1,2} 1.2 Hz, 1 H, H-2"), 5.38 (s, 1 H, H-1"), 5.03 (s, 1 H, H-1'), 4.52-4.35 (m, 7 H), 4.25-4.18 (m, 4 H), 2.13 (s, 3 H, CH₃CO), 2.08 (s, 3 H, CH₃CO), 1.96 (s, 3 H, CH₃CO). Anal. Calcd for C₇₅H₆₆Cl₃NO₂₅: C, 60.52; H, 4.44. Found: C, 60.37; H, 4.51.

Methyl 2-O-acetyl-3,4,6-tri-O-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-O-benzoyl- α -D-mannopyran $osyl-(1 \rightarrow 3)-4, 6-di$ -O-acetyl-2-O- $benzoyl-\alpha$ -D-mannopyranosyl- $(1 \rightarrow 2)$ - 3,4,6-tri-O-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-O-benzoyl- α -D-mannopyran $osyl-(1 \rightarrow 2)$ -3,4,6-tri-O-benzoyl- α -D-mannopyranoside (27).—Compounds 26 (446 mg, 0.3 mmol) and 21 (437 mg, 0.3 mmol) were dried together under high vacuum for 2 h, then dissolved in anhyd CH₂Cl₂ (50 mL). TMSOTf (5 μ L, 0.08 equiv) was added dropwise at -20 °C with N₂ protection. The reaction mixture was stirred for 2 h, during which time the reaction temperature was gradually raised to ambient temperature. Then the mixture was neutralized with triethylamine and concentrated under reduced pressure to an oily residue. Purification by column chromatography (1:1 petroleum ether-EtOAc) gave 27 (545 mg, 65%) as a colorless foamy solid: $[\alpha]_D - 17.1^\circ$ (c 1.0, CHCl₃); ¹H NMR (CDCl₃): δ 8.19–7.24 (m, 80 H, Bz–H), 6.06 (t, J 10.0 Hz, 1 H), 6.00-5.75 (m, 10 H), 5.64-5.60 (m, 2 H), 5.53 (s, 1 H), 5.40 (s, 2 H), 5.29 (s, 1 H), 5.10 (s, 1 H), 5.06 (s, 1 H), (six H-1), 4.65-4.21 (m, 18 H), 4.17-4.12 (m, 2 H), 4.00 (m, 1 H), 3.90 (m, 1 H), 3.34 (s, 3 H, OCH₃), 2.04 (s, 3 H, CH₃CO), 1.97 (s, 3 H, CH₃CO), 1.94 (s, 3 H, CH₃CO); ¹³C NMR (CDCl₃): δ 170.80, 169.90, 169.17, (3 CH₃CO), 166.64, 166.56, 166.33, 166.28, 166.20, 166.09, 165.88, 165.77, 165.66, 165.50, 165.42, 165.38, 165.31, 165.24, 164.96, 164.75, (16 C₆H₅CO), 100.21, 100.04, 99.90, 99.90, 99.51, 99.51, (C-1^{I-VI}), 76.66, (C-3), 72.09, 72.00, 71.90, 71.72, 71.46, 70.68, 70.60, 69.78, 69.78, 69.66, 69.66, 69.56, 69.50, 68.77, 68.22, 68.22, 67.90, 67.90, 67.07, 67.21, 67.09, 66,55, 64.09, 63.86, 63.86, 63.72, 63.54, 63.07, 62.95, 62.88, 62.49, 62.40, (C-2,3,4,5,6^{I-VI}). Anal. Calcd for $C_{155}H_{134}O_{50}\!\!:$ C, 66.57; H, 4.80. Found: C, 66.42; H, 4.91.

Methyl α -D-mannopyranosyl- $(1 \rightarrow 2)$ - α -D-mannopyranosyl- $(1 \rightarrow 3)$ - α -D-mannopyranosyl $(1 \rightarrow 2)$ - α -D-mannopyranosyl- $(1 \rightarrow 2)$ - α -D-mannopyranosyl- $(1 \rightarrow 2)$ - α -Dmannopyranoside (28).—A solution of 27 (279 mg, 0.1 mmol) in MeOH (4 mL) was added to a saturated solution of ammonia in MeOH (5 mL). After a week at rt, the reaction mixture was concentrated, and the residue was purified by chromatography on Sephadex LH-20 (MeOH) to afford 28 (85 mg, 85%) as a syrup: ¹H NMR (D₂O): δ 5.30 (s, 1 H), 5.20 (s, 2 H), 4.94 (s, 1 H), 4.92 (s, 1 H), 4.89 (s, 1 H), 3.97–3.50 (m, 36 H), 3.29 (s, 3 H, OCH₃). MALDI-TOF MS: Calcd for C₃₇H₆₄O₃₁: 1004.34 [M]. Found: 1004.46 [M].

Acknowledgements

This work was supported by The Chinese Academy of Sciences (Projects $KJ952J_1510$ and KIP-RCEES9904) and by The National Natural Science Foundation of China (Projects 29802009, 39970864, and 30070815).

References

 (a) Moingeon, P.; Chang, H. C.; Sayre, P. H.; Klayton, L. K.; Alcover, A.; Gardner, P. I.; Reinherz, E. L. *Immunol. Rev.* 1989, 4, 111–144; (b) Siliciano, R. F.; Pratt, J. C.; Schmidt, R. E.; Ritz, J.; Reinherz, E. L. *Nature* 1985, *317*, 423–428;
(c) Yang, S. Y.; Chouaib, S.; Dupont, B. J. Immunol. 1986, *137*, 1097–1102;
(d) Hunig, T.; Tiefenthaler, G.; Meyer zum Büschenfelde, K.-H.; Meuer, S. C. *Nature* 1987, *326*, 298–303;
(e) Qin, L.; Chaving, K. D.; Lin, J.; Yagita, H.; Bromberg, J. S. J. Exp. Med. 1994, *179*, 341–349.

- Wyss, D. F.; Choi, J. S.; Li, J.; Knoppers, M. H.; Willis, K. J.; Arulanandam, A. R. N.; Smolyar, A; Reinherz, E. L.; Wagner, G. Science 1995, 269, 1273–1298.
- Recny, M. A.; Luther, M. A.; Knoppers, M. H.; Neidhardt, E. A.; Khandekar, S. S.; Concino, M. F.; Shimke, P. A.; Francis, M. A.; Moebius, U. J. Biol. Chem. 1992, 267, 22428–22434.
- Arulanandam, A. R. N.; Smolyar, A; Reinherz, E. L.; Wagner, G. Proc. Natl. Acad. Sci. USA 1993, 90, 11613– 11620.
- 5. Bewley, C. A.; Otero-Quintero, S. J. Am. Chem. Soc. 2001, 123, 3892–3902.
- Funayama, M.; Nishikawa, A.; Shinoda, T.; Fukazawa, Y. Carbohydr. Res. 1983, 117, 229–239.
- 7. (a) Wang, W.; Kong, F. J. Org. Chem. 1998, 63, 5744–5745;
 (b) Wang, W.; Kong, F. Angew. Chem., Int. Ed. Engl.

(b) wang, W.; Kong, F. Angew. Chem., Int. Ea. Engl. 1999, 38, 1247–1250.

- 8. (a) Wang, W.; Kong, F. J. Org. Chem. 1999, 64, 5091–5095;
 (b) Wang, W.; Kong, F. Carbohydr. Res. 1999, 315, 117–126;
 (c) Wang, W.; Kong, F. Tetrahedron Lett. 1998, 39, 1937–1940.
- 9. Zhu, Y.; Kong, F. Synlett 2000, 663-667.
- 10. Zhu, Y.; Kong, F. Synlett 2000, 1783-1788.
- 11. Wang, W.; Kong, F. J. Carbohydr. Chem. 1999, 18, 264–272.
- 12. Yang, G.; Kong, F. Synlett 2000, 1427-1430.
- 13. Unverzagt, C. Angew. Chem., Int. Ed. Engl. 1994, 33, 1102–1105.