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Summary: 3-Trichloroteliuro ketones 4 generated in situ from siloxycyclopropanes 1

and TeCly react with dimethyl sulfoxide or some amines under mild conditions 1o

provide the corresponding a-methylene ketones 3 in good yields.

Synthetic potentiality of siloxycyclopropanes 1 largely owes to the high degree of site-selectivity in the
ring-opening with electrophiles (usually at @ in 1), which ensures highly selective transformations.] Thus, we
have designed the conversion of 1 to a-methylene ketones 3 via a B-metallo ketone formation/B-elimination
sequence (eq 1).2 In this paper, we report here that (1) B-trichlorotelluro ketones 4 were conveniently prepared
from 1 and TeCly by site-selective ring-opening of 1 at a and that (2) DMSO- or base-induced [-elimination

from 4 took place quickly under mild conditions.
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TeCl, readily reacted with 1 equiv of siloxycyclopropane la in CH,Cly at 0 °C, giving the 8-
trichlorotelluro ketone 4a in 96% yield (eq 2).3 On the other hand, the reaction of 2 equiv of
siloxycyclopropane 1a with TeCl, gave bis(B-acylalkyl)tellurium dichloride Sa in 95 % yield (eq 3).4 The

reaction of 2-methyl- and bicyclic siloxycyclopropanes 1¢-1f with 1 equiv of TeCly gave dc-4f respectively,

which resulted from site-selective cleavage a in 1 with no evidence of formation of products derived from
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cleavage 55 1R spectroscopy of 4a-4f revealed the carbonyl stretching frequencies at 1560-1624 eml,
suggesting the coordination of carbonyl oxygens to TeCly group. On the other hand, the normal carbonyl

stretching band appeared at 1686 em! for 5a.

Me,Si0 TeCly O—=Tecl, DMSO o
(1 equiv) (5 equiv)
CH,Cl,, 0°C 0°C, 10min
1a 4a 3a
96% ~100% (by NMR)
TeCl, DMSO
0.5 equiv (5 equiv)
1a ( quiv) O CITeCl O 3a
CH,Cly, 0°C 0°C, 2h
(3)
5a T2MEDA.
a5, ( equiv) 3a

0°C, 30min 94% (by NMR)

The previous observation that B-trichlorostannyl ketones having a similar intramolecular coordination
undergo dehydrotrichlorostannation by DMSO (dimethyl sulfoxide)2C prompted us to examine the possibility of
dehydrotelluration from 4. Interestingly, when DMSO (5 equiv) was introduced to a solution of 4a in CH, Cl,
at 0 °C, black precipitates immediately appeared and enone 3a was formed quantitatively (eq 2).6 The observed
mildness of dehydrotelluration is in sharp contrast to the case of B-trichlorostannyl ketones, where the DM SO-
promoted dehydrostannation requires heating (60 °C) for several hours (2~5 h).2c The dehydrotelluration of 4a
proceeded successfully in a stoichiometric fashion by use of a variety of bases including TMEDA (N,N,N'N"-
tetramethylethylenediamine), Et3 N, and pyridine. On the other hand, bis(B-acylalkyl)tellurium dichloride Sa
was inert to DMSO under similar conditions (0 °C, 2 h). However, when TMEDA was used in place of DMSO,
dehydrotelluration of 5a took place effectively and both of B-acylalkyl units were converted to 3a in 94% NMR
yield (eq 3).

In order to test the generality of a B-trichlorotelluro ketone formation/dehydrotelluration protocol, other
siloxycyclopropanes 1b-1f were examined. The results are summarized in Table I, According to the one-pot
procedure, a-methylene ketones 3 were conveniently prepared from 1 in high isolated yields after purification
by flash chromatography.

The following procedure is typical: Siloxycyclopropane 1f (1.34 g, 5 mmol) was added to a suspension
of TeCly (1.34 g, 5 mmol) in CH,Cly (10 mL) at 0 °C and stirred for 10 min. Then, DMSO (1.8 mL, 25
mmol) was added to this reaction mixture containing 4f at 0 °C, After stirring at 0 °C for 10 min, black
precipitates were separated by filtration and aqueous treatment (pentane/water) was carried out. The organic
phase was dried (MgSQO,) and concentrated in vacuo. The residue was chromatographed on silica gel to give o
methylene ketone 3f (0.903 g, 93%).
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Table I. One-Pot Conversion of Siloxycyclopropanes 1 to «-Methylene
Ketones 3 via B-Trichlorotelluro Ketones 4*°

Me,Si0 O—TeCl, o
TeCl, DMSO P
R B 3 F
substrate 1 . _ lIsolated yield of 3
. B-Te ketone 4 c
R R (%)
1a: (CH3)3C- H- 4a 3a: 78
1b: @/ H- 4b 3b: 73
1c: CgH;- CHj- 4c¢ 3c: 90
Me,SiO
1d 4d 3d: 71
1e: -(CH3)s5- de 3e: 83
if: -(CHg)yo- af 3f: 93

a) Generally reactions were carricd out on a 5 mmol scale as described in the text.
b) Nearly guantitative conversion of 1 (o 4 was checked by 'H NMR.
¢) Isolated yiclds from 1 alter purification by flash chromatography (SiO;).

For the dehydrotelluration the role of DMSQO and amines listed above may be the one as a base to effect the
elimination of 'hydrotellurium trichloride’. Thus, we suspected the resulting precipitates after dehydrotelluration
of 4 to be [HTeCly+Base]. A control experiment pursued by 111 NMR demonstrates that the back reaction to
form B-trichlorotelluro ketone 4 does occur on treatment of the reaction mixture with Lewis acid. After 10 min
of treatment of 4a with 1 equiv of pyridine in CDCl,, 42 was completely converted to 3a with deposition of
black precipitates, but when 2 equiv of SnCl, was added to this mixture, 4a was regenerated in 60% yield (eq

4). This result well supports the formation of HTeCly as a pyridine complex 6 along with the formation of 3a.

O TeCls pyridine [ o recy] 2
—_— - ~ — — + [HTeCIg-Py]
20°C, 10min )
. Hy Py 3 6
aa L - Lagso‘ " (4)
T 50% $nCly I -SnCl Py

r 1
- [ 3a 4+ HTeCls J J
20°C, 1tday
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We are presently studying hydrotrichlorotelluration of enones,’ whose results will be published in due

Ccourse.
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