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Summary: p-Trichlorotelluro ketones 4 generated in situ from siloxycylopropanes 1 

and TeC14 react with dimethyl sulfnlide or some amines under mild conditions to 

provide the corresponding n-methylene ketones 3 in good yields. 

Synthetic potentiality of siloxycyclopropanes 1 largely owes to the high degree of site-selectivity in the 

ring-opening with electrophiles (usually at Q in I), which ensures highly selective transformations.1 Thus, we 

have designed the conversion of 1 to a-methylene ketones 3 via a @metallo ketone formation/p-elimination 

sequence (eq 1).2 In this paper, we report here that (1) P-n-ichlorotelluro ketones 4 were conveniently prepared 

from 1 and TeC14 by site-selective ring-opening of I at a and that (2) DMSO- or base-induced P-elimination 

from 4 took place quickly under mild conditions. 
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TeCl, readily reacted with 1 equiv of siloxycyclopropane la in CH2Cl2 at 0 “C, giving the p- 

trichlorotelluro ketone 4a in 96% yield (eq 2).3 On the other hand, the reaction of 2 equiv of 

siloxycyclopropane la with TeC14 gave bis(P-acylalkyl)tellurium dichloride Sa in 95 % yield (eq 3).4 The 

reaction of 2.methyl- and bicyclic siloxycyclopropanes Ic-lf with 1 equiv of TeC14 gave 4c-4f respectively, 

which resulted from site-selective cleavage a in I with no evidence of formation of products derived from 
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cleal~age 21.~ IR spectroscopy of 48.4f revealed the carbonyl stretching frequencies at 1560-1624 cm-‘, 

suggesting the coordination of carbonyl oxygens to TeCl3 group. On the other hand, the normal carbonyl 

stretching band appeared at 1686 cm-t for 5a. 

TeCI, 
(1 equiv) 

CH,CI,, 0°C 

la 4a 3a 

9 6 % -100% (by NMR) 

TeCI, 

la 
(0.5 equiv) 

CH?CI?, 0°C 

O”C, 30min 94% (by NMR) 

The previous observation that P-trichlorostannyl ketones having a similar intramolecular coordination 

undergo dehydrotrichlorostannation by DMSO (dimethyl sulfoxide)2c prompted us to examine the possibility of 

deh~dn)tellllrarif)n from 4. Interestingly, when DMSO (5 equiv) was introduced to a solution of 4a in CH2C12 

at 0 “C, black precipitates immediately appeared and enone 3a was formed quantitatively (eq 2j6 The observed 

mildness of dehydrotelluration is in sh,arp contrast to the case of /3-trichlorostannyl ketones, where the DMSO- 

promoted dehydrostannation requires heating (60 “C) for several hours (2-5 h).2c The dehydrotelluration of 4a 

proceeded successfully in a stoichiometric fashion by use of a variety of bases including TMEDA (N,N,N’,N’- 

tetramethylethylenediamine), Et3N, and pyridine. On the other hand, bis(~~acylalkyl)tellurium dichloride Sa 

was inert to DMSO under similar conditions (0 ‘C, 2 h). However, when TMEDA was used in place of DMSO, 

dehydrotelluration of Sa took place effectively and both of &acylalkyl units were converted to 3a in 94% NMR 

yield (eq 3). 

In order to test the generality of a P-trichlorotelluro ketone formation/dehydrotelluration protocol, other 

siloxycyclopropanes 1 b-If were examined. The results are summarized in Table I. According to the one-pot 

procedure, a-methylene ketones 3 were conveniently prepared from 1 in high isolated yields after purification 

by flash chromatography. 

The following procedure is typical: Siloxycyclopropane If (I .34 g, 5 mmolj was added to a suspension 

of TeC14 (1.34 g, 5 mmol) in CH2Cl2 (10 mL) at 0 “C and stirred for 10 min. Then, DMSO (1.8 mL, 25 

mmol) was added to this reaction mixture containing 4f at 0 “C. After stirring at 0 “C for 10 min, black 

precipitates were separated by filtration and aqueous treatment (pentane/water) was carried out. The organic 

phase was dried (MgS04) and concentrated in vacua. The residue was chromatographed on silica gel to give a- 

methylene ketone 3f (0.903 g, 93%). 
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Table I. One-Pot Conversion of Siloxgcyclopropanes 1 to n-Metbylene 

Ketones 3 via P-Trirhlorotelluro Ketones 4’. h 

Me,SiO 

IQ 

T.&I, 
O-l&I, 0 

DMSO 
R = A Iv - R’ V 

R R’ 
1 4 3 

R’ 

substrate 1 isolated yield of 3 

R R’ 
p-Te ketone 4 

(%I= 

la: (CH&C- H- 4a 3a: 76 

lb: 

lc: 

Id: 

le: 

H- 4b 3b: 73 

C,H5- CH,- 4c 3c: 90 

4d 3d: 71 

-(CH2)5- 4e 3e: 83 

If: -(CH,Jio- 4f 3f: 93 

a) Gcncrally reactions were carried out on a 5 mmol scale as dcscrikd in UK text. 

b) Nrarly quantilaalivc conversion of 1 to 4 WIF checked by ‘H NMR. 

c) Isolakd yields from 1 artcr purification by lla.sh chromatography (SiOl). 

For the dehydrotelluratinn the role of DMSO and amines listed ahove may be the one as a base to effect the 

elimination of ‘hydrotellurium trichloride’. Thus, we suspected the resulting precipitates after dehydrotelluration 

of 4 to be [HTeC$*Rase]. A control experiment pursued by It-I NMR demonstrates that the back reaction to 

form P-trichloroteiluro ketone 4 does occur on treatment of the reaction mixture with Lewis acid. After 10 min 

of treatment of 4a with 1 equiv of pyridine in CDC13,4a was completely converted to 3a with deposition of 

black precipitates, but when 2 equiv of S&l4 was added to this mixture, 4a was regenerated in 60% yield (eq 

4). This result well supports the formation of HTeC13 as a pyridine complex 6 along with the formation of 3a. 

[HTeC13.Py] 

6 
(4) 

-SnCI,*Py 

2O”C, lday 
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We are presently studying hydrotrichlorotelluration of enones whose results will be published in due 

course. 
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