Synthesis of Amidines and Attempted Synthesis of Imidazoazines by Reactions of Lithiated β-Aminoazines with Nitriles

Alan D. Redhouse, Robin J. Thompson, Basil J. Wakefield* and Jacklyn A. Wardell

Department of Chemistry and Applied Chemistry, Cockcroft Building, University of Salford, Salford M5 4WT, England

Dedicated to Charles Rees on his retirement from the Hoffman Chair at Imperial College.

(Received in USA 17 June 1992)

Abstract: Deprotonation of 3-aminopyridine, followed by reaction of aromatic nitriles, gives N-(3pyridyl)-benzamidines, and other β -aminoazines (pyridines, quinolines, pyrazines, pyrimidines) react similarly. Attempts to cyclise the amidines to, for example, 2-aryl-1H-imidazo[4,5-b]pyridines (5) met with limited success.

Although a number of N-aryl derivatives of nicotinamidine (1) have been described,¹ as have N-(2pyridyl)benzamidines (2),² the isomeric N-(3-pyridyl)benzamidines (3) and N-(4-pyridyl)benzamidines (4) have not. The omission in the case of the 3-pyridyl isomers (3) is surprising, in view of the relationship of the compounds to nicotinic acid, and the general interest in the biological activity of amidines. Besides their intrinsic interest, the amidines (3) might also be used to synthesise imidazopyridines (5), also of interest as deazapurines.

We have reported that the reaction of 3-(lithiomethyl)pyridine (6) with nitriles, followed by reaction with additional base, results in cyclisation to give pyrrolopyridines (7), as shown in Scheme 1.3

Scheme 1

We envisaged that 3-aminopyridine might be used for analogous reactions, leading to the amidines (3) and/or the imidazopyridines (5), Scheme 2.

Scheme 2

Similar reactions might then be applied to the synthesis of amidines and fused imidazoles from other β -aminoazines.

Initial experiments with 3-aminopyridine and benzonitrile, using conditions similar to those used for the syntheses of 2-phenyl-1*H*-pyrrolo[2,3-*b*]pyridine from 3-methylpyridine³ were discouraging, yielding no

2-phenylimidazo[4,5-b]pyridine (5, Ar = Ph), only poor yields of N-(3-pyridyl)benzamidine (3, Ar = Ph), and small amounts of products including benzamide (presumably arising from hydrolysis of the amidine) and 2,4,6-triphenyl-1,3,5-triazine (8) (a known product of reactions of benzonitrile with strong bases).⁴ These results are summarised in Table 1. Several variations in the conditions resulted in little improvement (see Table 1) and activation of the nitrile by aluminium trichloride² or boron trifluoride etherate was ineffective. However, with a solvent system comprising dimethylsulfoxide (DMSO) in THF, the yield of the amidine (4, Ar = Ph) rose to 77%. Although other syntheses of amidines by the reaction of metal amides with nitriles have been reported⁵ (contrary to some recent statements⁶) the conditions required are evidently critical.

Table 1

Reactions of l	lithiated	3-aminopyridine	with	benzonitrile ^a
-----------------------	-----------	-----------------	------	---------------------------

Solvent	Initial proportion of LDA (molar equiv.)	Second proportion of LDA (molar equiv.)	Temp. (°C)	Time (h)	Yield of amidine (3) R = Ph (%)	Other products (%)
THF	1	1	ambient	3	30	
THF	1.7	1.7	ambient	15	0	(TPT) (trace)
THF	1.7	1	46	4	0	(TPT) (trace)
THF	1.7	2	14	2	b	b
hexa- metapol: ^a	1	1	ambient	17	25	_
THF (1:3)) 10	1 <i>d</i>	ambient	3.5	34	benzamide
DMSO:TH (1:10)	IF 1 1	1 1	ambient ambient	3 17-48	up to 63 up to 77	(22)

^a Equimolar proportions of 3-aminopyridine and benzonitrile.

^b Starting materials recovered.

^c Hexamethylphosphoric triamide.

^d Potassium bis(trimethylsilyl)amide.

The LDA/DMSO/THF system was applied to the synthesis of amidines from 3-aminopyridine, 3amino-2-chloropyridine, 3-aminoquinoline, 2-aminopyrazine, and 5-amino-2-phenylpyrimidine and benzonitriles. The results are summarised in Table 2. These reactions were not optimised, but it is clear from these results that the reaction works well for aromatic nitriles bearing electron-withdrawing substituents, but is less useful with, for example, 4-methoxybenzonitrile.

		pe			
Aminoazine	Nitrile	Temp. of addition (°C)	Temp. (°C) and time (h) of reaction	Product	Yield (%)
NH ₂	4-ClC ₆ H ₄ CN	- 40	$-20 \rightarrow 0(1)$ r.t. (2)	(3), Ar = $4 - ClC_6H_4$	68
	4-NCC6H4CN	- 40	r.t. (48)	(3), $Ar = 4-NCC_6H_4$	90
N	4-CH3OC6H4CN	- 40	- 20 (1.25) r.t. (15)	(3), $Ar = 4-CH_3OC_6H_4$	30a
NH.	2 PhCN	- 40	r.t. (48)	(9), $Ar = Ph$	57 ^b
	4-ClC6H4Cl	- 40	r.t. (48)	(9), Ar = $4 - ClC_6H_4$	51
N° CI	4-CH3OC6H4CN	- 40	r.t. (48)	c	с
N	NH2 PhCN	- 20	r.t. (17)	(10), Ar = Ph	52
	4-ClC6H4CN	- 40	r.t. (38)	(10), $Ar = 4 - CiC_6H_4$	80
N N	4-CH3OC6H4CN	- 40	r.t. (38)	(10), $Ar = 4-CH_3OC_6H$	4 45
	PhCN	- 20	r.t. (17)	(11), Ar = Ph	41
	4-ClC6H4CN	- 20	r.t. (17)	(11), $Ar = 4 - ClC_6H_4$	51
N ²	4-CH3OC6H4CN	- 20	r.t. (17)	(11), $Ar = 4-CH_3OC_6H$	4 15
	H ₂ PhCN	- 40	r.t. (19) + 50 (4)	(12)	50d

Table 2 **Preparation** of amidines

^a 3-Aminopyridine (37%) recovered.

^b 3-Aminopyridine (45%) recovered.

^c None isolated.

d In this case, a better yield (79%) was obtained using THF as the solvent.

The amidines were susceptible to hydrolysis, and their tautomerism in solution resulted in broadening of their ¹H n.m.r. spectra. In the case of the amidine from 2-aminopyrazine and 4-chlorobenzonitrile, good crystals were obtained, and X-ray crystallography revealed that the amidine was in the form of the tautomer shown (11, Ar = 4-ClC₆H₄). The molecular structure is represented in the Figure and bond lengths and angles are listed in Table 3. One noteworthy feature of this structure is the proximity of N(1), H(1b) and N(3), which is consistent with hydrogen bonding. Hydrogen bonding was also suggested by the n.m.r. spectra of the N-pyrazinylbenzamidines, which showed signals for one or both of the NH protons at very low field.

Figure. Molecular structure of 11 (Ar = 4-ClC₆H₄), showing the numbering scheme used

All attempts to obtain 2-phenylimidazo[4,5-b]pyridine (5, R = Ph) by cyclisation of the amidine (3, R = Ph), either *in situ*, or in a separate step, failed. Even the amidine (9, Ar = Ph) from 3-amino-2-chloropyridine gave the imidazopyridine (3, R = Ph) in only 7% yield on treatment with LDA. A low yield (18%) of the imidazopyridine (5, R = 4-ClC₆H₄) was also obtained by reaction of 3-aminopyridine with LDA and 4chlorobenzonitrile, under the conditions described in the experimental section. Cyclisation was also achieved with 3-aminoquinoline, to give 2-phenyl-1*H*-imidazo[4,5-*b*]quinoline (13), an example of a rare ring system,⁷ in 31% yield. The imidazoquinoline (13) was accompanied by a dimeric product (27%), for which we suggest the structure (14).

Experimental

For general directions, see ref. 3. 3-Aminopyridine, 3-aminoquinoline and 2-aminopyrazine were commercial materials and were dried and stored over molecular sieves. Solutions of lithium diisopropylamide (LDA) were prepared from diisopropylamine and butyllithium as described in ref. 3. 5-Amino-2-phenylpyrimidine was prepared by literature procedures⁸ (CAUTION⁹).

N-(3-Pyridyl)benzamidine (3, R = Ph) To a stirred solution of LDA (50 mmol) in THF (20 ml) plus DMSO (2 ml) at - 40°C was added 3-aminopyridine (2.8 g, 3.0 mmol) in THF (2-3 ml). The resulting suspension was stirred at 0°C for 30 min. and re-cooled to - 40°C; benzonitrile (3.0 ml, 30 mmol) was added dropwise by syringe. The mixture was stirred at below 0°C for 30 min., and at room temperature for 2 days. Ice-water (70 ml) was added, and the mixture was extracted with ether (5 x 20 ml). The combined extracts were dried and the solvents evaporated. Recrystallisation of the residue from ether-ethanol gave *N*-(3-pyridyl)benzamidine (3.63 g) and flash chromatography of the mother liquor gave a further 0.96 g (total yield 77%), m.p. 179.5-180°, δ (DMSO-d₆) 5.5 (2H, br s; NH₂) 6.2 (2H, br s) *ca* 6.4 (3H, 2 x br s), 7.0 (2H, br s), 7.2 (2H, br m), v_{max} 3463, 3404, 3155 cm⁻¹. Found: M+ at *m*/z 197.0957. C₁₂H₁₁N₃ requires 197.0953.

The procedure for the other preparations was similar, with variation in conditions as shown in Table 2. Spectroscopic and analytical data follow.

4-Chloro-*N*-(**3-pyridyl**)**benzamidine** (**3**, R = 4-ClC₆H₄), m.p. 162°C, δ (DMSO-d₆) 5.6 (2H, brs; NH₂), 6.5 (2H, br s), 6.65 (2H, d, J 7.5 Hz; 2,6-H), 7.2 (2H, d, J 7.5 Hz; 3,5-H), 7.5 (2H, br s). Found: (M + 1)⁺ at *m/z* 231.0559 C₁₀H₁₁ClN₃ requires 231.0563.

4-Methoxy-N-(3-pyridyl)benzamidine (3, R = 4-CH₃OC₆H₄), m.p. 122.5-123.5°, δ (DMSO-d₆) 3.8 (3H, s; OCH₃), 4.9 (2H, br s; NH₂), 6.9 (2H, d, J 6 Hz; 3,5-H), 7.2 (2H, m, 2,6-H), 7.8 (2H, br s), 8.3 (2H, br s). Found: (M + 1)⁺ at *m/z* 227.1052 C₁₃H₁₄N₃O requires 227.1059.

4-Cyano-N-(3-pyridyl)benzamidine (3, $R = 4-NCC_6H_4$), m.p. 147-8°, δ (CDCl₃ + DMSO-d₆), 5.6 (2H, brs; NH₂), 7.1 (2H, brs), 7.5 (2H, d, J 8 Hz; 2,6-H), 7.9 (2H, d, J 8 Hz; 3,5-H), 8.1 (2H, br s), Found: (M + 1)⁺ at m/z 223.0991 C₁₃H₁₁N₄ requires 223.0984.

N-(2-Chloro-3-pyridyl)benzamidine (9, Ar = Ph), m.p. δ (CDCl₃) 5.0 (2H, brs, NH₂), 7.0 (1H, m; pyridyl, 5-H), 7.2 (1H, m, pyridyl 4-H), 7.4 (3H, m), 7.8 (2H, m, 2,6-H), 7.9 (1H, dd, J 4.5, 1.3 Hz; pyridyl 6-H). Found: (M + 1)⁺ at m/z 232.0663. C₁₂H₁₁ClN₃ requires 232.0642.

4-Chloro-*N*-(**2-chloro-3-pyridyl)benzamidine** (9, Ar = 4-ClC₆H₄), m.p. 168.5-169.5°, δ (CDCl₃) 4.9 (2H, brs; NH₂), 7.20 (1H, dd, J 8, 4.5 Hz, pyridyl 5-H), 7.3 (1H, dd, J 8, 1.3 pyridyl 4-H), 7.4 (2H, d, J 8.4 Hz; 2,6-H), 7.8 (2H, d, J 8.4 Hz; 3,5-H), 8.2 (1H, dd, J 4.5, 1.3 Hz; pyridyl 6-H). Found: M⁺ at *m*/z 265.0160. C₁₂H₉Cl₂N₃ requires 265.0174.

N-(Quinolin-3-yl)benzamidine(10, R = Ph), m.p. 168-9°C δ (CDCl₃) 5.0 (2H, br s; NH₂), 7.4 (4H, m), 7.6 (1H, t, J 7.5 Hz; 4-H), 7.65 (1H, s; quinolinyl 4-H), 7.7 (1H, d, J 8 Hz; quinolinyl 5-H), 7.9 (2H, d, J 6.8 Hz; 2,6-H), 8.1 (1H, d, J 8.3 Hz; quinolinyl 8-H), 8.7 (1H, s; quinolinyl 2-H). Found: M⁺ at *m/z* 247.1106 C₁₆H₁₃N₃ requires 247.1109.

4-Chloro-*N*-(**quinolin-3-yl**)**benzamidine** (10, R = 4-ClC₆H₄), m.p. 198°C δ (CDCl₃) 5.0 (2H, br s; NH₂), 7.45 (2H, d, J 8 Hz; 2.6-H) overlapping 7.45 (1H, t, J 8 Hz, quinolinyl 7-H), 7.6 (1H, s; quinolinyl 4-H), 7.7 (1H, d, J 7.9 Hz; quinolinyl 5-H), 7.8 (2H, d, J 8 Hz; 3,5-H), 8.0 (1H, d, J 8.4 Hz; quinolinyl 8-H), 8.6 (1H, s; quinolinyl 2-H). Found: C, 68.45; H, 4.3; N, 15.0. C₁₆H₁₂ClN₃ requires C, 67.9; H, 4.4; N, 14.6%.

4-Methoxy-N-(quinolin-3-yl)benzamidine (10, Ar = 4-CH₃OC₆H₄), m.p. 166-7°C. δ (CDCl₃) 3.8 (3H, s; OMe), 5.1 (2H, br s; NH₂), 6.9 (2H, d, J 7.5 Hz; 3,5-H), 7.4 (1H, m; quinolinyl 6 or 7-H), 7.6 (1H, m; quinolinyl 6 or 7-H), 7.7 (2H, d, J 7.5 Hz; 2,6-H), 7.9 (1H, d, J 8.3 Hz; quinolinyl 5-H), 8.0 (1H, d, J 8.3 Hz; quinolinyl 8-H), 8.6 (1H, s; quinolinyl 2-H). Found: C, 73.6; H, 5.1; N, 15.1. C₁₇H₁₅N₃O requires C, 73.6; H, 5.45; N, 15.2%.

N-(2-Pyrazinyl)benzamidine (11, Ar = Ph), m.p. 164°C, δ (CDCl₃ + DMSO-d₆) 5.5 (1H, very br s; NH), 7.4 (3H, m; ArH), 7.9 (2H, dd, J 7.5, 1.5 Hz; 2,6-H), 8.1 (1H, d, J 2.7 Hz; pyrazinyl H), 8.3 (1H, d, J 2.6 Hz; pyrazinyl H), 8.6 (1H, s; pyrazinyl 6-H), 10.2 (1H, very br s; NH). Found: [M + 1]⁺ at *m/z* 199.0978. C₁₁H₁₁N₄ requires 199.0984.

4-Chloro-*N*-(**2-pyrazinyl**)**benzamidine** (**11**, Ar = 4-ClC₆H₄), m.p. 202°C δ (CDCl₃) 7.4 (2H, d, J 8.5 Hz; 2,6-H), 7.9 (2H, d, J 8.6 Hz; 3,5-H), 8.1 (1H, d, J 2.8 Hz; pyrazinyl H), 8.2 (1H, dd, J 2.6, 1.4 Hz; pyrazinyl H), 8.5 (1H, d, J 1.2 Hz; pyrazinyl 6-H), 9.7-10.5 (2H, br s, NH₂). Found: M⁺ at *m/z* 232.0509. C₁₁H₉ClN₄ requires 232.0519.

X-Ray Crystallographic Analysis Data. Crystal data $C_{11}H_9N_4Cl$, M = 232.7, orthorhombic, a = 5.683(3), b = 9.798(5), c = 19.027(8) Å U = 1059.5(9) Å³, spacegroup Pc21b, Z = 4, Dc = 1.459 Mg/m³, μ (Mo-K α) = 0.333 mm⁻¹, $\lambda = 0.71073$ Å, F(000) = 480, crystal size 0.4 x 0.3 x 0.2 mm. Data Collection All data were collected on a Siemens R3m/V diffractometer with Mo-K α radiation graphite monochromated and using ω -23 scan mode. Three reflections measured every 100 reflections showed no significant change in intensity. The 23 range was 3° - 55° and the index range was $0 \le h \le 7$, $0 \le k \le 12$, $-24 \le 1 \le 24$. 2944 reflections were collected, of which 1307 were unique (R_{int} = 0.024) and 1212 satisfied the criterion F > 4.0 σ (F) and were used in the refinement. Structure Determination and Refinement The structure was solved by direct methods and refined by full matrix least square routines [quantity minimized [w(F₀-F_c)²]. All non-hydrogen atoms were allowed to vibrate anisotropically. The hydrogen atoms were found from difference maps and their positional parameters refined with fixed isotropic thermal parameters. At convergence R = 0.029 and wR = 0.036 where w⁻¹ = σ^2 (F) + 0.004 F². The values of R and wR for all data were 0.033 and 0.037 respectively. The goodness-of-fit was 1.31; the largest Δ/σ was 0.001 with a data to parameter ratio of 7:1. The final difference maps showed no features greater or less than 0.17 eÅ⁻³. Table 3 lists the fractional atomic coordinates and Table 5 the bond lengths and bond angles respectively. All calculations were performed using the SHELXTL-PLUS program suite.¹⁰ Full crystallographic data are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK.

Atomic coordinates $(x10^4)$ and equivalent isotropic displacement coefficients $(\dot{A}^2 \times 10^3)$

				· · ·	
	x	у	Z	U (eq)	
Cl	1418 (1)	5162	5555(1)	42(1)	
N(1)	6536(4)	8575(2)	2860(1)	31(1)	
N(2)	8380(3)	6399(2)	2810(1)	27(1)	
N(3)	9849(4)	7873(2)	1894(1)	33(1)	
N(4)	13412(3)	5926(2)	1673(1)	32(1)	
C(1)	3003(4)	5817(3)	4840(1)	29(1)	
C(2)	2106(4)	6907(3)	4466(1)	32(1)	
C(3)	3365(4)	7394(3)	3890(1)	31(1)	

Table 3

C(4)	5489(4)	6793(3)	3688(1)	25(1)
C(5)	6325(4)	5683(3)	4076(1)	31(1
Cíó	5099(4)	5196(3)	4657(1)	33(1
C	6890(4)	7291(3)	3074(1)	25(1
C(8)	9937(4)	6725(2)	2276(1)	26(1)
C(10)	11557(5)	8042(3)	1415(1)	38(1
Can	13331(5)	7106(3)	1308(1)	34(1
C(13)	11740(4)	5758(3)	2149(1)	30(1
*Equivalent isotr	opic U defined as one third of t	he trace of the orthogonalize	d Uii tensor	
H-Atom coord	linates (x10 ⁴) and isotro	pic displacement coeffi	cients $(\dot{A}^2 \times 10^3)$	
	x	v	Z	U(ca)
H(1A)	5845(52)	9169(39)	3120(17)	50
H(1B)	7323(53)	8838(36)	2506(19)	50
H(2)	537(53)	7399(36)	4639(15)	50
H(3)	2670(52)	8179(37)	3655(16)	50
H(5)	7703(55)	5234(37)	3938(15)	50
H(6)	5737(47)	4468(36)	4907(18)	50
H(10)	11490(50)	8901(42)	1146(16)	50
H(11)	14507(55)	7229(35)	1000(17)	50
H(13)	11696(45)	4916(39)	2408(18)	50
Table 4	Bond lengths and bond	angles		
Bond lengths	(Å)	8		
Cl-C(1)	1.752 (2)	N(1)-C(7)	1.337 (3)	
N(2)-C(7)	1.316 (3)	N(2)-C(8)	1.385 (3)	
N(3)-C(8)	1.341 (3)	N(3)-C(10)	1.341 (3)	
N(4)-C(11)	1.350 (4)	N(4)-C(13)	1.323 (3)	
C(1)-C(2)	1.381 (4)	C(1)-C(6)	1.383 (3)	
C(2)-C(3)	1.393 (3)	C(3)-C(4)	1.397 (3)	
C(4)-C(5)	1.397 (3)	C(4)-C(7)	1.495 (3)	
C(5)-C(6)	1.392 (3)	C(8)-C(13)	1.416 (3)	
C(10)-C(11)	1.378 (4)			
Bond angles (')			
C(7)-N(2)-C(8)	122.5(2)	C(8)-N(3)-C(10)	116.4(2)	
C(11)-N(4)-C(13)	115.8(2)	C1-C(1)-C(2)	119.6(2)	
Cl-C(1)-C(6)	118.5(2)	C(2)-C(1)-C(6)	121.9(2)	
C(1)-C(2)-C(3)	118.8(2)	C(2)-C(3)-C(4)	121.1(2)	
C(3)-C(4)-C(5)	118.4(2)	C(3)-C(4)-C(7)	122.5(2)	
C(5)-C(4)-C(7)	119.0(2)	C(4)-C(5)-C(6)	121.1(2)	
C(1)-C(6)-C(5)	118.7(2)	N(1)-C(7)-N(2)	127.2(2)	
N(1)-C(7)-C(4)	117.7(2)	N(2)-C(7)-C(4)	115.1(2)	
N(2)-C(8)-N(3)	124.6(2)	N(2)-C(8)-C(13)	115.7(2)	
N(3)-C(8)-C(13)	119.7(2)	N(3)-C(10)-C(11)	123.3(3)	
N(4)-C(11)-C(10)	121.2(2)	N(4)-C(13)-C(8)	123.6(2)	

4-Methoxy-N-(2-pyrazinyl)benzamidine (11, Ar = 4-CH₃OC₆H₄), m.p. 128°C δ (CDCl₃) 3.8 (3H, s, OMe), 6.9 (2H, d, J 8.8 Hz; 3,5-H), 7.8 (2H, d, J 8.8 Hz; 2,6-H), 8.0 (1H, d, J 2.7 H; pyrazinyl 3-H), 8.1 (1H, m, pyrazinyl H), 8.5 (1H, s, pyrazinyl 6-H). Found: M⁺ at *m/z* 228.1098. C₁₂H₁₂N₄O requires 228.1011.

N-(2-Phenylpyrimidin-5-yl)benzamidine (12) m.p. 158-9°C δ (CDCl₃) 5.0 (2H, br s; NH₂), 7.45 (6H, m; ArH), 7.8 (2H, d, J 8 Hz; phenyl *o*-H), 8.3 (2H, d, J 8, 2 Hz, 2-phenyl *o*-H), 8.5 (2H, s; pyrimidinyl 4,6-H). Found: [M + 1]⁺ at m/z 275.1273. C₁₇H₁₅N₄ requires 275.1297.

2-Phenyl-1H-imidazo[4,5-b]pyridine (5, Ar = Ph) To a stirred solution of LDA (10.3 mmol) in THF (40 ml) at - 40°C was added in three portions a solution of 2-chloro-N-(2-pyridyl)benzamidine (1.92 g, 5.15 mmol) in THF (9 ml). After 30 min. the mixture was warmed to room temperature and then heated at 55°C overnight. The mixture was cooled and worked up *via* addition of water (40 ml), ether extraction and gradient elution flash chromatography to give (i) 2-phenyl-1H-imidazo[4,5-b]pyridine (70 mg, 7%), m.p. *ca.* 282°C

dec. (lit. m.p. 285-286°C¹⁰), δ (CDCl₃ + DMSO-d₆), 7.19 (1H, dd, J 8, 4.9 Hz; 5-H), 7.50 (3H, m; Ph). 7.98 (1H, br s; 4-H), 8.29 (1H, brs, 6-H), 13.1 (0.3 H, s; 3-H of tautomer), 13.5 (0.7H, s; 1-H) and (ii) starting material (160 mg, 13%).

2-(4-Chlorophenyl)-1*H*-imidazo[4,5-*b*]pyridine (5, Ar = 4-ClC₆H₄). To a stirred solution of LDA (5 mmol) in THF (20 ml) at 0°C was added a solution of 3-aminopyridine (280 mg, 3 mmol) in THF (3 ml), to give a pale green suspension. After 30 min. 4-chlorobenzonitrile (410 mg, 3 mmol) was added and the mixture was stirred at 0°C for 1 h. A second portion of LDA (5 mmol) in THF (20 ml) was added. The mixture was stirred at 0°C for 15 min. and at 60°C for 6 h. Conventional hydrolysis and work-up followed by flash chromatography (silica, Et₂O) gave 2-(4-chlorophenyl)-1*H*-imidazo[4,5-*b*]pyridine (121 mg, 18%), dec. *ca.* 315°C. δ (CDCl₃ + DMSO-d₆) 7.1 (1H, dd, J 7.9, 4.8 Hz; 5-H), 7.5 (2H, d, J 8.6 Hz; ArH), 7.9 (1H, br s; 4-H), 8.2 (2H, d, J 8.6 Hz; ArH), 8.3 (1H, br s; 6-H), 9.7 and 10.5 (total 1H, br; 1-H + 3-H of tautomer). Found: M⁺ at *m*/z 229.0403. C₁₂H₈³⁵ClN₃ requires 229.0407.

2-Phenyl-1H-imidazo[4,5-b]quinoline (13) To a stirred solution of LDA (10 mmol) in THF (20 ml) at -40°C was added 3-aminoquinoline (865 mg, 6 mmol) to give a greenish-yellow solution. After 45 min, benzonitrile (0.60 ml, 6 mmol) was added and the mixture was stirred at <-10°C for 2 h. A second portion of LDA (10 mmol) was added, and the mixture was heated to 50°C and stirred at that temperature for 17 h. Conventional work-up followed by chromatography (silica, Et₂O) gave i)

2-phenyl-1*H*-imidazo[4,5-*b*]quinoline (450 mg, 31%), cream solid, dec. *ca* 290°C, δ (CDCl₃ + DMSO-d₆) 7.35-7.6 (8H, m), 7.7-8.05 (1H, m), 8.3 (1H, m), 10.3 (1H, br; 1-H). Found: [M + 1]⁺ at *m/z* 246.1036. C₁₆H₁₂N₃ requires 246.1031, and ii) a deep yellow solid, possibly 3-amino-2-(quinolin-3-ylamino)quinoline (462 mg, 27%), m.p. 235°C, δ (CDCl₃ + DMSO-d₆) 6.3-6.6 (3H, br, NH), 7.3-7.5 (7H, m), 7.52 (2H, m), 7.8 (2H, d, J 7.2 Hz). Found: M⁺ at *m/z* 286.1218. C₁₈H₁₄N₄ requires 286.1210.

Acknowledgements

We thank M.L. Davis for some preliminary experiments, and S.E.R.C. for an award to J.A.W.

References

- 1. Hisano, T.; Tasaki, M.; Tsumoto, K.; Matsuoka, T.; Ichikawa, M.; *Chem. Pharm. Bull.*, **31**, 2484 (1983).
- 2. Oxley, P.; Partridge, M.W.; Short, W.F.; J. Chem. Soc., 1110 (1947).
- 3. Davis, M.L.; Wakefield, B.J.; Wardell, J.A.; Tetrahedron, 48, 939 (1992).
- 4. Compagnon, P.L.; Miocque, M.; Ann. Chim. (Paris), 5, 23, (1970).
- Gautier, J.A., Miocque, M., Farnoux, C.C., in 'The Chemistry of Amidines and Imidates', ed. Patai, S., Wiley, Chichester, 1975, Chapter 7; Boyd, G.V., in 'The Chemistry of Amidines and Imidates', Vol. 2, ed., Patai, S., Rappaport, Z., Wiley, Chichester, 1991, Chapter 7.
- 6. Garigipati, R.S., Tetrahedron Lett., 31, 1969, (1990).
- 7. Narang, K.S.; Roy, J.M.; J. Chem. Soc., 976 (1931).
- Fanta, P.E.; Org. Synth., Coll. IV, 844 (1963); Fanta, P.E.; Hedman, E.A.; J. Am. Chem. Soc., 78, 1434 (1956); Boarland, M.P.V.; McOmie, J.F.W.; J. Chem. Soc., 1218 (1951).

- 9. Bertz, S.H.; Dabbagh, G.; J. Org. Chem., 55, 5161 (1990).
- 10. G.M. Sheldrick, (1988) SHELXTL-PLUS 88 structure Determination Software Programs for Siemens Rm/V, University of Göttingen, Germany.
- 11. Tretyakova, A.V., Rudaya, L.I., El'tsov, A.V., Zh. Obsch. Chim., 54, 2617, 1984, (J. Gen. Chem. USSR, p. 2338).