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Mannose-substituted PPEs detect lectins: A model for Ricin sensing
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The interaction of a mannose-substituted poly(para phenyl-
eneethynylene) (mPPE) with a lectin, Concanavalin A (ConA),
is reported; the ConA causes fluorescence quenching of the
mPPE with a Ksy of 5.6 x 10°.

Sugar binding proteins, lectins, play a crucial role in cell-surface
recognition, cell signalling and pathogen and toxin docking.'”
While lectins such as Concanavalin A (ConA) are harmless, Ricin,
a toxic protein is perhaps the best known representative of its class,
due to a bizarre assassination episode involving a toxin-spiked
umbrella.* To detect pathogens® and toxins® on a broader base, it
would be of interest to have simple fluorescence sensing methods
for Ricin, Botulinum toxin, E. coli toxin(s), and other lectins of
importance.> At the moment, lectin—sugar interactions are studied
by agglutination of erythrocytes,! by surface plasmon resonance
studies of carbohydrate-carrying polynorbornene derivatives,*” or
by colorimetric reaction with sugar-coated polydiacetylene vesi-
cles.®® We disclose herein the synthesis of the fluorescent mannose-
substituted poly(para phenylenecthynylene) (mPPE) 5 and its
interaction with Concanavalin A (ConA), the lectin of the jack
bean. Detection of ConA by fluorescence quenching of the
multivalent mannoside 5 is effective and sensitive.

Reaction of 1 with 8-chloro-3,6-dioxaoctanol in the presence of
potassium carbonate in DMF furnished the diiodide 2 (see
Scheme 1). Coupling of 2 to trimethylsilylacetylene in the presence
of a Pd-catalyst gave rise to the formation of the monomer 3
after removal of the trimethylsilyl groups by tetrabutylammonium
fluoride in THF. To attach the mannose substituents to the
monomer core, 2 was treated with mannose pentaacetate and BF5-
etherate in dichloromethane analogous to a preparation described
by van Doren for glycosylation of phenols.'® The mannosylation
of 2 is stereospecific under these conditions and furnishes 4 as the
double o-anomer. In the last step 3 and 4 are coupled in a
piperidine/THF mixture with copper iodide and (Ph;P),PdCl, to
form the PPE 5 in excellent yield and with a high degree of
polymerization, according to gel permeation chromatography
(vield 95%, P, =19, M, =22 x 10° by '"H NMR; M, = 62 x 10°,
My /M, = 1.5 by gel permeation chromatography).'"™* The
nucleophilic solvent, piperidine, leads to the convenient in situ
stripping of the acetate groups and the deacetylated polymer 5 is
directly obtained. For a monomeric model, 4 was coupled under
standard conditions to 4-methoxyphenyl acetylene; 6 formed in
excellent yield after washing with an ethyl acetate-hexane mixture
(see Scheme 2). As for 5, the acetate groups are removed by
piperidine in the course of the reaction.

1 Electronic Supplementary Information (ESI) available: Synthesis of
polymer 5 and model compound 6, and details of the quenching
experiments. See http://www.rsc.org/suppdata/cc/bd/bd16587j/
*uwe.bunz@chemistry.gatech.edu

An aqueous solution of 6 was exposed to ConA but no distinct
change in the fluorescent properties of 6 were observed, suggesting
only weak binding of 6 to ConA. When an aqueous solution of
polymer 5 in phosphate buffer was exposed to ConA, efficient
fluorescence quenching occured at low concentrations of the lectin.
The Stern—Volmer relationship'

(FolFiq)) = 1 + Ksy [Q] or Ksy = {(Fo/Fiq) — 1}/[Q]

quantitatively correlates the loss of fluorescence (Fy/Fjq) with the
concentration [Q] of added quencher. The slope of the graph of [Q]
vs. (Fy/Fiq) is the Stern—Volmer constant. There are broadly two
mechanisms for quenching of fluorophores: a static and a dynamic
one. In dynamic (collisional) quenching, the excited state of the
fluorophore forms a complex with the quencher, and the excited

(\OH s||\/|e3 H;
o
K,CO,4 o)
DMF —0 (PhaP)deClz

O Piperidine 0\/\O

OH o
o™~ THF/ Cul
5 & ==

2) BUN'F >—/
HO

THF 3
2 ol
mannose
pentaacetate
BF3/CH,Cl,
Ac
re g
o] O
A @A @0 o po
Cc~0 j O
O
O~
K,O\) tog/ AC
4 AC O-Ac
(Ph3P),PdCl,
Cul/THF 3
Piperidine
HOQ/™Q
OH
) e
O o]
OH
OH <—o’ 0 <—o o

Scheme 1 Synthesis of the mannose-substituted polymer 5 by Pd-
catalyzed coupling of 3 to 4.
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Scheme 2 Synthesis of the mannose-substituted model compound 6 by
Pd-catalyzed coupling of methoxyphenylacetylene to 4.
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state is quenched. In static quenching the ground state of the
fluorophore forms a complex with the quencher, and Kgy
represents the stability constant of the ground state complex.
For PPEs as fluorophores static quenching is prevalent.'®'® The
short (0.3 ns) emissive lifetime of PPEs'*'®!" makes dynamic
quenching of PPEs difficult; Kgy here therefore equals the constant
of complex formation between PPE 5 and the quencher, ConA.
Fig. 1 shows fluorescence spectra and Stern—Volmer plot of the
exposure of 5 to ConA. The quenching of 5’s fluorescence is linear
at low ConA concentrations (Fig. 1 inset), but deviates from
linearity at higher quencher concentrations. The Kgy based on the
linear part of the curve is 5.6 x 10% 5 binds tightly to ConA. A
control experiment with bovine serum albumin shows no
quenching of the fluorescence and therefore no unspecific binding
of 5 occurs; neither does the galactose-binding lectin jacalin (see
ESIt) elicit a response, showing that 5 is a specific sensor for
mannose binding lectins. The interaction of ConA with 5 leads
finally to the precipitation of the complex. We examined the
aggregates of ConA and 5 by transmission electron microscopy.
Fig. 2 shows the spherical fluorescent aggregates that are
approximately 300-500 nm in diameter. To make the assay
more sensitive we induced aggregation of 5 with biotinylated
ConA (Fig. 3) and find a similar fluorescence quenching as in Fig. 1.
Upon addition of commercially available streptavidin-coated
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Fig. 1 Emission spectrum and Stern-Volmer plot (inset) of 5 in the
presence of ConA.
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Fig. 2 Aggregates of 5 and ConA shown in the TEM.
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Fig. 3 Fluorescence of aggregates of 5 and biotinylated ConA before
and after addition of streptavidin-coated microspheres.

polystyrene spheres, however, the fluorescence decreases signifi-
cantly further, by precipitating the ConA-5-complex through the
formation of a super-aggregate. The formation of the super-
aggregate is important, because it significantly enhances the
sensitivity of the assay. At the moment we are exposing solutions
of 5 and its biotinylated congener to a mannose-binding strain of
E. coli to examine the agglutination of bacteria by 5.

In conclusion we have demonstrated that PPE 5 is an excellent
fluorescent biosensor for lectins and multivalent interactions can
be exploited in this scheme to obtain high sensitivities for lectin
sensing by sugar-substituted PPEs, particularly when using the
formation of a super-complex. Our results complement a recent
study' that utilizes a postfunctionalization route to sugar-coated
carboxy-substituted PPEs to sense ConA and E. coli. Our
approach uses well-defined and anomerically pure building blocks
and avoids problems such as partial functionalization and
introduction of defects that are common in postfunctionalization
schemes. The polymer 5 is well characterized by NMR and IR and
is easily available on a 300-mg-scale.

The authors thank the National Institute of Health (NIH 1UO01-
AI5-650-301) for generous support.
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