Note

Maltotetraose-forming, amylase-mediated, *p*-nitrophenyl α and β -maltopentaoside formation in an aqueous-organic solvent system: a substrate for human amylase in serum*

Koichi Ogawa[†], Takeomi Murata, and Taichi Usui[‡]

Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Shizuoka, Shizuoka 422 (Japan)

(Received August 6th, 1990; accepted for publication in revised form, November 13th, 1990)

In recent years, malto-oligosaccharide derivatives of defined structure have been used in clinical laboratories¹⁻⁶ for the measurement of alpha-amylase activity in human serum and urine. One such chromogenic substrate^{2,7} is pNP- α -G₅. However, conventional methods for obtaining pNP- α -G₅, either chemically or enzymically, give only low yields of the desired compound^{8,9}. We have reported that G₄-amylase from *Pseudomonas stutzeri* forms pNP- α -G₅ from maltopentaose and pNP- α -G₁ through a transglycosylation reaction in aqueous methanol¹⁰. We report here an efficient enzymic synthesis of pNP- α -G₅ in improved yield by utilizing the transglycosylation of G₄amylase in a buffer medium containing Me₂SO at high concentration. A control experiment for pNP- β -G₅ production by the enzyme was performed similarly.

The enzymic synthesis of pNP- α -G₅ was as follows. To a solution of maltopentaose (120 mg) and pNP- α -G₁ (84 mg) in 1 mL of 15mm phosphate buffer (pH 9.0) containing 50% Me₂SO was added 1.9 U of G₄-amylase and the mixture was incubated for 8 h at 40°. The reaction was then stopped by the addition of two volumes of 0.2M acetate buffer (pH 3.5) and the mixture was evaporated to a syrup under diminished pressure (0.1 Torr) at 50°. The syrup was dissolved in 2 mL of 3:1 (v/v) water-methanol and put on a column (2.2 x 95 cm) of Toyopearl HW-40S. Elution was monitored by measuring the *p*-nitrophenyl-group absorbance at 295 and 485 nm, and the carbohydrate content was determined by the phenol-sulfuric acid method. The eluate was collected in 7-mL fractions. The chromatogram showed two main peaks (F-1 and F-II), for which the absorption at 295 nm coincided with that at 485 nm. The first peak (F-I, tube numbers 46-52) was concentrated and lyophilized to give 26 mg of product, $[\alpha]_{D}^{25}$

0008-6215/91/\$03.50 © 1991 – Elsevier Science Publishers B.V.

^{*} Abbreviations: G_4 -amylase, maltotetraose-forming amylase from *Pseudomonas stutzeri*; pNP- α - or β - G_1 , *p*-nitrophenyl α - or β -D-glucopyranoside; pNP- α - G_2 , *p*-nitrophenyl α -maltoside; pNP- α - G_4 , *p*-nitrophenyl α -maltotetraoside; pNP- α or β - G_5 , *p*-nitrophenyl α - or β -maltopentaoside; Me₂SO, dimethyl sulfoxide. [†] Present address: Research Laboratory of Nihon Shokuhin Kako Co., Ltd., 30 Tajima, Fuji, Shizuoka 417, Japan.

[‡] To whom correspondence should be addressed.

Fig. 1. Effects of Me₂SO concentrations, pH, and temperature on pNP- α -G₅ production: (a) The enzyme reaction was performed with maltopentaose (120 mg) and pNP- α -G₁ (84 mg) at 40° in 15mM phosphate buffer (pH 9.0) containing different Me₂SO concentrations (0%, \Box ; 40%, \blacksquare ; 50%, \oplus ; 60%, \bigcirc ; and 70%, \triangle). G₄-amylase (1.9U) was added and samples were taken during incubation for analysis by h.p.l.c. (b) Substrates were dissolved in 1 mL of phosphate buffer (pH 8.0, \Box ; pH 9.0, \oplus) and glycine–NaOH buffer (pH 9.0, \bigcirc ; pH 10.0, \blacksquare) containing 50% Me₂SO at 40°, respectively. Other conditions were the same as those in (a). (c) Substrates were dissolved in 1 mL of phosphate buffer (pH 9.0) containing 50% Me₂SO at 30 (\bigcirc), 40 (\oplus), and 50° (\blacksquare), respectively. Other conditions were the same as those in (a).

+210.9 (c 2.4, water). The yield of this product was ~24% of the amylase-catalyzed net decrease of maltopentaose. The second peak (F-II, tube numbers 90–98) contained recovered pNP- α -G₁ used as an acceptor. F-I showed only a single peak on h.p.l.c., indistinguishable from a standard sample of pNP- α -G₅. The ¹³C- and ¹H-n.m.r. spectra could be superposed on those of authentic pNP- α -G₅ reported in our previous paper¹⁰. The f.a.b.-mass spectrum of F-I was also consistent with that¹⁰ of pNP- α -G₅.

The effects of various conditions on G_4 -amylase-mediate, pNP- α - G_5 formation at high substrate concentration were investigated by h.p.l.c. (Fig. 1). The efficiency of transglycosylation was greatly dependent on the concentration of Me₂SO, the pH, and the temperature. Use of a water-Me₂SO system in this reaction not only ensured a sufficient solubility of pNP- α - G_1 but also resulted in a remarkable increase in the formation of pNP- α - G_5 . Thus, pNP- α - G_1 shows much higher solubility (8.4%) in a medium containing 50% Me₂SO than that (2.8%) in the presence of 50% methanol. The maximum production of pNP- α - G_5 at 50% Me₂SO was ~ 2-fold that at 50% methanol reported previously¹⁰, and indicates that the yield of pNP- α - G_5 is directly influenced by the solubility of pNP- α - G_1 in an aqueous-organic solvent system. As a result, we prepared pNP- α - G_5 by taking into account the efficiency of the desired compound on the transglycosylation already mentioned.

Our method for the enzymic synthesis of pNP- α -G₅ was also employed to prepare pNP- β -G₅ by using G₄-amylase from maltopentaose and pNP- β -G₁ in an aqueous-organic solvent system. For production of pNP- β -G₅, the use of aqueous methanol ensured a sufficient solubility of pNP- β -G₁, which is more soluble (25.3%) in 50% aqueous methanol than its solubility (12.6%) in 50% Me₂SO. Thus, to a solution of maltopentaose (348 mg) and pNP- β -G₁ (253 mg) in 1 mL of 15mM phosphate buffer (pH

¹³ C-Chemical shifts	s of pNP-B-G ₅	in D ₂ O solut	ion							
Residue			α-6	$lcp-(I \rightarrow 4)-\alpha$	$\frac{Glcp-(1 \rightarrow 4)}{V}$	α -Glcp- $(I \rightarrow III II$	I = I = P	+4)-β-Glcp-p	NP	
	C-1	C-2	C.3	C-4	C-5	C-6	m-Ar	o-Ar	p-Ar	c-Ar"
I	102.13	75.25	78.54	79.53	77.62	63.18				
II	102.45	73.98	75.65 ⁶	79.80	74.21	63.15				
III	102.61	73.98	76.06	80.07	74.30	63.15				
	102.66	74.50	76.06	72.04	75.45 ⁶	63.24				
Р							119.25	128.82	145.13	164.53
" Phenyl carbon att	tached to the r	ohenolic oxve	en. ^b Assignn	nent mav be	interchanged.					

è. -0 360 nia pirano 2 į ŝ I TIGITAT COLONI

TABLE I

ţ ł - 7.0) containing 50% methanol was added 0.9 U of G_4 -amylase and the mixture was kept for 26 h at 30°. The reaction was stopped by the addition of two volumes of 0.2M acetate buffer (pH 3.5) and the mixture was evaporated to a syrup. The syrup was dissolved in 2 mL of 3:1 (v/v) water-methanol and loaded onto a column of Toyopearl HW-40S according to the same procedure as that used in the separation of pNP- α -G₅. The first peak (F–I', tube numbers 52–62) was concentrated and lyophilized to give 172 mg of product, $[\alpha]_{D}^{25}$ +91.2 (c, 2.5 water). The yield of this product was ~54% of the amylase-catalyzed net decrease of maltopentaose. The second peak (F-II', tube numbers 99–109) contained recovered pNP- β -G₁ used as an acceptor. On h.p.l.c., F-I' showed only a single peak having a retention time of a standard sample of pNP- β -G₅. The f.a.b.-m.s. spectrum showed two major ions in the high-mass region at m/z 950 and 972, consistent with [M + H]⁺ and [M + Na]⁺, respectively; ¹H-n.m.r. (H₂O): δ 5.21 (d, 1 H, J7.7 Hz), 5.38 (d, 1 H, J3.5 Hz), 7.20 (d, 2 H, J8.8 Hz, o-Ph), and 8.19 (d, 2 H, J9.2 Hz, m-Ph). The ¹³C-n.m.r. data are shown in Table I.

Anal. Calc. for C₃₆H₅₅NO₂₈·0.5H₂O: C, 44.67; H, 5.89; N, 1.44. Found: C, 44.52; H, 5.89; N, 1.26.

The rate of pNP- β -G₅ production was also dependent on the concentration of methanol, the pH, and the temperature (Fig. 2). The maximum pNP- β -G₅ production at 50% methanol was ~ 1.6-fold of that in the presence of 50% Me₂SO (data not shown). Thus, an aqueous-methanol system was more suited for pNP- β -G₅ production than that of an aqueous-Me₂SO system.

In conclusion, the efficiency of G_4 -amylase-catalyzed transglycosylation is greatly influenced by the solubility of the acceptor molecule (pNP- α -G₁ or pNP- β -G₁) in an aqueous-organic solvent rather than any solvent effect. The increased solubility of

Fig. 2. Effects of methanol concentrations, pH, and temperature on pNP- β -G₃ production: (a) The enzyme reaction was performed with maltopentaose (348 mg) and pNP- β -G₁ (253 mg) at 30° in 15 mM phosphate buffer (pH 7.0) containing different methanol concentrations (40%, \blacksquare ; 50%, \bigcirc ; 60%, \bigcirc and 70%, \square). G₄-amylase (1.9U) was added and samples were taken during incubation for analysis by h.p.l.c. (b) Substrates were dissolved in 1 mL of phosphate buffer (pH 6.0, \triangle ; pH 7.0, \bigcirc ; pH 8.0 \square) containing 50% methanol at 30°, respectively. Other conditions were same as those in (a). (c) Substrates were dissolved in 1 mL of phosphate buffer (pH 9.0) containing 50% methanol at 30 (\bigcirc), 40 (\triangle), and 50° (\blacksquare), respectively. Other conditions were same as those in (a).

pNP- α -G₁ in aqueous Me₂SO facilitated the production of pNP- α -G₅ in comparison with aqueous methanol, whereas the reverse was true for production of pNP- β -G₅. This enzymic method not only provides a useful technique for the preparations of pNP- α -G₅, but also for that of other chromogenic oligosaccharide analogues.

EXPERIMENTAL

Materials. — G_4 -amylase from the culture filtrates of *P. stutzeri* NRRL B 3389 mutant¹¹ was prepared by precipitation with $(NH_4)_2SO_4$ followed by adsorption on starch granules¹². A series of *p*-nitrophenyl α - or β -malto-oligosaccharides (degree of polymerization, 2–5) were purchased from Calbiochem-Behring Corp. Other reagents were guaranteed reagent grade.

General methods. — H.p.l.c. was performed with a YMC Packed Column Type A-014 (SIL) (6.0 mm x 30 cm) in a Shimadzu LC-3A liquid chromatograph equipped with a Shimadzu SPD-6A u.v. detector. Elution was effected with 1:4 (v/v) water-MeCN at a flow rate of 1.0 mL/min. The ¹³C- and ¹H-n.m.r. spectra were recorded in D₂O using 1% oligosaccharide solution in 5-mm tubes at room temperature with a Jeol-GSX-400 spectrometer operating at 100 MHz in the pulsed Fourier-transform mode with complete proton decoupling. Chemical shifts are expressed in p.p.m. relative to sodium 4,4-dimethyl-4-silapentanesulfonate (TPS) as the internal standard. F.a.b.-m.s. measurements of oligosaccharides were recorded with a Jeol DX-303 HF mass spectrometer, operating at the full accelerating potential (3 kV) and coupled to a Jeol DA-500 mass data system. The sample (3 μ L) in distilled water was added to the glycerol matrix, and 0.1N HCl (1 μ L) was added. The molecular weight of the sample was estimated from the *m/z* value of the quasimolecular ion (M + H)⁺ peak. Specific rotations were determined with a Digital Automatic Polarimeter PM-101 (Union Giken Corp., Ltd.). Elemental analyses were performed with a Perkin–Elmer 240C apparatus.

Amylase assay. — The G₄-amylase was assayed as follows. A mixture containing 10 mg of soluble starch in 0.2 mL of 50mm acetate buffer (pH 6.0) and an appropriate amount of enzyme in a total volume of 1.0 mL was incubated for 15 min at 40°. The reducing sugar released by the enzymic action was measured by the Somogyi–Nelson method^{13,14}. One unit is defined as the amount of enzyme liberating one μ mol of reducing sugar equivalent as glucose per minute under the assay conditions.

ACKNOWLEDGMENT

We are grateful to Dr. H. Kawagishi for recording the f.a.b.-m.s. and n.m.r. spectra.

REFERENCES

- 1 B. K. Gillard, H. C. Markman, and S. A. Feig, Clin. Chem., 23 (1977) 2279-2282.
- 2 R. F. Foery, Clin. Chem., 27 (1980) 1047.
- 3 E. O. Hägele, E. Schaich, E. Rauscher, P. Lehmann, H. Bürk, and A. W. Wahlefeld, *Clin. Chem.*, 28 (1982) 2201-2205.

- 4 K. Omichi and T. Ikenaka, J. Biochem., 100 (1986) 1353-1358.
- 5 S. Satomura, T. Iwata, Y. Sakata, K. Omichi, and T. Ikenaka, Carbohydr. Res., 176 (1988) 107-115.
- 6 H. Matsui, H. Kawagishi, and T. Usui, Biochim. Biophys. Acta., 1035 (1990) 90-96.
- 7 K. Wallenfels, B. Meltzer, G. Luale, and G. Janatsch, Fresenius Z. Anal. Chem., 301 (1980) 169-170.
- 8 S. Matsubara, Bull. Soc. Jpn., 34 (1961) 718-722.
- 9 K. Wallenfels, P. Foldi, H. Nierman, H. Bender, and D. Linder, Carbohydr. Res., 61 (1978) 359-368.
- 10 T. Usui and T. Murata, J. Biochem., 103 (1988) 969-972.

4

- 11 J. F. Robyt and R. J. Ackerman, Arch. Biochem. Biophys., 145 (1971) 105-114.
- 12 Y. Sakano, Y. Kashiwagi, and T. Kobayashi, Agri. Biol. Chem., 46 (1982) 639-646.
- 13 M. Somogyi, J. Biol. Chem., 195 (1952) 19-23.
- 14 N. Nelson, J. Biol. Chem., 153 (1944) 375-380.