# PHYSICAL METHODS OF INVESTIGATION

# Edge-Shared [M<sub>2</sub>Cl<sub>10</sub>]<sup>2-</sup> Complexes of Reaction between Oxophilic Group 4 Metal and Phosphorus Ylides<sup>1</sup>

S. J. Sabounchei<sup>a</sup>, M. Ahmadi<sup>a</sup>, P. Shahriari<sup>a</sup>, F. Hoseini-Fashami<sup>a</sup>, and S. Samiee<sup>b</sup>

<sup>a</sup>Faculty of Chemistry, University of Bu-Ali Sina, Hamedan, 65174 Iran <sup>b</sup> Department of Chemistry, Faculty of Science, Shahid Chamran University, Ahvaz, Iran e-mail: Jsabounchei@yahoo.co.uk Received February 17, 2010

**Abstract**—The reactions between oxophilic group 4 metal chlorides,  $\alpha$ -keto ylides in THF, led to the formation of titanium, zirconium and hafnium edge-shared  $[M_2Cl_{10}]^{2-}$  complexes (1a-3f). We describe that the reaction between MCl<sub>4</sub> (M = Ti, Zr and Hf) with phosphorus ylides produce edge-shared  $[M_2X_{10}]^{2-}$  complexes instead of O-coordination previously reported complexes. Adding dimethyl sulfoxide (DMSO) to these complexes in room temperature crystalline solid  $[M(DMSO)_8] \cdot 4Cl \cdot mH_2O \cdot DMSO]$  ( $\dot{M} = Ti$  (1g), Zr (2g) and Hf (3g); m = 0-3) together with phosphonium salts in mother liquid were formed. The compounds were characterized by elemental analysis, IR and <sup>1</sup>H, <sup>13</sup>C and <sup>31</sup>P NMR spectroscopy.

DOI: 10.1134/S0036023612070170

The utility of metalated phosphorus ylides in synthetic chemistry has been well documented [1, 2]. Phosphorus ylides are remarkable ligands which have attracted much attention in synthetic, catalytic and theoretical fields of transition metal chemistry [3]. The complexes of  $\alpha$ -keto-stabilized phosphorus ylides with late transition-metal ions are thoroughly investigated [4, 27]; there are a few examples of such complexes with early transition metals [7, 8].

We attend to the oxophilic group 4 metals, Ti, Zr and Hf that can be classified as a hard metal. The extent of the interaction between the metal centers is clearly dependent on the electronic properties of the constituent metals but the nature of the bridging ligand framework can also play a significant role. Among the species displaying metal-metal interactions, the dinuclear compounds represented by the face-shared  $[M_2X_9]^{2-}$  and edge-shared  $[M_2X_{10}]^{2-}$ (dimer) species are particularly noteworthy as they are formed by many transition metals [7]. The decahalodimetallate  $[M_2Cl_{10}]^{2-}$  anions of zirconium(IV) and hafnium(IV) within the second and third row of the transition d elements have been prepared as their triphenylmethyl derivatives  $[Ph_3C]_2[M_2Cl_{10}]$  and the structural data of the hafnium derivative have been reported. The structure of the hafnium dinuclear anion is similar to that of the corresponding titanium derivative, with  $PCl_4^+$  as counterion [11a]. The bonding parameters of the  $[Hf_2Cl_{10}]^{2-}$  anion and also the crystal structure of [Me<sub>2</sub>SCH<sub>2</sub>Cl]<sub>2</sub>[Zr<sub>2</sub>Cl<sub>10</sub>], have been reported [11b, 12]. In view of these observations we have initiated an investigation of the chemistry of  $TiCl_4$ ,  $ZrCl_4$  and  $HfCl_4$  with phosphorus ylides as a ligand. As part of these studies, we report the preparation and characterization complexes of the type  $(Ar_3PCH_2COR)_2[M_2Cl_{10}]$  (R = OCH\_2C\_6H\_5, C\_4H\_3S,  $C_6H_4NO_2$  and  $C_6H_4Cl$ , Ar = Ph;  $R = C_6H_4NO_2$ ,  $C_6H_4Cl$ , Ar = PhMe). But the most interesting point of our study is the coordination center of DMSO in solution. The reaction of DMSO with metals plays an important role in biological and catalytic processes, and also in the chemistry of complex compounds [13]. The nature of dimethyl sulfoxide as a monodentate ligand is explored in this set of experiments [14, 15]. In each particular case, the problem for study is the determination of the coordination center of DMSO (S- or O-coordination respectively). Dimethyl sulfoxide is a polar aprotic solvent, thus allowing studies of its coordination properties. It is an ambidentate ligand, usually coordinating via the oxygen atom [16], but to a number of soft electron-pair acceptors, it is also coordinating via the sulfur atom [17]. The dominating coordination figures of zirconium(IV) and hafnium(IV) complexes are the square antiprism [18], very often distorted octahedron and distorted sevencoordinated complexes are fairly common [19, 20]. We prepared crystalline solid  $[M(DMSO)_8] \cdot 4Cl \cdot$  $mH_2O \cdot DMSO(1g-3g; m = 0-3)$  together with phosphonium salt of the type  $Ar_3PCH_2COR$  (R =  $OCH_2C_6H_5$ ,  $C_4H_3S$ ,  $C_6H_4NO_2$  and  $C_6H_4Cl$ , Ar = Ph;  $R = C_6H_4NO_2$ ,  $C_6H_4Cl$ , Ar = PhMe) in mother liquid were formed.

<sup>&</sup>lt;sup>1</sup> The article is published in the original.

# **EXPERIMENTAL**

#### General

All reactions were carried out under a nitrogen atmosphere. THF and diethyl ether were distilled from sodium benzophenone just before use. All other solvents were reagent grade and used without further purifications. All glassware was dried for 2 h (150°C) prior to use. Metal halide salts were purchased and used as received from Aldrich Chemical Co. The phosphorous ylides Ph<sub>3</sub>P=CHCOOCH<sub>2</sub>C<sub>6</sub>H<sub>5</sub> (**Y**<sup>1</sup>)<sup>4a</sup>, Ph<sub>3</sub>P=CHCOC<sub>4</sub>H<sub>3</sub>S (**Y**<sup>2</sup>)<sup>4b</sup>, Ph<sub>3</sub>P=CHCOC<sub>6</sub>H<sub>4</sub>NO<sub>2</sub> (**Y**<sup>3</sup>)<sup>5</sup>, Ph<sub>3</sub>P=CHCOC<sub>6</sub>H<sub>4</sub>Cl (**Y**<sup>4</sup>)<sup>6</sup>, (*p*-tolyl)<sub>3</sub>P= CHCOC<sub>6</sub>H<sub>4</sub>NO<sub>2</sub> (**Y**<sup>5</sup>)<sup>4b</sup> and (*p*-tolyl)<sub>3</sub>P= CHCOC<sub>6</sub>H<sub>4</sub>Cl (**Y**<sup>6</sup>)<sup>4b</sup> were synthesized according to the published procedures.

#### Instrumentation

Elemental analysis for C, H and N were performed using a Perkin-Elmer 2400 series analyzer. IR spectra were recorded on a Shimadzu 435-U-04 spectrophotometer in the region 350-4000 cm<sup>-1</sup> and the measurements were made by the KBr disk method. Melting points were measured on a SMP3 apparatus. Solutionstate <sup>1</sup>H, <sup>31</sup>P and <sup>13</sup>C NMR spectra at ambient temperature were obtained in DMSO-*d*<sub>6</sub> or CDCl<sub>3</sub> using a FT-NMR Bruker 300 (300 MHz) and FT-NMR JEOL FX 90 Q (90 MHz) spectrometers. Chemical shifts (ppm) are reported according to internal TMS and external 85% phosphoric acid.

#### Preparation of Phosphorus Ylides

 $\alpha$ -Bromo ketone (1 mmol) was dissolved in 20 mL of acetone and then a solution of triphenylphosphine (PPh<sub>3</sub>) or paratolylphosphine (P(*p*-tolyl)<sub>3</sub>) (1 mmol) in the same solvent (5 mL) was added dropwise to the above solution. The resulting solution was stirred for 13 h. The solid product (phosphonium salt), was filtered off, washed with diethyl ether and dried under reduced pressure. Addition of the phosphonium salt (1 mmol) to an aqueous solution of NaOH (0.5 M) led to the elimination of HBr and gave the free ligand (Scheme 1).



M = Ti, Zr and Hf Ar = Ph (phenyl); PhMe (paratolyl)

i = ipso; o = ortho; m = meta; p = para





# Preparation of Complexes

### *Complexes of Titanium*

Synthesis of bis[benzoylacetatetriphenylphosphonium]di-µ-chloro-bis[tetrachlorotitanate(IV)] (1a). General procedure. A 100-mL Schlenk tube was charged with (0.53 mL, 0.53 mmol of TiCl<sub>4</sub> (1 M solution in CH<sub>2</sub>Cl<sub>2</sub>) and 20 mL of THF. To this yellow solution was added Y<sup>1</sup> (0.20 g, 0.53 mmol) in 15 mL of THF and stirred for 20 min. The pale yellow solution was concentrated to 2 mL, and diethyl ether (15 mL) added to precipitate the moisture-sensitive white complex. Ylied (0.21 g, 70%); mp 69-70°C; IR (KBr) v: 1731 (C=O), 921 (P-C), cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO) δ: 5.5 (d, J = 13.35 Hz, 2H, CH), 5.0 (s, 2H, CH<sub>2</sub>), 7.01-7.95 (m, 20H, Fh); <sup>31</sup>P NMR (DMSO) δ: 20.77 (s), 26.37 (s, triphenylphosphoxide); <sup>13</sup>C NMR (DMSO)  $\delta$ : 31.0 (d, J = 56.0 Hz, CH<sub>2</sub>), 67.9 (s, 1C,  $CH_2$ ), 126.4 (s, 1C, COPh(i)), 131.4 (s, 2C, COPh(o)), 129.3 (s, 2C, COPh(m)), 131.8 (s, 1C, COPh(p), 118.3 (d, J = 88.5 Hz, 3C,  $PPh_3(i)$ ), 133.8  $(d, J = 10.58 \text{ Hz}, 6C, \text{PPh}_3(0)), 130.3 (d, J = 12.70 \text{ Hz},$ 6C, PPh<sub>3</sub>(m)), 135.2 (s, 3C, PPh<sub>3</sub>(p)), 164.8 (s, CO). Anal. calcd. for C<sub>54</sub>H<sub>48</sub>Cl<sub>10</sub>O<sub>4</sub>P<sub>2</sub>Ti<sub>2</sub>: C 50.94, H 3.80; Found C 50.90, H 3.32.

Data for bis[(4-thionylmethyl)triphenylphosphonium]di- $\mu$ -chloro-bis[tetrachlorotitanate(IV)] (1b). *Pale brown solid.* Ylied (0.21 g, 70%); mp 225–228°C (decomp); IR (KBr)  $\delta$ : 1654 (C=O) 938(P-C) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO)  $\delta$ : 6.34 (d, J = 13.3 Hz, 2H, CH<sub>2</sub>); 7.32–8.37 (m, 18H, arom.). <sup>31</sup>P NMR (DMSO): 21.51 (s). <sup>13</sup>C NMR (DMSO)  $\delta$ : 35.39 (d, J = 58.7, CH<sub>2</sub>); 137.52 (s, C(2)); 134.51 (s, C(3)); 137.52 (s, C(4)); 141.75 (d, J = 6.6, C(5)); 119.05 (d, J = 88.2 Hz, 3C, PPh<sub>3</sub>(i)); 133.66 (d, J = 10.2 Hz, 6C, PPh<sub>3</sub>(o)); 129.82 (d, J = 13.0 Hz, 6C, PPh<sub>3</sub>(m)); 129.09 (s, 3C, PPh<sub>3</sub>(P)); 184.73(d, J = 4.5, CO). Anal. calcd. for C<sub>48</sub>H<sub>40</sub>Cl<sub>10</sub>O<sub>2</sub>P<sub>2</sub>S<sub>2</sub>Ti<sub>2</sub>: C 47.06, H, 3.29; Found C 47.22, H 3.20.

Data for bis[(p-nitrophenylmethylene)triphenylphosphonium]di-µ-chloro-bis[tetrachlorotitanate(IV)] (1c). Orange solid. 0.27 g (94%). mp 153-155°C decomp. IR (KBr) v: 1685 (C=O), 995 (P-C) cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO)  $\delta$ : 6.43 ((d, J=13.7, 2H, CH<sub>2</sub>); 7.76-8.34 (m, 19H, arom.). <sup>31</sup>P NMR (DMSO) δ: 21.32 (s). <sup>13</sup>C NMR (DMSO) δ: 36.65 (d, J = 58.5 Hz, CH<sub>2</sub>); 140.07 (s, COPh(i)); 135.24 (s, COPh(o)); 124.35 (s, COPh(m)); 151.15 (s. COPh(p)): 119.39 (d. J = 89.8 Hz, PPh<sub>2</sub>(i)): 134.21  $(d, J = 8.7, PPh_3(o)); 130.49 ((d, J = 11.5, PPh_3(m));$ 131.19 (s, PPh<sub>3</sub>(p)); 192.39 (s, CO). Anal. calcd. for C<sub>52</sub>H<sub>42</sub>Cl<sub>10</sub>N<sub>2</sub>O<sub>6</sub>P<sub>2</sub>Ti<sub>2</sub>: C 47.93, H 3.25, N 2.15; Found C 47.16, H 3.21, N 2.11.

Data for bis[(p-chlorophenylmethylene)triphenylphosphonium]di- $\mu$ -chloro-bis[tetrachlorotitanate(IV)] (1d). Cream solid. 0.14 g (72%). mp 98– 100°C. IR (KBr) v: 1674 (C=O), 990 (P-C) cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO)  $\delta$ : 6.47 (d, J = 13.62 Hz, 2H, CH<sub>2</sub>); 7.21–8.33 (m, 19H, arom.). <sup>31</sup>P NMR (DMSO)  $\delta$ : 21.50 (s). <sup>13</sup>C NMR (DMSO)  $\delta$ : 36.20 (d, J = 61.4 Hz, CH<sub>2</sub>); 140.26 (s, COPh(i)); 135.11 (s, COPh(o)); 129.47 (s, COPh(m)); 119.59 (d, J = 88.6 Hz, PPh<sub>3</sub>(i)); 134.17 (d, J = 10.3 Hz, PPh<sub>3</sub>(o)); 130.42 (d, J = 12.68 Hz, PPh<sub>3</sub>(m)); 131.64 (s, PPh<sub>3</sub>(p)); 192.27 (s, CO). Anal. calcd. for C<sub>52</sub>H<sub>42</sub>Cl<sub>12</sub>O<sub>2</sub>P<sub>2</sub>Ti<sub>2</sub>: C 48.72, H 3.30. Found C 48.56, H 3.25.

Data for bis[(p-nitrophenylmethylene)triparatolylphosphonium]di-µ-chloro-bis[tetrachlorotitanate(IV) (1e). Orange solid. Ylied (0.3 g, 92%); mp  $124^{\circ}C$  (decomp); IR(KBr) v: 1686 (C = O), 995  $(P-C) \text{ cm}^{-1}$ ; <sup>1</sup>H NMR (DMSO)  $\delta$ : 2.5 (s, 9H, CH<sub>3</sub>), 6.4 (d, J = 9.82 Hz, 2H, CH), 7.33-8.36 (m, 16H, Ph);  ${}^{31}P$  NMR (DMSO)  $\delta$ : 20.41 (s);  ${}^{13}C$  NMR (DMSO)  $\delta$ : 21.6 (s, 3C, CH<sub>3</sub>), 37.3 (d, J = 65.2 Hz, CH<sub>2</sub>), 145.7 (s, 1C, COPh(i)), 140.2 (s, 2C, COPh(o)), 124.2 (s, 2C, COPh(m)), 151.0 (s, 1C, COPh(p)), 116.3 (d, J = 90.8 Hz, 3C,  $P(p-tolyl)_3(i)$ ), 134.0 (d, J = 12.21 Hz, 6C, P(*p*-tolyl)<sub>3</sub>(o)), 130.9 (d, J = 11.4 Hz, 6C, P(p-tolyl)<sub>3</sub>(m)), 131.0 (s, 3C, P(p $tolyl_3(p)$ , 192.6 (s, CO). Anal. calcd. for C<sub>58</sub>H<sub>46</sub>Cl<sub>10</sub>N<sub>2</sub>O<sub>6</sub>P<sub>2</sub>Ti<sub>2</sub>: C 50.51, H 3.36, N 2.03; Found C 50.41; H 3.32, N 2.19.

Data for bis[(p-chlorophenylmethylene)triparatolylphosphonium]di- $\mu$ -chloro-bis[tetrachlorotitanate(IV)] (1f). Cream solid. Yield (0.22 g, 77%); m.p. 112–114°C; IR(KBr) v: 1674 (C=O), 1589, 991 (P–C) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO)  $\delta$ : 2.4 (s, 9H, CH<sub>3</sub>), 6.2 (d, J = 13.0 Hz, 2H, CH), 7.29–8.25 (m, 16H, Ph); <sup>31</sup>P NMR (DMSO)  $\delta$ : 20.7 (s); <sup>13</sup>C NMR (DMSO)  $\delta$ : 21.7 (s, 3C, CH<sub>3</sub>), 36.2 (d, J = 61.4 Hz, CH<sub>2</sub>), 140.1 (s, 1C, COPh(i)), 145.7 (br, 4C, COPh(o) and COPh(p)), 129.4 (s, 1C, COPh(m)), 116.5 (d, J = 91.6 Hz, 3C, P(p-tolyl)<sub>3</sub>(i)), 134.0 (d, J =10.9 Hz, 6C, P(p-tolyl)<sub>3</sub>(o)), 130.9 (d, J = 13.2 Hz, 6C, P(p-tolyl)<sub>3</sub>(m)), 131.6 (s, 3C, P(p-tolyl)<sub>3</sub>(p)), 192.1 (s, CO). Anal. calcd. for C<sub>58</sub>H<sub>54</sub>Cl<sub>12</sub>O<sub>2</sub>P<sub>2</sub>Ti<sub>2</sub>: C 50.99, H 3.98; Found C 50.54, H 3.81.

#### Complexes of Zirconium

Synthesis of bis[benzovlacetatetriphenvlphosphonium]di-µ-chloro-bis[tetrachlorozirconate(IV)] (2a). General procedure. A 100-mL Schlenk tube was charged with (0.12 g, 0.53 mmol) of ZrCl<sub>4</sub> and 20 mL of THF. To this colorless solution was added  $Y^1$  (0.20 g. 0.53 mmol) in 8 mL of THF. The solution, which remained colorless, was stirred for 2 h. The colorless solution was concentrated to 2 mL, and diethyl ether (15 mL) added to precipitate the moisture-sensitive pale yellow complex. Ylied (0.19 g, 58%); mp 82-84°C; IR(KBr) v: 1732 (C=O), 996 (P-C) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO)  $\delta$ : 5.5 (d, J = 13.75 Hz, 2H, CH), 5.1 (s, 2H, CH<sub>2</sub>), 6.97–8.12 (m, 20H, Ph); <sup>31</sup>P NMR (DMSO) δ: 20.85 (s), 26.35 (s, triphenylphosphoxide); <sup>13</sup>C NMR (DMSO)  $\delta$ : 29.7 (d, J = 55.1 Hz, CH<sub>2</sub>), 67.6 (s, 1C, CH<sub>2</sub>), 126.3 (s, 1C, COPh(i)), 131.2 (s, 2C, COPh(o)), 129.0 (s, 2C, COPh(m)), 131.6 (s, 1C, COPh(p)), 118.1 (d, J = 88.9 Hz, 3C,  $PPh_3(i)$ ), 133.6 (d, J = 10.80 Hz, 6C, PPh<sub>3</sub>(o)), 130.0 (d, J = 12.83 Hz, 6C, PPh<sub>3</sub>(m)), 134.9 (s, 3C, PPh<sub>3</sub>(p)), 164.6 (s, CO). Anal. calcd. for C<sub>54</sub>H<sub>48</sub>Cl<sub>10</sub>O<sub>4</sub>P<sub>2</sub>Zr<sub>2</sub>: C 47.69, H 3.56; Found C 47.50, H 3.50.

Data for bis[(4-thionylmethyl)triphenylphosphonium]di- $\mu$ -chloro-bis[tetrachlorozirconate(IV)] (2b)). *Pale yellow solid.* Ylield (0.19 g, 58%); mp 286–288°C decomp. IR (KBr) v: 1654 (C=O), 937 (P–C) cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO)  $\delta$ : 6.35 (d, J = 12.5 Hz, 2H, CH<sub>2</sub>); 7.33–8.35 (m, 18H, arom.). <sup>31</sup>P NMR (DMSO)  $\delta$ : 21.49 (s). <sup>13</sup>C NMR (DMSO)  $\delta$ : 35.60 (d, J = 51.4 Hz, CH<sub>2</sub>); 138.00 (s, C(2)); 134.95 (s, C(3)); 137.54 (s, C(4)); 142.13 (d, J = 7.6 Hz, C(5)); 119.37 (d, J = 88.7 Hz, PPh<sub>3</sub>(i)); 133.98 (d, J = 10.6 Hz, PPh<sub>3</sub>(o)); 130.19 (d, J = 12.6 Hz, PPh<sub>3</sub>(m)); 129.09 (*s*, PPh<sub>3</sub>(p)); 185.14 (d, J = 5.8, CO). Anal. calcd. for C<sub>48</sub>H<sub>40</sub>Cl<sub>10</sub>O<sub>2</sub>P<sub>2</sub>S<sub>2</sub>Zr<sub>2</sub>: C 43.95, H 3.07; Found C 44.15, H 3.22.

Data for bis[(p-nitrophenylmethylene)triphenylphosphonium]di- $\mu$ -chloro-bis[tetrachlorozirconate(IV)] (2c). *Orange solid.* 0.11 g (35%). mp 140–143°C decomp. IR (KBr) v: 1686 (C=O), 994 (P–C) cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO)  $\delta$ : 6.56 (d, J = 11.6, 2H, CH<sub>2</sub>); 7.75–8.38 (m, 19H, arom.). <sup>31</sup>P NMR (DMSO)  $\delta$ : 21.02 (s). <sup>13</sup>C NMR (DMSO)  $\delta$ : 36.6 ((d, J = 55.7, CH<sub>2</sub>); 140.06 (s, COPh(i)); 135.23 (s, COPh(o)); 124.36 (s, COPh(m)); 151.18 (s, COPh(p)); 119.38 (d, J = 88.1, PPh<sub>3</sub>(i)); 134.20 ((d, J = 8.5, PPh<sub>3</sub>(o)); 130.47 ((d, J = 10.1, PPh<sub>3</sub>(m)); 131.17 (s, PPh<sub>3</sub>(p)); 192.44 (s, CO). Anal. calcd. for C<sub>52</sub>H<sub>42</sub>Cl<sub>10</sub>N<sub>2</sub>O<sub>6</sub>P<sub>2</sub>Zr<sub>2</sub>: C 44.94, H 3.05, N, 2.02; Found C 44.71, H, 3.13, N 2.08.

Data for bis[(p-chlorophenylmethylene)triphenylphosphonium]di- $\mu$ -chloro-bis[tetrachlorozirconate(IV)] (2d). White solid. 0.24 g (77%). mp 103– 105°C. IR (KBr) v: 1674 (C=O), 989 (P-C) cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO)  $\delta$ : 6.41 (d, J = 13.8 Hz, 2H, CH<sub>2</sub>); 7.21–8.26 (m, 19H, arom.). <sup>31</sup>P NMR (DMSO)  $\delta$ : 21.52 (s). <sup>13</sup>C NMR (DMSO)  $\delta$ : 36.29 (d, J = 61.8, CH<sub>2</sub>); 140.27 (s, COPh(i)); 135.11 (s, COPh(o)); 129.46 (s, COPh(m)); 119.64 (d, J = 88.9 Hz, PPh<sub>3</sub>(i)); 134.20 (d, J = 10.5 Hz, PPh<sub>3</sub>(o)); 130.42 (d, J = 12.7 Hz, PPh<sub>3</sub>(m)); 131.66 (s, PPh<sub>3</sub>(p)); 192.30 (s, CO). Anal. calcd. for C<sub>52</sub>H<sub>42</sub>Cl<sub>12</sub>O<sub>2</sub>P<sub>2</sub>Zr<sub>2</sub>: C 45.63, H 3.09; Found C 45.37, H 3.20.

for bis[(p-nitrophenylmethylene)tripara-Data tolylphosphonium]di-µ-chloro-bis[tetrachlorozirconate(IV)] (2f). Orange solid. Ylied (0.15 g, 49%); mp 160°C (decomp); IR(KBr) v: 1688 (C=O), 994 (P-C) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO) δ: 2.4 (s, 9H, CH<sub>3</sub>), 6.3 (d, J = 13.9 Hz, 2H, CH), 7.61-8.36 (m, 16H, Ph);<sup>31</sup>P NMR (DMSO) δ: 20.42 (s); <sup>13</sup>C NMR (DMSO) δ: 21.7 (s, 3C, CH<sub>3</sub>), 35.8 (d, J = 60.5 Hz, CH<sub>2</sub>), 145.8 (s, 1C, COPh(i)), 140.2 (s, 2C, COPh(o)), 124.2 (s, 2C, COPh(m)), 151.1 (s, 1C, COPh(p)), 116.3 (d, J= 90.9 Hz, 3C,  $P(p-tolyl)_3(i)$ , 134.0 (d, J = 10.5 Hz, 6C,  $P(p-tolyl)_{3}(0)$ , 135.8 (d, J = 12.5 Hz, 6C,  $P(p-tolyl)_{3}(0)$  $tolyl_{3}(m)$ , 131.0 (s, 3C, P(*p*-tolyl)<sub>3</sub>(p)), 192.7 (s, CO). Anal. calcd. for C<sub>58</sub>H<sub>46</sub>Cl<sub>10</sub>N<sub>2</sub>O<sub>6</sub>P<sub>2</sub>Zr<sub>2</sub>: C 47.52, H 3.16, N 1.91; Found C 46.93, H 3.02, N 2.02.

Data for bis[(p-chlorophenylmethylene)triparatolylphosphonium]di- $\mu$ -chloro-bis[tetrachlorozirconate(IV)] (2g). White solid. Yield (0.12 g, 79%); mp 118–120°C; IR (KBr) v: 1674 (C=O), 990 (P–C) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO)  $\delta$ : 2.5 (s, 9H, CH<sub>3</sub>), 6.2 (d, J = 13.0 Hz, 2H, CH), 7.23–8.30 (m, 16H, Ph); <sup>31</sup>P NMR (DMSO)  $\delta$ : 20.7 (s); <sup>13</sup>C NMR (DMSO)  $\delta$ : 21.7 (s, 3C, CH<sub>3</sub>), 36.0 (d, J = 62.9 Hz, CH2), 140.2 (s, 1C, COPh(i)), 145.8 (br, 4C, COPh(o) and COPh(p)), 129.5 (s, 1C, COPh(m)), 116.5 (d, J = 91.7 Hz, 3C, P(*p*-tolyl)<sub>3</sub>(i)), 134.0 (d, J = 10.9 Hz, 6C, P(*p*-tolyl)<sub>3</sub>(o)), 130.9 (d, J = 13.2 Hz, 6C, P(*p*tolyl)<sub>3</sub>(m)), 131.5 (s, 3C, P(*p*-tolyl)<sub>3</sub>(p)), 192.1 (s, CO). Anal. calcd. for C<sub>58</sub>H<sub>54</sub>Cl<sub>12</sub>O<sub>2</sub>P<sub>2</sub>Zr<sub>2</sub>: C 47.95, H 3.75; Found C 47.80, H 3.69.

#### Complexes of Hafnium

Data for bis[benzoylacetatetriphenylphosphonium]di-µ-chloro-bis[tetrachlorohafnate(IV)] (3a). Pale brown solid. Ylied (0.20 g, 61%); mp 90-92°C; IR(KBr) v: 1732 (C=O), 1625, 1601, 1587, 1486, 1438, 1379, 1263, 1127, 1072, 968 (P-C), 906, 805, 746, 728, 695 cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO)  $\delta$ : 5.6 (d, J = 14.51 Hz, 2H, CH), 5.1 (s, 2H, CH<sub>2</sub>), 6.93–7.92 (m, 20H, Ph); <sup>31</sup>P NMR (DMSO) δ: 20.83 (s), 26.20 (s, triphenylphosphoxide);  ${}^{13}CNMR$  (DMSO)  $\delta$ : 67.6 (s, 1C, CH<sub>2</sub>), 128.4 (s, 1C, COPh(i)), 131.2 (s, 2C, COPh(o)), 129.0 (s, 2C, COPh(m)), 131.7 (s, 1C, COPh(p)), 118.2 (d, J = 88.9 Hz, 3C,  $PPh_3(i)$ ), 133.7  $(d, J = 10.56 \text{ Hz}, 6C, \text{PPh}_2(0)), 130.0 (d, J = 12.84 \text{ Hz},$ 6C, PPh<sub>3</sub>(m)), 135.0 (s, 3C, PPh<sub>3</sub>(p)), 164.6 (s, CO). Anal. calcd. for C<sub>54</sub>H<sub>48</sub>Cl<sub>10</sub>O<sub>4</sub>P<sub>2</sub>Hf<sub>2</sub>: C 42.27, H 3.15; Found C 42.18, H 3.10.

Data for cis[(4-thionylmethyl)triphenylphosphonium]di- $\mu$ -chloro-bis[tetrachlorohafnateIV)] (3b). *Pale brown solid.* 0.22 g (59%). mp 297–299°C decomp. IR (KBr) v: 1655 (C=O), 939 (P–C) cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO)  $\delta$ : 6.15 (d, J = 13.8 Hz, 2H, CH<sub>2</sub>); 7.08–8.15 (*m*, 18H, arom.). <sup>31</sup>P NMR (DMSO)  $\delta$ : 21.38 (s). <sup>13</sup>C NMR (DMSO)  $\delta$ : 137.73 (s, C(2)); 134.71 (s, C(3)); 137.32 (s, C(4)); 141.82 (d, J = 7.5 Hz, C(5)); 118.96 (d, J = 88.6 Hz, PPh<sub>3</sub>(i)); 133.68 (d, J = 10.5 Hz, PPh<sub>3</sub>(o)); 129.96 (d, J = 12.9 Hz, PPh<sub>3</sub>(m)); 129.23 (s, PPh<sub>3</sub>(p)); 184.50 (s, CO). Anal. calcd. for C<sub>48</sub>H<sub>40</sub>Cl<sub>10</sub>Hf<sub>2</sub>O<sub>2</sub>P<sub>2</sub>S<sub>2</sub>: C 38.79, H 2.71; Found C 38.65, H 2.84.

Data for bis[(p-nitrophenvlmethylene)triphenylphosphonium]di- $\mu$ -chloro-bis[tetrachlorohafnate(IV)] (3c). *Orange solid.* 0.12 g (45%). mp 136–138°C decomp. IR (KBr) v: 1683 (C=O), 994 (P–C) cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO)  $\delta$ : 6.56 (d, J = 13.7 Hz, 2H, CH<sub>2</sub>); 7.77– 8.35 (m, 19H, arom.). <sup>31</sup>P NMR (DMSO)  $\delta$ : 21.26 (s). <sup>13</sup>C NMR (DMSO)  $\delta$ : 36.71 (d, J = 62.0 Hz, CH<sub>2</sub>); 140.08 (s, COPh(i)); 135.25 (s, COPh(o)); 124.34 (s, COPh(m)); 151.10 (s, COPh(p)); 119.40 (d, J = 89.3 Hz, PPh<sub>3</sub>(i)); 134.22 (d, J = 9.1 Hz, PPh<sub>3</sub>(o)); 130.50 (d, J = 12.1 Hz, PPh<sub>3</sub>(m)); 131.12 (s, PPh<sub>3</sub>(p)); 192.36 (s,



Fig. 1. The molecular structure of 3g.



Fig. 2. The molecular structure of 2g.

CO). Anal. calcd. for  $C_{52}H_{42}Cl_{10}Hf_2N_2O_6P_2$ : C 39.92, H 2.71, N 1.79; Found C 39.42, H 2.62, N 1.92.

Data for bis[(p-chlorophenylmethylene)triphenylphosphonium]di- $\mu$ -chloro-bis[tetrachlorohafnate(IV)] (3d). *White solid*. 0.26 g (75%). mp 107–109°C. IR (KBr) v: 1673 (C=O), 990 (P–C) cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO) δ: 6.42 (*d*, *J* = 13.6 Hz, 2H, CH<sub>2</sub>); 7.38–8.41 (m, 19H, arom.). <sup>31</sup>P NMR (DMSO) δ: 21.53 (s). <sup>13</sup>C NMR (DMSO) δ: 36.20 (d, *J* = 60.4 Hz, CH<sub>2</sub>); 140.28 (*s*, COPh(i)); 135.12 (s, COPh(o)); 129.48 (s,

| Complexes<br>ylides | $v_{C=O} (cm^{-1})$ | $v_{p^+-C^-}$ (cm <sup>-1</sup> ) | Ref.      |  |
|---------------------|---------------------|-----------------------------------|-----------|--|
| APPY <sup>a</sup>   | 1530                | —                                 | 24        |  |
| BPPY <sup>b</sup>   | 1525                | —                                 | 25        |  |
| $\mathbf{Y}^{1}$    | 1610                | 887                               | 4a        |  |
| $Y^2$               | 1527                | 879                               | 4b        |  |
| $Y^3$               | 1529                | 884                               | 5         |  |
| $Y^4$               | 1579                | 882                               | 6         |  |
| Y <sup>5</sup>      | 1600                | 886                               | 4b        |  |
| Y <sup>6</sup>      | 1581                | 882                               | 4b        |  |
| la                  | 1731                | 923                               | This work |  |
| 2a                  | 1732                | 996                               | This work |  |
| 3a                  | 1732                | 968                               | This work |  |
| 1b                  | 1654                | 938                               | This work |  |
| 2b                  | 1654                | 937                               | This work |  |
| 3b                  | 1655                | 939                               | This work |  |
| 1c                  | 1685                | 995                               | This work |  |
| 2c                  | 1686                | 994                               | This work |  |
| 3c                  | 1683                | 994                               | This work |  |
| 1d                  | 1674                | 990                               | This work |  |
| 2d                  | 1674                | 989                               | This work |  |
| 3d                  | 1673                | 990                               | This work |  |
| 1e                  | 1686                | 995                               | This work |  |
| 2e                  | 1688                | 994                               | This work |  |
| 3e                  | 1690                | 992                               | This work |  |
| lf                  | 1674                | 991                               | This work |  |
| 2f                  | 1674                | 990                               | This work |  |
| 3f                  | 1675                | 991                               | This work |  |

**Table 1.** v(CO) and  $v(P^+-C^-)$  of phosphoranes and their metal complexes

<sup>a</sup> acetylmethylmetriphenylphosphorane.

<sup>b</sup> benzoylmethylenephenylphosphorane.

COPh(m)); 119.59 (d, J = 89.0 Hz, PPh<sub>3</sub>(i)); 134.18 (d, J = 10.7 Hz, PPh<sub>3</sub>(o)); 130.43 (d, J = 12.9 Hz, PPh<sub>3</sub>(m)); 131.63 (s, PPh<sub>3</sub>(p)); 192.24 (s, CO). Anal. calcd. for C<sub>52</sub>H<sub>42</sub>Cl<sub>12</sub>Hf<sub>2</sub>O<sub>2</sub>P<sub>2</sub>: C 40.47, H 2.74; Found C 40.35, H 2.50.

Data for bis[(p-nitrophenylmethylene)triparatolylphosphonium]di- $\mu$ -chloro-bis[tetrachlorohafnate(IV)] (3e). Orange solid. Ylied (0.12 g, 45%); mp 153°C (decomp); IR(KBr) v: 1690 (C=O), 992 (P-C) cm<sup>-1</sup>; <sup>1</sup>H NMR (DMSO)  $\delta$ : 2.4 (s, 9H, CH<sub>3</sub>), 6.2 (d, J = 12.7 Hz, 2H, CH), 7.56–8.41 (m, 16H, Ph); <sup>31</sup>P NMR (DMSO)  $\delta$ : 20.38 (s); <sup>13</sup>C NMR (DMSO)  $\delta$ : 21.6 (s, 3C, CH<sub>3</sub>), 36.5 (d, J = 61.4 Hz, CH<sub>2</sub>), 140.1 (s, 1C, COPh(i)), 145.9 (s, 2C, COPh(o)), 124.3 (s, 2C, COPh(m)), 151.1 (s, 1C, COPh(p)), 116.2 (d, J = 91.6 Hz, 3C, P(*p*-tolyl)<sub>3</sub>(i)), 134.0 (d, J = 10.8 Hz, 6C, P(*p*-tolyl)<sub>3</sub>(o)), 131.0 (d, J = 13.2 Hz, 6C, P(*p*-tolyl)<sub>3</sub>(m)), 131.1 (s, 3C, P(*p*-tolyl)<sub>3</sub>(p)), 192.3 (s, CO). Anal. calcd. for C<sub>58</sub>H<sub>46</sub>Cl<sub>10</sub>N<sub>2</sub>O<sub>6</sub>P<sub>2</sub>Hf<sub>2</sub>: C 42.47, H 2.83, N 1.71; Found C 42.32, H 2.80, N 1.65.

Data for bis[(p-chlorophenylmethylene)triparatolylphosphonium]di-µ-chloro-bis[tetrachlorohafnate(IV)] (**3f**). White solid. Yield (0.27, 80%); mp 125–127°C; IR(KBr) v: 1675 (C=O), 991 (P-C) cm<sup>-1</sup>; <sup>1</sup>H NMR  $(DMSO) \delta: 2.4 (s, 9H, CH_3), 6.3 (d, J = 13.5 Hz, 2H,$ CH), 7.11–8.24 (m, 16H, Ph); <sup>31</sup>P NMR (DMSO) δ: 20.6 (s); <sup>13</sup>C NMR (DMSO) δ: 21.6 (s, 3C, CH<sub>3</sub>), 36.0  $(d, J = 60.6 \text{ Hz}, \text{CH}_2), 140.1 \text{ (s, 1C, COPh(i))}, 145.8$ (br, 4C, COPh(o) and COPh(p)), 129.3 (s, 1C, COPh(m)), 116.5 (d, J = 91.6 Hz, 3C,  $P(p-tolyl)_3(i)$ ), 134.0 (d, J = 11.0 Hz, 6C, P(p-tolyl)<sub>3</sub>(o)), 131.0 (d, J = 13.3 Hz, 6C, P(p-tolyl)<sub>3</sub>(m)), 131.6 (s, 3C, P(p-tolyl)<sub>3</sub>(m)) tolyl)<sub>3</sub>(p)), 192.2 (s, CO). Anal. calcd. for C<sub>58</sub>H<sub>54</sub>Cl<sub>12</sub>O<sub>2</sub>P<sub>2</sub>Hf<sub>2</sub>: C 42.81, H 3.34; Found C 42.73, H 3.51.

#### Preparation of Octakis(dimethyl sulfoxide)titanium(IV) (1g)

General procedure. With 0.1of  $(\text{RCOCH}_2\text{PAr}_3)_2[\text{Ti}_2\text{Cl}_{10}] \ (\text{R} = \text{OCH}_2\text{C}_6\text{H}_5, \ \text{C}_4\text{H}_3\text{S},$  $C_6H_4NO_2$  and  $C_6H_4Cl$ ; Ar = Ph and  $(R = C_6H_4NO_2)$ and  $C_6H_4Cl$ ; Ar = PhMe) was added DMSO in room temperature. The solution, which remained colorless. so 5 day crystalline solid was formed. The colorless solution contain two product, one of the product  $[Ti(DMSO)_{8}]$  in crystalline solid and another product, phosphonium salt in mother liquid, mp 140–142°C, IR(KBr) v: 1020 (S=O, symmetric stretch), 950 (S=O, asymmetric stretch), 488 (Ti–O, symmetric stretch), 448 (Ti–O, asymmetric stretch) cm<sup>-1</sup>. Anal. calcd. for C<sub>16</sub>H<sub>48</sub>O<sub>8</sub>S<sub>8</sub>Ti: C 28.56, H 7.19; Found C 28.02, H 6.88.

Data for octakis(dimethyl sulfoxide)zirconium(IV) (2g). mp 153–155°C, IR(KBr) v: 1030 (S=O, symmetric stretch), 953 (S=O, asymmetric stretch), 484 (Ti–O, symmetric stretch), 436 (Ti–O, asymmetric stretch) cm<sup>-1</sup>. Anal. calcd. for  $C_{16}H_{48}O_8S_8Zr$ : C 26.83, H 6.75; Found C 26.51, H 6.63.

Data for octakis(dimethyl sulfoxide)hafnium(IV) (3g). mp 168–170°C,  $IRv_{max}/cm^{-1}$  1024 (S=O, symmetric stretch), 952 (S=O, asymmetric Mstretch), 483 (Ti–O, symmetric stretch), 441 (Ti–O, asymmetric stretch). Anal. calcd. for  $C_{16}H_{48}HfO_8S_8$ : C 23.92, H 6.02; Found C 23.12, H 5.78.

# **RESULTS AND DISCUSSION**

The reaction between the group 4 metal halide salts and the  $\alpha$ -keto ylides Y<sup>1</sup>, Y<sup>2</sup>, Y<sup>3</sup>, Y<sup>4</sup>, Y<sup>5</sup> and Y<sup>6</sup> in THF led to the formation of complexes of the type (Ar<sub>3</sub>PCH<sub>2</sub>COR)<sub>2</sub>[M<sub>2</sub>Cl<sub>10</sub>] (**la**-3**f**). The anionic

| No | 1a                                             | 1b                                            | 1c                               | 1d                                             | 1e           | lf                                            | 2a                               | 2b           | 2c                                            |
|----|------------------------------------------------|-----------------------------------------------|----------------------------------|------------------------------------------------|--------------|-----------------------------------------------|----------------------------------|--------------|-----------------------------------------------|
| R  | OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | $C_4H_3S$                                     | $C_6H_4NO_2$                     | C <sub>6</sub> H <sub>4</sub> Cl               | $C_6H_4NO_2$ | C <sub>6</sub> H <sub>4</sub> Cl              | $OCH_2C_6H_5$                    | $C_4H_3S$    | C <sub>6</sub> H <sub>4</sub> NO <sub>2</sub> |
| R' | Н                                              | Н                                             | Н                                | Н                                              | Me           | Me                                            | Н                                | Н            | Н                                             |
| Μ  | Ti                                             | Ti                                            | Ti                               | Ti                                             | Ti           | Ti                                            | Zr                               | Zr           | Zr                                            |
| No | 2d                                             | 2e                                            | 2f                               | 3a                                             | 3b           | 3c                                            | 3d                               | 3e           | 3f                                            |
| R  | C <sub>6</sub> H <sub>4</sub> Cl               | C <sub>6</sub> H <sub>4</sub> NO <sub>2</sub> | C <sub>6</sub> H <sub>4</sub> Cl | OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | $C_4H_3S$    | C <sub>6</sub> H <sub>4</sub> NO <sub>2</sub> | C <sub>6</sub> H <sub>4</sub> Cl | $C_6H_4NO_2$ | C <sub>6</sub> H <sub>4</sub> Cl              |
| R' | Н                                              | Me                                            | Me                               | Н                                              | Н            | Н                                             | Н                                | Me           | Me                                            |
| Μ  | Zr                                             | Zr                                            | Zr                               | Hf                                             | Hf           | Hf                                            | Hf                               | Hf           | Hf                                            |



Fig. 3. Suggested structure of 1a–3f.

 $[M_2Cl_{10}]^{2-}$  and the cationic  $(RCOCH_2PAr_3)^+$  units are held together by electrostatic forces. The  $M_1$  and  $M_2$ atoms in the  $[M_2Cl_{10}]^{2-}$  dimer environment are sixcoordinate with a distorted octahedral configuration. The reaction of APPY and BPPY with MCl<sub>4</sub> (M = Ti, Zr and Hf) produced O-coordination complexes [7]. In this work, the reaction of MCl<sub>4</sub> with  $\alpha$ -keto phosphorus ylides edge-shared  $[M_2Cl_{10}]^{2-}$  complexes are formed. The decahalogenodimetalate(IV) dianions as their phosphorus ylides are well soluble in DMSO. After five day in room temperature crystalline solid **1g–3g** together with phosphonium salts in mother liquid were formed.

Proton decoupled <sup>31</sup>P-NMR spectra in room temperature showed only one sharp singlet around 21 ppm for 1a-3f. As we described earlier the reaction between  $MCl_4$  (M = Ti, Zr and Hf) with phosphorus ylides produce edge-shared  $[M_2X_{10}]^{2-}$  complexes instead of O-coordination that previously reported [7]. The <sup>31</sup>P chemical shift values for these complexes appear to be downfield by about  $\delta \approx 6-7$  ppm with respect to the parent ylides. Gutmann and co-workers [26] suggest the existence of the  $[Zr_2X_{10}]^{2-}$  anion in the reaction between  $ZrCl_4$  and  $Ph_3CCi$  in acetonitrile solution. These complexes are soluble in DMSO and crystalline solid of 1g-3g were formed gradually in room temperature. The structure of this crystal indicated that DMSO coordinated from oxygen into metal center. This is similar to the structures of the octakis(dimethyl sulfoxide)zirconium (IV) chloride dimethyl sulfoxide trihydrate [18] and octakis(dimethyl sulfoxide)hafnium(IV) chloride dimethyl sulfoxide dihydrate [17] (Fig. 1) were built up of discrete octakis(dimethyl sulfoxide)zirconium(IV) and hafnium(IV) complexes, chloride ions and with an additional dimethyl sulfoxide molecule and two or three water molecules in the lattice. This work also showed that the zirconium(IV) ions are surrounded by eight oxygen atoms from the dimethyl sulfoxide molecules in a fairly regular square antiprism (Fig. 2). The v (CO) and v (P<sup>+</sup>-C<sup>-</sup>) in **1a-3f** are compared, in Table 1.

As mentioned earlier, in each particular case, the problem for study is the determination of the coordination center of DMSO (the S or O atoms; S- or O-coordination respectively). This problem is traditionally solved from the displacement of the band due to the stretching vibration  $v_{SO}$ , lying in the near infrared range. Among other possible methods of determining the coordination centers of DMSO, this method

Table 2. M-O and S=O symmetric and asymmetric stretching vibration frequencies in 1g-3g

| Complexes             | S=O<br>symmetric<br>stretch | S=O<br>asymmet-<br>ric stretch | M–O<br>symmet-<br>ric stretch | M–O<br>asymmet-<br>ric stretch |
|-----------------------|-----------------------------|--------------------------------|-------------------------------|--------------------------------|
| DMSO                  | 1054                        | 954                            | _                             | _                              |
| Ti(DMSO) <sub>8</sub> | 1020                        | 950                            | 488                           | 448                            |
| Zr(DMSO) <sub>8</sub> | 1030                        | 953                            | 484                           | 436                            |
| Hf(DMSO) <sub>8</sub> | 1024                        | 952                            | 483                           | 441                            |

| Parameters        | ${}^{1}J_{\mathrm{P-C}}$ | $^{2}J_{\mathrm{P-H}}$ |
|-------------------|--------------------------|------------------------|
| Complexes/Ligands | (CH <sub>2</sub> )       | (CH <sub>2</sub> )     |
| Y <sup>1</sup>    | 124.89                   | _                      |
| la                | 56.00                    | 13.35                  |
| 2a                | 55.10                    | 13.75                  |
| 3a                | —                        | 14.51                  |
| $Y^2$             | 112.73                   | 23.12                  |
| 1b                | 58.75                    | 13.26                  |
| 2b                | 51.45                    | 13.35                  |
| 3b                | —                        | 13.81                  |
| $Y^3$             | 110.20                   | 22.85                  |
| lc                | 57.15                    | 13.70                  |
| 2c                | 55.77                    | 11.58                  |
| 3c                | 62.04                    | 13.73                  |
| $Y^4$             | 110.30                   | 23.75                  |
| 1d                | 61.44                    | 13.62                  |
| 2d                | 61.82                    | 13.81                  |
| 3d                | 60.42                    | 13.62                  |
| $Y^5$             | 113.47                   | 22.67                  |
| le                | 65.20                    | 9.82                   |
| 2e                | 60.05                    | 13.90                  |
| 3e                | 61.40                    | 12.70                  |
| Y <sup>6</sup>    | 112.00                   | 23.12                  |
| 1f                | 61.40                    | 13.00                  |
| 2f                | 62.90                    | 13.00                  |
| 3f                | 60.60                    | 14.50                  |

Table 3. Compared  $J_{P-CH}$  of the complexes 1a-3f with ylides

occupies essentially a monopoly position. It is not applicable, however, in those cases where the range in which  $v_{SO}$  appears is overlapped by the bands due to other vibrations [13]. Attempts to improve the situation by means of an analysis of the spectra in the range in which the metal-DMSO stretching vibrations appear (tentatively,  $v_{M-S} = 500-260$ ,  $v_{M-O} = 530-380$  cm<sup>-1</sup>) [13, 21, 22], have generally had little success, because of the indefinite nature of the assignments and the overlap of the corresponding spectral intervals. Preliminary results from normal coordinate analysis show that there are major contributions from S–O stretching in the IR bands at 927 and 897 cm<sup>-1</sup> [23]. The MO and SO stretching vibration frequencies **1g–3g** are listed in Table 2.

The <sup>1</sup>H NMR spectrum of **1a–3f** in room temperature showed resonances associated with the aromatic phenyl groups around 7–8 ppm and resonances corresponding to the methinic protons around 6–7 ppm as a doublet. The suggested structure for these complexes (Fig. 3) shows that involving a phosphonium cation and a  $\mu$ -dichloro M<sub>2</sub>Cl<sub>10</sub> dianion. The <sup>13</sup>C NMR spectra of **1a**–**3f** in room temperature are the up field shift of the signals due to ylidic carbon. High solubility of ylides in CDCl<sub>3</sub> allowed us to record the spectrum in this solvent but for the complexes we had to use DMSO- $d_6$  and presence of a septet pick due to solvent at 39.5 ppm in the CH resonance region caused that some of these signals were not seen. The <sup>13</sup>C-NMR spectrum revealed resonances only in the range of 127–130 ppm, associated with the phenyl groups. Table 3 contains the coupling constant of **1a–3f** compared with parent ylides. This indicates interaction between  $[M_2Cl_{10}]$  with counterion showed in Scheme 1.

# ACKNOWLEDGMENTS

We are highly grateful to the university of Bu-Ali-Sina for a grant and Mr. Zebarjadian for recording the NMR spectra.

### Supplementary Information

Supplementary data contains three figures, the molecular structure of octakis(dimethyl sulfoxide)hafnium(IV) chloride dimethyl sulfoxide dihydrate (Fig. 1) the molecular structure of octakis(dimethyl sulfoxide)zirconium(IV) chloride dimethyl sulfoxide (Fig. 2).

#### REFERENCES

- 1. H. J. Cristau, Chem. Rev. 94, 1299 (1994).
- 2. O. I. Kolodiazhnyl, Tetrahedron 52, 1855 (1996).
- 3. A. W. Johnson, *Ylides and Imines of Phosphorus* (Wiley, New York, 1993).
- (a) S. J. Sabounchei, A. R. Dadrass, F. Akhlaghi, et al., Polyhedron 27, 1963 (2008); (b) S. J. Sabounchei, H. Nemattalab, V. Jodaian, J. Chin. Chem. Soc. 55, 197 (2008); (c) S. J. Sabounchei, A. R. Dadrass, M. Jafarzadeh, and H. R. Khavasi, J. Organomet. Chem. 692, 2500 (2007); (d) S. J. Sabounchei, H. Nemattalab, S. Salehzadeh, et al., Inorg. Chim. Acta 362, 105, (2009); (e) S. J. Sabounchei, H. Nemattalab, and H. R. Khavasi, J. Organomet. Chem. 692, 5440, (2007); (f) S. J. Sabounchei, V. Jodaian, and H. R. Khavasi Polyhedron 26, 2845, (2007); (g) S. J. Sabounchei, A. R. Dadrass, and S. Samiee, Phosphorus, Sulfur, Silicon 181, 1, (2006); (h) S. J. Sabounchei, H. Nemattalab, F. Akhlaghi, and H. R. Khavasi, Polyhedron 27, 3275 (2008)
- 5. M. Kobayashi, F. Sanda, and T. Endo, Macromolecules **32**, 4751 (1999).
- 6. H. J. Bestmann and B. Arnason, Chem. Ber. **95**, 1513 (1962).
- J. A. Albanese, D. L. Staley, A. L. Rheingold, and J. L. Burmeister, Inorg. Chem. 29, 2209 (1990).
- E. Diez-Barra, J. Fernandez-Baeza, M. M. Kubicki, et al., J. Organomet. Chem. 542, 291 (1997); A. Antinolo, F. Carrillo-Hermosilla, E. Diez-Barra, et al. J. Organomet. Chem. 570, 97 (1998).

- 9. G. Cavigliasso, Yu. Chung-Yen, and R. Stranger, Polyhedron 26, 2942 (2007).
- F. Calderazzo, P. Pallavicini, G. Pampaloni, and P. F. J. Zanazzi, J. Chem. Soc, Dalton Trans., 2743 (1990).
- (a) T. J. Kistenmacher and G. D. Stucky, Inorg. Chem.
  10, 122 (1971); (b) B. Neumuller and K. Dehnicke, Z. Anorg. Allgem. Chem. 630, 2576 (2004).
- 12. R. Hart, W. Levason, B. Patel, and G. J. Reid, J. Chem. Soc, Dalton Trans., 3153 (2002).
- 13. W. Reynolds, Prog. Inorg. Chem. 22, 1 (1970).
- 14. Z. Szafran, R. M. Pike, and M. M. Singh, *Microscale Inorganic Chemistry* (Wiley, New York, 1991).
- W. R. Reynolds, Progress in Inorganic Chemistry, Vol. 12: *Dimethyl Sulfoxide in Inorganic Chemistry*, Ed. by S. J. Lippard (Interscience, New York, 1970), p. 1.
- N. N. Kulikova, S. I. Troyanov, K. N. Nikitin, and S. O. Gerasimova, Rus. J. Inorg. Chem. 34, 2693 (1989).
- 17. M. Calligaris and O. Carugo, Coord. Chem. Rev. **153**, 83 (1996).

- 18. C. Hagfeldt, V. Kessler, and I. J. Persson, Chem. Soc, Dalton Trans., 2142 (2004).
- 19. F. H. Allen, S. Bellard, M. D. Brice, et al., Acta Crystallogr., Sect. B 35, 2331 (1979), and references therein
- 20. *Inorganic Crystal Structure Data Base*, Release 2004, 1 (Gmelin Institut, Fachinformationszentrum, Karlsruhe).
- 21. J. Ferraro, *Low-Frequency Vibrations of Inorganic and Coordination Compounds* (Plenum, New York, 1971), p. 410.
- 22. B. Johnson and R. Walton, Spectrochim. Acta **22**, 1853 (1966).
- 23. L. V. Konovalov and V. G. Pogareva, Rus. J., Struct. Chem. 22, 159 (1981).
- 24. M. Onishi, Y. Ohama, K. Hiraki, and H. Shintan, Polyhedron 1, 539 (1982).
- 25. F. Ramirez and S. J. Org. Dershowitz, Chem. 22, 41 (1975).
- 26. M. Baaz, V. Gutmann, and O. Kunze, Monatsh. Chem. **93**, 1 (1962).