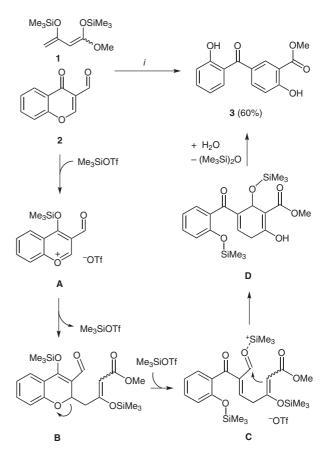
Synthesis of Functionalized 2',4-Diarylbenzophenones Based on Site-Selective Suzuki Cross-Coupling Reactions

Muhammad Nawaz,^a Muhammad Adeel,^a Muhammad Farooq Ibad,^a Peter Langer*^{a,b}

^b Leibniz-Institut f
ür Katalyse an der Universit
ät Rostock e.V., Albert Einstein Str. 29a, 18059 Rostock, Germany Fax +49(381)4986412; E-mail: peter.langer@uni-rostock.de

Received 6 April 2009

Abstract: The palladium(0)-catalyzed Suzuki cross-coupling reaction of the bis(triflates) of 2',4-dihydroxybenzophenones afforded 2',4-diarylbenzophenones. The reactions proceeded with very good site selectivity. The first attack occurred at carbon atom C-4.

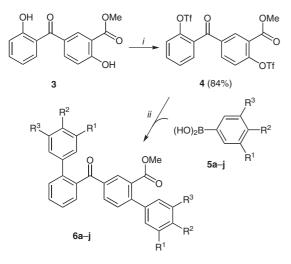

Key Words: benzophenones, cross coupling, palladium, site selectivity, Suzuki reaction

4-Arylbenzophenones possess a wide range of pharmacological properties. This includes, for example, cytotoxic¹ and antibacterial activity,² inhibition of ³H-progesterone binding,³ inhibition of the interleukin (IL-1) biosynthesis,⁴ inhibition of the human type-2 steroid 5 α -reductase,⁵ inhibition of COX-1,⁶ and inhibition of human liver microsomes.⁷ 2-Benzoylfluorenones and 2-benzoylfluorenes, which are structurally related to 4-arylbenzophenones, also represent pharmacologically relevant entities.⁸ The 4-arylbenzophenone core structure is present, albeit hidden in a polycyclic framework, in various naturally occurring anthraquinones and tetracyclins.⁹ Microtubules represent an important target for anticancer therapy. The benzophenone phenstatin, 2-hydroxy- and 2aminobenzophenones act as antitubulin agents.^{10,11} We have reported that 4-(2-hydroxybenzoyl)salicylic acids show a good in vitro activity in a selectin bioassay.¹² Functionalized benzophenones are also widely used as photosensitizers¹³ and UV filters.¹⁴

Classic syntheses of benzophenones rely on reactions of aryllithium or magnesium reagents with aldehydes and subsequent oxidation and on Friedel–Crafts acylations.^{11a,15} For the synthesis of functionalized benzophenones (e.g. containing a hydroxy, halide or ester group), these methods often give unsatisfactory results, due to competing side reactions. Therefore, the development of alternative methods is of considerable interest.¹⁶ Recently, we have reported¹² a new approach to 4-(2-hydroxybenzoyl)salicylates by domino 'Michael–retro-Michael–Mukaiyama–aldol' reactions of 3-formylchromones with 1,3-bis(silyloxy)-1,3-butadienes. Herein, we report the synthesis of 2',4-diarylbenzophenones based on what are, to the best of our knowledge, the first palladium(0)-catalyzed Suzuki cross-coupling reactions of bis(triflates) of

SYNLETT 2009, No. 13, pp 2154–2156 Advanced online publication: 10.07.2009 DOI: 10.1055/s-0029-1217544; Art ID: G11809ST © Georg Thieme Verlag Stuttgart · New York 2',4-dihydroxybenzophenones. These reactions proceed with very good site-selectivity.¹⁷ The products, functionalized 4-arylbenzophenones and 2',4-diarylbenzophenones, are not readily available and have only scarcely been reported in the literature so far.

The TMSOTf-mediated reaction of 3-formylchromone (2) with 1,3-bis(trimethylsilyloxy)buta-1,3-diene (1) afforded the 2',4-dihydroxybenzophenone 3^{12} Its formation can be explained by a domino 'addition-retro-Michael-Mukaiyama-aldol' reaction (Scheme 1).



Scheme 1 Synthesis of 3. *Reagents and conditions*: (i) 1. 2 (1.0 equiv), Me₃SiOTf (0.3 equiv), CH₂Cl₂, 0 °C; 2. 1 (1.1 equiv), 0 °C \rightarrow 20 °C, 12 h; 3. HCl (10%).

2',4-Dihydroxybenzophenone **3** was transformed into the bis(triflate) **4** in 84% yield (Scheme 2). The Suzuki reaction of **4** with boronic acids 5a-j afforded the novel 2',4-diarylbenzophenones 6a-j in good yields (Scheme 2,

^a Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany

Table 1). The best yields were obtained when $Pd(PPh_3)_4$ (3 mol%) was used as the catalyst, when 2.6 equivalents of the boronic acid were employed, and when the reaction was carried out in 1,4-dioxane (reflux, 4 h) using K_3PO_4 as the base.^{18,19}

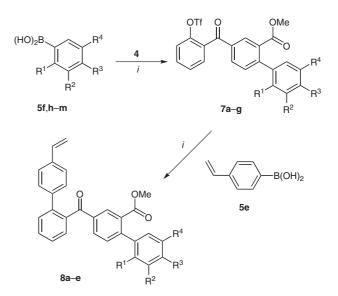

Scheme 2 Synthesis of **6a–j**. *Reagents and conditions*: (i) 1. **3** (1.0 equiv), pyridine (4.0 equiv), CH_2Cl_2 , -78 °C, 10 min; 2. Tf_2O (2.4 equiv), -78 °C \rightarrow 0 °C, 4 h; (ii) **4** (1.0 equiv), **5a–j** (2.6 equiv), K_3PO_4 (3.0 equiv), Pd(PPh_3)_4 (3 mol%), 1,4-dioxane, 110 °C, 4 h.

Table 1	Synthesis of 6a-j
---------	-------------------

5,6	\mathbb{R}^1	\mathbb{R}^2	R ³	Yield ^a (%) of 6
a	Н	Me	Н	87
b	Н	Н	Н	82
c	Н	Et	Н	56
d	Cl	Н	Н	77
e	Н	vinyl	Н	80
f	Н	Cl	Н	46
g	Н	Br	Н	65
h	OMe	OMe	Н	62
i	Н	ОН	Н	67
j	OMe	OMe	OMe	50

^a Yields of isolated products.

The Suzuki reaction of **4** with one equivalent of boronic acids **5f** and **5h–m** afforded the 4-arylbenzophenones **7a– g** with very good site-selectivity (Scheme 3, Table 2).^{18,20} The remaining triflate group of **7a,c,e–g**, located at carbon atom C-2', could be further reacted with boronic acid **5e** to give the 2',4-diarylbenzophenones **8a–e** containing two different aryl groups (Scheme 3, Table 3). The configurations of all products were studied by spectroscopic methods. The structures of some derivatives were independently confirmed by X-ray crystal structure analyses.

Scheme 3 Synthesis of **7a–g**. *Reagents and conditions*: (i) **4** (1.0 equiv), **5f,h–m** (1.3 equiv), K_3PO_4 (3.0 equiv), $Pd(PPh_3)_4$ (3 mol%), 1,4-dioxane, 110 °C, 4 h; (ii) **7a,c,e–g** (1.0 equiv), **5e** (1.3 equiv), K_3PO_4 (3.0 equiv), $Pd(PPh_3)_4$ (3 mol%), 1,4-dioxane, 110 °C, 4 h.

Table 2 Synthesis of 7a-g

		, jiiiiioolo				
5	7	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4	Yield ^a (%) of 7
k	a	Н	Me	Н	Me	78
f	b	Н	Н	Cl	Н	45
1	c	OEt	Н	Н	Н	89
m	d	Br	Н	Н	Н	78
h	e	Н	OMe	OMe	Н	44
i	f	Н	Н	OH	Н	63
j	g	Н	OMe	OMe	OMe	43

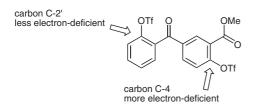

^a Yields of isolated products.

Table 3	Synthesis	of	8а-е
---------	-----------	----	------

7	8	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4	Yield ^a (%) of 8
a	a	Н	Me	Н	Me	60
f	b	Н	Н	ОН	Н	55
c	c	Н	Н	Н	Н	65
e	d	Н	OMe	OMe	Н	62
g	e	Н	OMe	OMe	OMe	44

^a Yields of isolated products.

The site-selective formation of products 7a-g might be explained by the fact that the oxidative addition of palladium usually occurs first at the most electron-deficient carbon atom (Scheme 4).¹⁷ Carbon atom C-4 is expected to be more electron deficient than C-2'. One electronwithdrawing benzoyl group is located *ortho* to C-2'. In contrast, both an electron-withdrawing benzoyl group and an electron-withdrawing ester group are located *para* and *ortho* to C-4, respectively. In addition, it might also play a role that carbon C-2' is more sterically hindered than C-4.

Scheme 4 Possible explanation for the site-selective formation of products 7a–g

In conclusion, we have reported the synthesis of 2',4-diarylbenzophenones based on what are, to the best of our knowledge, the first palladium(0)-catalyzed Suzuki crosscoupling reactions of bis(triflates) of 2',4-dihydroxybenzophenones. These reactions proceed with very good siteselectivity.

Acknowledgment

Financial support by the State of Mecklenburg-Vorpommern is gratefully acknowledged.

References and Notes

- De Souza, A. O.; Santos, R. R.; Melo, P. S.; Alderete, J. B.; De Conti, R.; Haun, M.; Sato, D. N.; Duran, N. *Pharmazie* 2001, *56*, 871.
- (2) De Souza, A. O.; Alderete, J. B.; Schmidt, F.; Sato, D. N.; Duran, N. Arzneim. Forsch. 1999, 49, 1025.
- (3) Kumar, S.; Seth, M.; Bhaduri, A. P.; Agnihotri, A.; Srivastava, A. K. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1984, 23, 154.
- (4) Batt, D. G.; Goodman, R.; Jones, D. G.; Kerr, J. S.; Mantegna, L. R. J. Med. Chem. 1993, 36, 1434.
- (5) Holt, D. A.; Yamashita, D. S.; Konialian-Beck, A. L.; Luengo, J. I.; Abell, A. D. J. Med. Chem. 1995, 38, 13.
- (6) Dannhardt, G.; Fiebich, B. L.; Schweppenhaeuser, J. Eur. J. Med. Chem. Chim. Ther. 2002, 37, 147.
- (7) Lenhart, A.; Reinert, D. J.; Aebi, J. D.; Dehmlow, H.; Morand, O. H.; Schulz, G. E. *J. Med. Chem.* **2003**, *46*, 2083.
- (8) Guarnieri, A.; Burnelli, S.; Varoli, L.; Busacchi, I.; Barbaro, A. M. Arch. Pharm. (Weinheim Ger.) 1981, 314, 703.
- (9) Aburaki, S.; Okuyama, S.; Hoshi, H.; Kamachi, H.; Nishio, M. J. Antibiot. 1993, 46, 1447.
- (10) Pettit, G. R.; Toki, B.; Herald, D. L.; Verdier-Pinard, P.;
 Boyd, M. R.; Hamel, E.; Pettit, R. K. J. Med. Chem. 1998, 41, 1688.
- (11) (a) Liou, J.-P.; Chang, J.-Y.; Chang, C.-W.; Chang, C.-Y.; Mahindroo, N.; Kuo, F.-M.; Hsieh, H.-P. J. Med. Chem.
 2004, 47, 2897. (b) Liou, J.-P.; Chang, C.-W.; Song, J. S.; Yang, Y. S.; Yeh, C. F.; Tseng, H. Y.; Lo, Y. K.; Chang, C.-L.; Chang, C.-M.; Hsieh, H.-P. J. Med. Chem. 2002, 45, 2556.

- (12) Appel, B.; Rotzoll, S.; Kranich, R.; Reinke, H.; Langer, P. *Eur. J. Org. Chem.* **2006**, 3638.
- (13) Cai, X.; Sakamoto, M.; Fujitsuka, M.; Majima, T. *Chem. Eur. J.* 2005, *11*, 6471; and references cited therein.
- (14) Langhals, H.; Fuchs, K. *Chem. Unserer Zeit* **2004**, *38*, 98; and references cited therein.
- (15) Buchta, E.; Egger, H. Chem. Ber. 1957, 90, 2760.
- (16) For the SmI₂-mediated reaction of benzaldehydes with benzyl halides and subsequent oxidation, see: Shiue, J.-S.; Lin, M.-H.; Fang, J.-M. J. Org. Chem. **1997**, 62, 4643.
- (17) For a review of site-selective palladium(0)-catalyzed crosscoupling reactions, see: Schröter, S.; Stock, C.; Bach, T. *Tetrahedron* 2005, *61*, 2245.
- (18) Typical Procedure for the Synthesis of 6a–j: A 1,4-dioxane solution (5 mL/mmol of 4) of 5a–j, K₃PO₄, Pd(PPh₃)₄ and 4 was stirred at 110 °C for 4 h. After cooling to 20 °C, a sat. aq solution of NH₄Cl was added, the organic and the aqueous layer were separated and the latter was extracted with CH₂Cl₂. The combined organic layers were dried (Na₂SO₄), filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography.
- (19) Methyl 4'-Methyl-4-(4'-methylbiphenylcarbonyl)biphenyl-2-carboxylate (6a): Starting with 4 (220 mg, 0.4 mmol), K₃PO₄ (261 mg, 1.2 mmol), Pd(PPh₃)₄ (3 mol%), ptolylboronic acid (144 mg, 1.1 mmol) and 1,4-dioxane (2 mL), 6a was isolated as a highly viscous oil (200 mg, 84%). ¹H NMR (300 MHz, CDCl₃): δ = 2.17 (s, 3 H, CH₃), 2.30 (s, 3 H, CH₃), 3.56 (s, 3 H, OCH₃), 6.95 (d, 2 H, *J* = 8.0 Hz, ArH), 7.04–7.21 (m, 6 H, ArH), 7.35–7.53 (m, 5 H, ArH), 7.70 (dd, 1 H, J = 1.9, 8.0 Hz, ArH), 7.98 (d, 1 H, J = 1.9 Hz, ArH). ¹³C NMR (62.89 MHz, CDCl₃): δ = 21.0 (CH₃), 21.2 (CH₃), 52.1 (OCH₃), 126.9 (4×C, CH), 127.9, 128.8, 128.9 (CH), 129.0 (4 × C, CH), 130.2, 130.6, 131.4, 132.1 (CH), 135.8 (2 × C), 137.1 (C), 137.2 (2 × C), 137.7, 138.3, 141.3, 146.3, 168.4 (C), 197.4 (C=O). IR (KBr): 3080, 3057, 3025 (w), 1724, 1659 (s), 1613 (w), 1595 (m), 1574, 1518 (w), 1438, 1310, 1277 (m), 1231 (s), 1152, 1082, 972 (m), 819, 704 (s), 536 (m) cm⁻¹. GC–MS (EI, 70 eV): m/z (%) = 420 (100) [M⁺], 405 (21), 373 (09), 359 (23), 332 (07), 253 (26), 210 (07), 195 (40), 165 (39), 152 (25). HRMS (EI): *m/z* [M⁺] calcd for C₂₉H₂₄O₃: 420.17200; found: 420.17153.
- (20) Methyl 2'-Bromo-4-[2-(trifluoromethylsulfonyloxy)benzoyl]biphenyl-2-carboxylate (7d): Starting with 4 (150 mg, 0.3 mmol), K₃PO₄ (171 mg, 0.8 mmol), Pd(PPh₃)₄ (3 mol%), 2-bromophenylboronic acid (65 mg, 0.3 mmol) and 1,4-dioxane (2 mL), 7d was isolated as a highly viscous oil (120 mg, 78%). ¹H NMR (300 MHz, CDCl₃): $\delta = 3.58$ (s, 3) H, OCH₃), 7.13-7.17 (m, 2 H, ArH), 7.28-7.39 (m, 3 H, ArH), 7.43-7.48 (m, 1 H, ArH), 7.54-7.62 (m, 3 H, ArH), 7.94 (dd, 1 H, J = 2.1, 8.0 Hz, ArH), 8.36 (d, 1 H, J = 2.1 Hz, ArH). ¹³C NMR (75.46 MHz, CDCl₃): δ = 52.3 (OCH₃), 122.7, 127.1, 128.3, 129.2, 129.7, 129.8, 131.3, 131.8, 132.3, 132.9, 133.2 (CH), 134.6, 134.9, 135.0, 136.0, 141.5, 146.7, 146.8, 147.2, 166.2 (C), 191.4 (C=O). ¹⁹F NMR (282 MHz, CDCl₃): $\delta = -73.29$ (CF). IR (KBr): 3053, 2953, 2923 (w), 1728, 1672 (s), 1567 (m), 1482 (w), 1309, 1294 (m), 1241, 1203 (s), 1168 (m), 1087 (s), 948 (m), 887, 769, 592 (s) cm⁻¹. MS (EI, 70 eV): m/z (%) = 544 (100) [M⁺], 331 (12), 301 (48), 271 (24), 242 (75), 215 (7), 183 (5), 151 (11), 69 (15). HRMS (EI): m/z [M⁺] calcd for C₂₂H₁₄BrF₃O₆S: 544.17200; found: 544.171525.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.