Synthesis of 3-(D-lyxofuranosyl)pyrazoles by trifluoroacetic acid-catalysed cyclodehydration of 3-(D-galacto-pentitol-1-yl)pyrazoles

Manuel Gómez-Guillén and José María Lassaletta Simon

Departamento de Química Orgánica "Profesor García González", Facultad de Química, Universidad de Sevilla, Seville (Spain)

(Received August 6th, 1990; accepted for publication, September 14th, 1990)

ABSTRACT

New 3-(D-galacto-pentitol-1-yl)pyrazole derivatives have been obtained by the reaction of D-galactose hydrazones and nitroalkenes. Cyclodehydration of the 1-methyl-3-(D-galacto-pentitol-1-yl)pyrazoles in trifluoroacetic acid at room temperature afforded good yields of 3-(α -D-lyxofuranosyl)-1-methyl derivatives. A β anomer was obtained only for the 5-(p-tolyl) derivative.

INTRODUCTION

We have described the preparation of 3-(D-arabinofuranosyl)pyrazoles by the cyclodehydration of the corresponding 3-(D-*manno*-pentitol-1-yl) derivatives with boiling aqueous 10% trifluoroacetic acid¹. In the α,β -mixtures obtained, the β anomer was the major component. We now report on the application of this reaction to some new and known² 3-(D-galacto-pentitol-1-yl)pyrazoles.

RESULTS AND DISCUSSION

The reactions of D-galactose methylhydrazone (1) with 1-nitropropene and with 2-nitrobut-2-ene in 10:1 N,N-dimethylformamide–water at room temperature afforded the pyrazole derivatives 4 (79%) and 5 (88%), respectively. Similarly, with β -nitrostyrene, D-galactose benzylhydrazone (2) gave the 1-benzylpyrazole derivative 6 (85%), and D-galactose hydrazone (3) gave the pyrazole derivative 7 (77%). As in the previous study², loss of the nitro group took place and the regioselectivity was "normal" as indicated by the δ value (6.27–6.70) for the resonance of the pyrazole proton in compounds 4, 6, and 7. As expected^{2,3}, the signal for H-1′ was the most downfield of those for the polyol chain. The chemical shifts of the ¹H and ¹³C resonances for the remainder of the polyol chain accorded with previous findings²⁻⁴. For 7, the signals of C-3 and C-5 were broadened as a consequence of tautomerism⁵, and that of C-5′ was distinguished easily from the APT spectra⁶ and was the most shielded of those in the polyol moiety.

Treatment of 5, 8 (ref. 2), and 9 (ref. 2) severally with trifluoroacetic acid at room

temperature for 24 h afforded the respective $3-(\alpha-D-lyxofuranosyl)$ pyrazoles **10-12** in yields of 41–69%, but only one β compound (**13**, 14%). Similar treatment of **6** gave a complex mixture (presumably anomeric pyranoid and furanoid derivatives) which could not be resolved. Treatment of **7** with trifluoroacetic acid under reflux for 4 days, or aqueous or methanolic 10% trifluoroacetic acid under reflux for 2 days, resulted in only partial reaction. Thus, the absence of an N-1 substituent hinders the action of the acid catalyst, as observed² for the 3-(D-*manno*-pentitol-1-yl) analogues. The consumption of 1 mol of periodate by each of **10-13** confirmed the furanoid structures. Compound **11** was converted into the 2'.3'.5'-triacetate **14** and the 2'.3'-O-isopropylidene derivative **15**.

The structures and configurations of 7 · 13 were established by the n.m.r. data. In the ¹H-n.m.r. spectra (Table I), the hydroxyl protons of 10 gave broadened signals, but, for 11 and 12, those for HO-2' and HO-3' (2 d) and HO-5' (t) indicated the 1'.4'-anhydro structure, as did the lack of effect only on the H-1' and H-4' signals on deuterium exchange of 10 · 13. Assignment of anomeric configurations was based on data for the pair 12 and 13. Data⁷ for p-lyxofuranosyl derivatives showed that the δ value for the

H-1' resonance should be lower for the α than for the β anomer (δ 4.71 for 12 and 4.88 for 13), but the $J_{1',2'}$ values of 7.8 and 4.8 Hz for 12 and 13, respectively, are outside the range established⁸ for *cis* protons. Compound 12 was more dextrorotatory than 13, in agreement with Hudson's rule⁹. The ¹H-n.m.r. spectra of 10 and 11 showed similarities with that of 12. Thus, the respective $J_{1',2'}$ values (8.3 and 8.0 Hz) were higher than those expected for *cis* protons, and the δ values of H-2' and H-3' resonances were in the same order (H-2'>H-3') as for the α anomer 12 (*cf.* H-3'>H-2' for the β anomer 13). The latter effect may be attributed to the anisotropy of the pyrazole ring. On this basis, the α configuration is assigned tentatively to 10 and 11.

The ¹³C-n.m.r. data for **10–15** (Table II) showed that, in comparison with the resonances for the pentitol-1-yl compounds, those of C-1'/4' were shifted downfield, whereas that of C-5' was at a higher field in accord with pentofuranosyl structures.

The mass spectra of 10–13 each contained a peak for $M^+(\sim 5\%)$, and a fragment for $(B + 30)^+$ (where B is the pyrazole residue and 30 is the mass of CHOH⁺) was the base peak. The second peak in intensity (40–60%) had m/z (B + 44)⁺ and was due to the ion (B–CH₂–CHOH)⁺. These, and other, features are typical of *C*-nucleosides^{10,11}. The derivatives 14 and 15 showed the expected fragmentations for these types of compounds^{11–13}.

The formation of furanoid derivatives only from 4–9 suggests the operation of kinetic control. The temperature necessary to effect cyclodehydration by using triffuo-roacetic acid was much lower than those employed with dilute aqueous acid. Steric hindrance effects may account for the formation of the β -lyxosyl derivatives being disfavoured.

EXPERIMENTAL

General methods. — Solvents were evaporated in vacuo at $< 45^{\circ}$. Melting points were determined with a Gallenkamp MFB-595 apparatus and are uncorrected. Optical rotations were measured with a Perkin–Elmer 241 MC polarimeter. T.l.c. was performed on Alugram Sil G/UV₂₅₄ (MN) and detection with u.v. light or iodine vapor or by charring with sulphuric acid. U.v. spectra were recorded with a Beckman DU-7 spectrophotometer and i.r. spectra (for films or KBr discs) with a Perkin–Elmer 299 spectrophotometer. N.m.r. spectra were recorded with a Varian XL-200 spectrometer; $J_{\rm H,H}$ values were measured directly from the spectra and assignments were confirmed by deuteration and/or double-resonance experiments. The ¹³C-n.m.r. spectra (50.3 MHz) were recorded under proton-decoupled conditions and the multiplicities were assigned from APT spectra⁶. E.i.-mass spectra (70 eV) were obtained with a Kratos MS-80RFA instrument operated at an ionising current of 100 μ A, an accelerating voltage of 4 kV, and a resolution of 1000 (10% valley definition). Consumption of periodate was determined by a method based on that of Fleury and Lange¹⁴.

Prepartation of 3-(D-galacto-pentitol-1-yl)pyrazoles (4–7). — To a stirred solution of the D-galactose (alkyl)hydrazone (1–3, 10 mmol) in 10:1 N,N-dimethylformamide-water (\sim 10 mL) was added nitroalkene (10 mmol) at room temperature. Each

11-14-1111.1 Uata (200 MH72,	1111211141	11 (10 ⁴ 21)	CI-01 10											
Compound	Chemic	al shifts (δ in p.p.n	1.)									4	
	H-1'	Н-2′	H-3'	H-4'	H-S'a	Н-5'b	H0-2'	HO-3'	H0-5'	N-Me	R'	R	OAc	lp
10"	4.69	4.41	4.17	4.08	3.73	3.57	ţ	4.8 5.1-	Î	3.71	1.98	2.19		
11 a	4.79	4.54	4.21	4.13	←3.5-	3.7	5.06	4.91	4.66	3.76	2.03	2.49	1	
												7.44		
12"	4.71	4.36	4.	4.2→	3.75	3.63	5.11	4.92	4.68	3.88	6.45	2.46	1	
												7.49		
13"	4.88	4,18	4.43	4.01	←-3.5	3.7→	Ļ	4.9-5.7-	Î	3.89	6.51	2.47	î	
												7.41 7.50		
14'	5.17	5.75	5.81	4.64	4.2-	4.3→	ł	ł	÷	3.68	2.05	2.40	1.99°	
												7.15	2.05° 2.13°	
15 ^a	5.12	5.32	4.93	3.93	3.80	3.63		-R	4.74	3.77	2.06	2.49) 	1.42
												7.39 7.45		1.55
	Countin	antano. Pi	te i Lin H	1.	an an a share the second s	Name and Address of the Address of t		1. (A)		A CANADA THE ANTIMATINA ANTIMATINA ANTI-	and the second	TALAN PROPERTY (* James Barray & Barray Statement (* 1990)	anne a suis ann ann ann ann ann ann ann ann ann an	
		c		· · · · · · · · · · · · · · · · · · ·		And a second	and the second se				í			
	J, 2	J _{2,3}	J, 4	J4 5	J4.5 u	$\mathbf{J}_{S,a,S,h}$	J _{H02}	J _{40.3}	J _{no.s}	J.,,				
10	8.3	4.1	4	5.2	6,4	11.4								
11	8.0	6 .4	3.5	5.4	6.1		4.3	7.3	5.6	7.8				
12	7.8	4.2		4.8	6.4	11.4	3.9	7.3	5.8	8.1				
13	4.8	4.8	6.5	4.0	5.1					8.2				
14	5.9	4.8	4.8	6.2	6.2					8.3				
15	0	5.9	3.8	5.5	6.6	11.4				8.4				
^a In $(CD_3)_2$ SO. ^b In $CDCl_1$.	These :	tssignmer	its may be	: intercha	nged.									

¹H-N.m.r. data (200 MHz, internal Me_4Si) for 10–15

TABLE I

290

TABLE II

reaction was monitored by t.l.c. (5:1 dichloromethane methanol). After 48 h, the solvent was evaporated *in vacuo* (<0.4 Torr), and the residue was washed successively with cold ethanol, ethyl acetate, and water, then crystallised and recrystallised from methanol.

The following compounds were prepared in this manner

1.5-Dimethyl-3-(D-*galacto*-pentitol-1-yl)pyrazole (4; 1.94 g, 79%) [from D-galactose methylhydrazone¹⁵ (1, 2.08 g) and 1-nitropropene¹⁶ (0.87 g)], m.p. 172–173⁷, $[\alpha]_{12}^{25}$ +27⁻ (c-1, pyridine): λ_{max}^{MOH} 219 nm (ε 4300); ν_{max}^{KBr} 3300 (OH), 1545 (pyrazole C = N), 920 cm⁻¹ (pyrazole ring bending). N.m.r. data: ¹H [(CD₃)₂SO + D₃O], δ 6.27 (s, 1 H, H-4), 4.97 (d, 1 H, $J_{1,2}$ 1.4 Hz, H-1'), 3.85 (s, 3 H, Me-1), 3.82 (m, 1 H, H-4'), 3.69 (m, 1 H, H-2'), 3.62 (dd, 1 H, $J_{2,3}$ 9.1, $J_{3,4}$ 1.1 Hz, H-3'), 3.52 (m, 2 H, H-5'a,5'b) 2.35 (s, 3 H. Me-5); ¹³C [(CD₃)₂SO], δ 152.6 (s, C-3), 142.1 (s, C-5), 105.0 (d, C-4), 73.4, 70.5, 69.7, 67.0 (4 d, C-1'/4'), 63.5 (t, C-5'), 35.8 (q, Me-1), 11.3 (q, Me-5) (Found: C, 48.70; H, 7.36; N, 11.22, C₁₀H₁₈N₃O₅ calc.; C, 48.77; H, 7.37; N, 11.38%).

1.4,5-Trimethyl-3-(D-*galacto*-pentitol-1-yl)pyrazole (**5**; 2.29 g, 88%) [from **1** (2.08 g) and 2-nitrobut-2-ene¹⁷ (1.01 g)], m.p. 145-146 , $[\alpha]_{10}^{25} + 14$ (c-1, pyridine); λ_{max}^{MOH} 230 nm (ε 5600); ν_{max}^{KBr} 3300 (OH), 1570 (pyrazole C = N), 920 cm⁻¹ (pyrazole ring bending). N.m.r. data: ¹H [(CD₃)₂SO + D₂O], δ 4.87 (d, 1 H, $J_{1:22}$ 2.3 Hz, H-1'), 3.79 (m, 1 H, H-4'), 3.75 (s, 3 H, Me-1), 3.74 (m, 1 H, H-2'), 3.62 (dd, 1 H, $J_{2:3}$ 8.6, $J_{3:4}$ 1.3 Hz, H-3'), 3.50 (m, 2 H, H-5'a,5'b), 2.23 (s, 3 H, Me-5), 2.04 (s, 3 H, Me-4); ¹³C [(CD₃)₂SO], δ 150.3 (s, C-3), 136.4 (s, C-5), 110.9 (s, C-4), 73.4, 70.3, 69.2, 65.9 (4 d, C-1'/4'), 63.3 (t, C-5'), 36.1 (q, Me-1), 9.2 (q, Me-5), 8.5 (q, Me-4) (Found: C, 50.50; H, 7.82; N, 10.93, C₁₁H₂₀N₂O₈ cale.; C, 50.76; H, 7.75; N, 10.76%).

1-Benzyl-3-(D-*galacto*-pentitol-1-yl)-5-phenylpyrazole (6: 3.26 g. 85%) [from D-galactose benzylhydrazone¹⁸ (2, 2.84 g) and β-nitrostyrene¹⁸ (1.49 g)]. m.p. 194–195 , $[z]_{D}^{25}$ +14 (*c* 1, pyridine): λ_{max}^{McOH} 241 nm (ε 12 400): ν_{max}^{KBr} 3300 (OH), 1600 (phenyl), 1545 (pyrazole C = N), 1490 (phenyl), 925 cm⁻¹ (pyrazole ring bending). N.m.r. data: ¹H [(CD₃)₂SO + D₂O], δ 7.6–7.0 (m. 10 H, 2 Ph), 6.50 (s. 1 H, H-4), 5.44 (s. 2 H, PhCH₂), 5.00 (d. 1 H, $J_{1,2}$ 1.6 Hz, H-1'). 3.88 (m, 1 H, H-4'), 3.76 (m. 1 H, H-2'). 3.66 (dd, 1 H, $J_{1,3}$ 9.2, $J_{3,4} \sim 0$ Hz, H-3'). 3.53 (m, 2 H, H-5'a,5'b); ¹³C [(CD₃)₂SO], δ 155.1 (s. C-3), 143.9 (s. C-5), 138.2 (s. *ipso*-C of benzyl), 130.7 (s. *ipso*-C of Ph-5), 129.3, 128.9, 128.6, 127.7, 126.8 (5 d, *o*-, *m*-, and *p*-C of 2 Ph), 105.6 (d, C-4), 73.4, 70.3, 69.5, 67.1 (4 d, C-1⁻¹4'), 63.3 (t, C-5'), 52.7 (t, PhCH₂) (Found: C, 65.44; H, 6.26; N, 7.22, C₂₁H₂₄N₂O₄ calc.: C, 65.61; H, 6.29; N, 7.29%).

3(5)-(D-*galacto*-Pentitol-1-yl)-5(3)-phenylpyrazole (7; 2.27 g, 77%) [from D-galactose hydrazone¹⁹ (**3**, 1.94 g) and β-nitrostyrene¹⁸ (1.49 g)], m.p. 179–181 , $[x]_{1.5}^{25} \neq 28'$ (c 1, pyridine); λ_{max}^{McOH} 251 nm (ε 10 000); v_{max}^{RBr} 3300 (OH), 1585 (phenyl), 1565 (pyrazole C = N), 1490 (phenyl), 920 cm⁻¹ (pyrazole ring bending). N.m.r. data: ¹H [(CD₂)₂SO + D₂O], δ 7.9–7.4 (m, 5 H, Ph), 6.70 (s, 1 H, H-4), 5.07 (d, $J_{1.5'}$ 1.4 Hz, H-1'), 3.86 (m, 1 H, H-4'), 3.76 (m, 1 H, H-2'). 3.66 (dd, 1 H, $J_{2.5'}$ 7.6, $J_{3.4}$ 1.0 Hz, H-3'). 3.54 (m, 2 H, H-5'a,5'b); ¹³C [(CD₄)₂SO], δ 150.2 (s, C-3), 147.8 (s, C-5), 132.9 (s, *ipso*-C of Ph), 129.2, 127.9 (2 d, *o*-, *m*-, and *p*-C of Ph), 100.4 (d, C-4), 73.1, 70.2, 69.5, 66.0 (4 d, C-1'-4'), 63.3 (t, C-5) (Found: C, 57.08; H, 6.20; N, 9.49, C₁₄H₁₈N₃O₃ calc.; C, 57.13; H, 6.17; N, 9.52%).

3-(α -D-Lyxofuranosyl)-1,4,5-trimethylpyrazole (10). — A solution of 5 (0.50 g, 1.92 mmol) in trifluoroacetic acid (1.5 mL, 19.5 mmol) was kept at room temperature for 24 h. The acid was then evaporated *in vacuo* and the residual traces were removed by repeated distillation of ethanol from the residue, which was then crystallised from methanol to give a product (0.34 g, 73%), m.p. 174–176°, that was recrystallised from methanol to afford 10 (63%), m.p. 175–176°, $[\alpha]_{D}^{25}$ + 63° (c 1, pyridine); v_{max}^{KBr} 3430, 3380 (OH), 1570 (pyrazole C = N), 900 cm⁻¹ (pyrazole ring bending). For the n.m.r. data, see Tables I and II. Mass spectrum: m/z 139 (100%, [B + 30]⁺), 153 (49, [B + 44]⁺), 123 (18, [B + 14]⁺), 224 (15, [M - 18]⁺), 111 (8, [B + 2]⁺), 109 (6, B⁺), 242 (5, M⁺). Periodate consumption, 1.10 mol. (Found: C, 54.41; H, 7.46; N, 11.32. C₁₁H₁₈N₂O₄ calc.: C, 54.33; H, 7.49; N, 11.56%).

3-(α -D-Lyxofuranosyl)-1,4-dimethyl-5-(p-tolyl)pyrazole (11). — A solution of 1,4-dimethyl-3-(D-galacto-pentitol-1-yl)-5-(p-tolyl)pyrazole² (8; 0.50 g, 1.49 mmol) in trifluoroacetic acid (1.0 mL, 13.0 mmol) was kept at room temperature for 24 h, then worked-up as described for 10. Column chromatography on Silica Gel 60 (Merck, 63–200 μ m) (15:1 dichloromethane-methanol) gave 11 (0.33 g, 69%), m.p. 167–168°, [α]_D²⁵ +63° (c 1, pyridine); ν_{max}^{KBr} 3350 (OH), 1615 (phenyl), 1510 (pyrazole C = N), 915 cm⁻¹ (pyrazole ring bending). For the n.m.r. data, see Tables I and II. Mass spectrum: m/z 215 (100%, [B + 30]⁺), 229 (60, [B+44]⁺), 199 (43, [B+14]⁺), 185 (14, B⁺), 300 (9, [M-18]⁺), 187 (7, [B+2]⁺), 318 (5, M⁺). Periodate consumption, 0.94 mol. (Found: C, 63.93; H, 7.00; N, 8.56. C₁₇H₂₂N₂O₄ calc.: C, 64.13; H, 6.97; N, 8.80%).

3-(α -D-Lyxofuranosyl- (12) and β -D-lyxofuranosyl)-1-methyl-5-(p-tolyl)pyrazole (13). — A solution of 1-methyl-3-(D-galacto-pentitol-1-yl)-5-(p-tolyl)pyrazole² (9; 0.50 g, 1.64 mmol) in trifluoroacetic acid (1.0 mL, 13.0 mmol) was kept at room temperature for 24 h, then worked-up as described for 10. T.l.c. (6:1 dichloromethane-methanol) of the residue revealed products with $R_{\rm F}$ 0.59 and 0.62, that were isolated by preparative t.l.c. (4:1 dichloromethane-methanol).

Compound 12 (0.205 g, 41%), $R_{\rm F}$ 0.62, had m.p. 139–140°, $[\alpha]_{\rm D}^{25}$ +64° (c 1, pyridine); $v_{\rm max}^{\rm KBr}$ 3420, 3280 (OH), 1550 (pyrazole C=N), 1515 (phenyl), 960 cm⁻¹ (pyrazole ring bending). For the n.m.r. data, see Tables I and II. Mass spectrum: m/z 201 (100%, $[B + 30]^+$), 215 (58, $[B + 44]^+$), 185 (18, $[B + 14]^+$), 286 (14, $[M - 18]^+$), 173 (7, $[B + 2]^+$), 171 (5, B⁺), 304 (5, M[±]). Periodate consumption, 0.91 mol. (Found: C, 62.97; H, 6.65; N, 9.11. C₁₆H₂₀N₂O₄ calc.: C, 63.14; H, 6.62; N, 9.21%).

Compound 13 (0.069 g, 14%), $R_{\rm F}$ 0.59, was a colourless syrup, $[\alpha]_{\rm D}^{25}$ +6.7° (c 1, pyridine); $\nu_{\rm max}^{\rm KBr}$ 3380 (OH), 1610 (phenyl), 1510 (pyrazole C = N), 940 cm⁻¹ (pyrazole ring bending). For the n.m.r. data, see Tables I and H. Mass spectrum: m/z: 201 (100%, $[B + 30]^+$), 215 (43, $[B + 44]^+$), 185 (31, $[B + 14]^+$), 286 (6, $[M - 18]^+$), 173 (6, $[B + 2]^+$), 304 (4, M⁺). Periodate consumption, 1.06 mol. Mass spectrum: m/z: 304.1431; calc. for C₁₆H₂₀N₂O₄: 304.1424.

1,4-Dimethyl-5-(p-tolyl)-3-(2,3,5-tri-O-acetyl- α -D-lyxofuranosyl)pyrazole (14). — Conventional treatment of 11 (0.050 g, 0.16 mmol) with pyridine (0.5 mL) and acetic anhydride (0.5 mL) at 0° for 48 h, with preparative t.l.c. (4:1 ether-hexane) of the product, gave 14 (0.058 g, 83%) as colourless oil, $[\alpha]_{p}^{25}$ + 50° (c 1, chloroform); v_{max} 1745 (ester C = O), 1510 cm⁻¹ (pyrazole C = N). For the n.m.r. data, see Tables I and II. Mass spectrum: m/z 444.1952 (calc. for $C_{23}H_{28}N_2O_7$: 444.1897), 265 (100%, [M - 2 HOAc - OAc]⁺), 215 (29. [B + 30]⁺), 325 (16, [M - HOAc - OAc]⁻).

3-(2,3-O-Isopropylidene-α-D-lyxofuranosyl) - 1,4-dimethyl-5-(p-tolyl)pyrazole (15). -- A mixture of 11 (0.050 g, 0.16 mmol), acetone (7 mL), and p-toluenesulphonic acid monohydrate (0.070 g) was kept at room temperature for 24 h. T.I.c. showed that 11 had reacted completely. The mixture was poured into aqueous sodium hydrogen carbonate (75 mL) at 0. most of the acetone was allowed to evaporate, and the crystalline product was collected, washed thoroughly with water, and recrystallised from methanol to give 15 (0.054 g, 96%), m.p. 108-109°, $[\alpha]_{00}^{25} + 25$ (c 1, chloroform); $v_{max}^{RBt} 3330$ (OH), 1620 (phenyl), 1515 (pyrazole C = N), 930 cm⁻⁴ (pyrazole ring bending). For the n.m.r. data, see Tables I and II. Mass spectrum: m/z 215 (100%, [B + 30]⁺), 185 (31, B⁺), 199 (27, [B + 14]⁺), 340 (7, [M - 18]⁺), 358 (3, M⁺) (Found: C, 67.06; H, 7.30; N, 7.35, C₂₀H₂₆N₂O₄ calc.; C, 67.02; H, 7.31; N, 7.82%).

ACKNOWLEDGMENTS

We thank the Comisión Interministerial de Ciencia y Tecnología of Spain for financial support. One of us (J.M.L.S.) thanks the Consejería de Educación y Ciencia de la Junta de Andalucía for a predoctoral fellowship.

REFERENCES

- I. M. Gómez-Guillén, J. M. Lassaletta-Simon, M. E. Martín Zamora, and I. Robina, *Carbohydr. Res.*, 201 (1990) 233–240.
- M. Gómez-Guillén, F. Hans-Hans, J. M. Lassaletta Simon, and M. E. Martín-Zamora, Carbohydr. Res., 189 (1989) 349-358.
- 3 M. Gómez-Guillén and J. M. Lassaletta-Simon, Carbohydr. Res., 210 (1991) 175-189
- 4 J. Elguero, C. Martin, and J. D. Roberts, J. Org. Chem., 39 (1974) 357-363.
- 5 C. M. Gupta, G. H. Jones, and J. G. Moffatt, J. Org. Chem., 41 (1976) 3000-3009.
- 6 R. Benn and H. Günther, Angew. Chem. Int. Ed. Engl., 22 (1983) 350-380.
- 7 C. K. Chu, F. M. El-Kabbani, and B. B. Thompson, Nucleosides Nucleotides, 3 (1984) 1-31.
- 8 J. D. Stevens and H. G. Fletcher, Jr., J. Org. Chem., 33 (1968) 1799–1805.
- 9 S. J. Angyal, Carbohydr. Res., 77 (1979) 37-50.
- 10 M. A. E. Sallam, Carbohydr. Res., 85 (1980) 93-105.
- 11 L. B. Townsend and R. K. Robins, J. Heterocyclic Chem., 6 (1969) 459-464.
- 12 O. S. Chizhov, N. K. Kochetkov, N. N. Malysheva, A. I. Shiyonok, and V. L. Chaskehin, Org. Mass Spectrom., 5 (1971) 1145–1155.
- 13 M. A. E. Sallam, Carbohydr. Res., 67 (1978) 79-89.
- 14 P. F. Fleury and J. Lange, J. Pharm. Chim., 17 (1933) 107–113, 196–208.
- 15 H. H. Stroh and H. G. Scharnow, Chem. Ber., 98 (1965) 1588-1597.
- 16 G. D. Buckley and C. W. Scaife, J. Chem. Soc., (1947) 1471–1472.
- 17 M. Miyashita, T. Yanami, and A. Yoshikoshi, J. Am. Chem. Soc., 98 (1976) 4679-4681.
- 18 J. H. Clark, J. M. Miller, and K.-H. So. J. Chem. Soc., Perkin Trans. J. (1978) 941-946.
- 19. H. H. Stroh and H. G. Scharnow, Chem. Ber., 98 (1965) 1404–1410,