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Abstract. Polysubstituted C-furanoside 8, with the correct absolute
configuration is readily available from diacetone-D-glucose. This
C-furanoside after deprotection should be a useful synthon for nat-
ural product synthesis.
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C-Furanosides are found in many natural products as
polyether antibiotics,1 acetogenins2a as well as C-glyco-
sides,2b in a wide range of stereochemical complexity.
Due to their biological importance, the synthesis of such
valuable compounds has attracted the attention of organic
synthetic chemists. A variety of different approaches to-
wards these furanosides, has been developed,3,4 using the
“chiral pool”5 and other strategies with substituents both
at C-2 and C-5. Non-natural tetrahydrofurans might be in-
teresting from a biological point of view, especially, on
account of their applications as potential synthons in dif-
ferent classes of natural compounds including phospho-
glycerides and analogues.6,7 These tetrahydrofuran
analogues, in which the Protein Activating Factor (PAF)
moiety is restricted as a part of the heterocyclic skeleton,
have been shown to be very potent agonists of PAF.8

Carbohydrates have been used extensively as precursors
in C-furanoside synthesis. Ring closure by attack of an
OH or OR-group at an activated double bond, normally
the most applied method to prepare the furan moiety, has
been used in few cases within the carbohydrates.9 A gen-
eral method to create hydroxylated furans from carbohy-
drates is the nucleophilic attack of an OH-group on a
suitably introduced leaving group. Wittig reactions with
sugars have been described in the literature and, depend-
ing on the reaction conditions and the reagents employed,
open-chain10 or C-furanoside11 derivatives can be ob-
tained. We have found that the reaction of diol 6 in the
presence of 3 equivalents of methoxycarbonylmethylene
triphenylphosphorane gave quantitatively 8 (Scheme 1).
The use of cyclic chiral precursors such as 8 presents cer-
tain potential advantages such as a considerable degree of
stereocontrol of the three asymmetric centers.

In the course of our ongoing research on the total synthe-
sis of isoprostaglandins,12 we have investigated the in-
tramolecular nucleophilic cyclization of iodo derivative 6
under Wittig conditions. Hence, the observed results
(Scheme 1) are different with regards to the amount of
methoxycarbonylmethylene triphenylphosphorane used

and also the temperature applied during the Wittig reac-
tion.

a) NaH/THF/imidazole/CS2/MeI then Bu3SnH/toluene reflux, 3 h,
85%. b) aq. AcOH 70%, 7 h, 92%. c) TBDPSCl/DMF/imidazole, 2 h
at 0°C then rt, 100%. d) I2/Ph3P/imidazole/xylene, 15 min at reflux,
91% e) aq. H2SO4 10%, THF-dioxane (3:1), 4 h, 80%. f)
Ph3P=CHCO2Me 2 eq. in dry THF, 11 h at rt, 75% of 7 or
Ph3P=CHCO2Me 3 eq. in dry THF, 24 h at reflux, 100% of 8.

Scheme 1

The synthesis of 8 (Scheme 1) starts with the commercial
1,2:5,6-di-O-isopropylidene-a-D-glucofuranose 1, which
was transformed to the corresponding 3-deoxy-sugar 2 in
85% yield using the Barton-McCombie procedure.13 A se-
lective deprotection of the isopropylidene group in 5,6 po-
sition was accomplished in the presence of 70% aq. acetic
acid in 92% yield. Protection of the primary alcohol at C-
6 of derivative 3 using 1.1 eq. of tert-butyldiphenylsilyl
chloride in freshly distilled DMF in the presence of 2.8 eq.
of imidazole led to the pure mono silyl ether 4 in 100%
yield. Introduction of iodine at C-5 was carried out using
the procedure that we have developed earlier14 (I2, Ph3P,
imidazole, xylene) and led to compound 5 in 91% yield.
Hydrolysis of the isopropylidene group in 1,2 position
was achieved in the presence of 10% aq. sulfuric acid in
THF-dioxane (3:1) to afford the diol 6 in 80% yield. 

Finally, when 6 was stirred at room temperature with two
equivalents of methoxycarbonylmethylene triphenylphos-
phorane in dry THF for 11h 75% of 715 was obtained,
whereas, using three equivalents of the Wittig reagent and
refluxing the solution for 24 h 100% of the C-furanoside
816 was produced in 55% overall yield after 6 steps.
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Scheme 2

The mechanism that we propose for the formation of the
C-furanoside 8 is shown in the Scheme 2. After formation
of derivative 7 and under the basic conditions of the Wit-
tig reaction, alcoholate 9 was generated in situ followed
by intramolecular nucleophilic cyclization on the iodo
leaving group to afford the C-furanoside 8. We have con-
firmed the structure of this compound 8 by a NMR studies
in 1D (1H and 13C) and 2D (HQMC and HMBC) and ele-
mental analysis.

Finally, we have determined and confirmed the 4R,6S,7R
configuration of compound 8 (Figure 1 and Table 1) by
steady-state NOE difference spectroscopy (DNOES) ex-
periments, which have previously been employed by our
group.17 Concerning the relative configuration of the
chains situated at C-7 and C-4, the irradiation of 7-H (to
3.94 ppm) induced a NOE of 1.0% on 4-H (to 4.74 ppm).
This result is in agreement with a relative cis configura-
tion between these two chains. The irradiation of 6-H (to
4.44 ppm) induced a NOE of 0.4% on 8-H (to 3.59 ppm)
and of 3.9% on 5’-H (to 1.87 ppm), and the irradiation of
3-H (to 6.92 ppm) also induced a NOE of 0.1% on 5’-H (to
1.87 ppm). These observations allowed us to confirm the
relative trans configuration of the hydroxyl group and the
chains situated in C-7 and C-4 positions.

Figure 1

In conclusion, we consider this intramolecular nucleo-
philic cyclization, as a useful straightforward way to ob-
tain chiral C-furanoside 8 substituted at C-2, C-3, C-5
with the 4R,6S,7R configuration. This C-furanoside after
deprotection should be a useful synthon for natural prod-
uct synthesis.
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