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Heteroaryl-O-glucosides as novel sodium glucose
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Abstract—A series of benzo-fused heteroaryl-O-glucosides was synthesized and evaluated in SGLT1 and 2 cell-based functional
assays. Indole-O-glucoside 10a and benzimidazole-O-glucoside 18 exhibited potent in vitro SGLT2 inhibitory activity.
� 2005 Elsevier Ltd. All rights reserved.
Controlling levels of fasting and postprandial plasma
glucose is the first goal of therapy for non-insulin depen-
dent diabetes mellitus (NIDDM). Since plasma glucose
is continuously filtered in the kidney glomerulus and is
subsequently transepithelially reabsorbed by the sodi-
um-glucose co-transporters (SGLTs) in the proximal
tubules, a therapeutic agent which blocks glucose reab-
sorption in the kidney should provide a novel treatment
for NIDDM.1–3 There is evidence that at least three iso-
forms of SGLT are present in the human body, referred
to as SGLT1 through SGLT3.4 SGLT1 is present pri-
marily in the intestinal cells, whereas SGLT2 is found
predominantly in the epithelium of the kidney. Glucose
absorption in the intestine is mediated by SGLT1, a
high-affinity low-capacity transporter. Renal reabsorp-
tion of glucose is mediated by both SGLT1 and SGLT2
on the luminal side of the proximal tubule of the kidney.
SGLT2 is a low-affinity high-capacity transporter and is
likely responsible for the bulk of glucose reabsorption in
the renal proximal tubule. SGLT3, formerly known as
SAAT1, may serve as a glucose sensor in cholinergic
neurons, skeletal muscle, and other tissues. SGLT4 is
a low-affinity transporter that may act as a mannose/
fructose transporter in the intestine and kidney.4b Inhi-
bition of SGLTs in diabetic patients would be expected
to normalize plasma glucose by reducing glucose uptake
at the intestine (SGLT1) and promoting glucose excre-
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tion into the urine (SGLT2).5 Phlorizin is a natural
SGLT inhibitor. Compound 1, (T1095A), a phlorizin
analogue, inhibited both SGLT1 and SGLT2, and dem-
onstrated efficacy in numerous animal models as an
antidiabetic agent.5 Recently, we reported structure–ac-
tivity relationship (SAR) studies of compound 1 and
found potent and selective SGLT2 inhibitors.6 As part
of our ongoing SAR studies, we designed and synthe-
sized a series of novel compounds different from both
the core structure of compound 1 and other reported
structures.7 The key modification was to replace the ke-
tone/phenol portion of 1 with a heteroaryl ring, wherein
the 1 0 NH group of the heteroaryl ring mimics the 6 0 OH
group in compound 1. Since there is no clinical evidence
to show whether a selective SGLT2 inhibitor or a mixed
SGLT1/SGLT2 inhibitor is better for treatment of dia-
betes, we were interested in developing both types of
inhibitors to better understand the mechanism of action.
Herein, we describe the initial SAR surrounding a novel
series of heteroaryl-O-glucosides with potent in vitro
SGLT2 inhibitory activity.
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Table 1. In vitro activity to inhibit SGLT2
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Table 1 (continued)

Compound Ar IC50 ± SEM (lM)

SGLT1 SGLT2
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0%a 18%a

25
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0%a 22%a

a Inhibition at a screening concentration of 10 lM.
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Scheme 1. Reagents and conditions: (a) BnBr (4 equiv), K2CO3 (10 equiv), DMF; (b) MOM Br (2 equiv), K2CO3 (5 equiv), CH3CN; (c) ArCHO,

KOH, EtOH; (d) H2 (45 psi), 10% Pd/C, EtOH/EtOAc (1:1); (e) H2 (15 psi), 10% Pd/C, EtOAc; (f) concn HCl, i-PrOH/dioxane; (g) NH2-NHR1,

HOCH2CH2OH, 160 �C; (h) 2,3,4,6-tetra-O-acetyl-a-DD-glucopyranosyl bromide (2 equiv), K2CO3 (5 equiv), acetone; (i) K2CO3, MeOH.
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Our initial attempt to synthesize indazole 6a (Table 1)
8
by cyclization of compound 1 with hydrazine did not

yield the desired product. Thus, conjugated indazoles
6a–d were prepared from resorcinol derivatives 26

(Scheme 1). Aldol condensation of 3a with 2,3-
dihydrobenzofuran-5-carbaldehyde provided an a,b-un-
saturated ketone. Hydrogenation at 45 psi produced
dihydrochalcone 4 (Ar = 2,3-dihydrobenzofuran). Alter-
natively, aldol condensation of 3b with benzofuran-5-
carbaldehyde, selective hydrogenation of the a,b-unsat-
urated ketone at 15 psi, and deprotection with HCl gave
dihydrochalcone 4 (Ar = benzofuran). Dihydrochalcone
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Scheme 2. Reagents and conditions: (a) N,N-diethylcarbamoyl chloride, Na

Pd/C, EtOH/EtOAc; (d) 2,3,4,6-tetra-O-acetyl-a-DD-glucopyranosyl bromide,
4 cyclized with hydrazine or methyl hydrazine to form
1H-indazole 5 in moderate yield.8 Glycosylation of 5
using the biphasic conditions previously described to
prepare analogues of compound 1 was not successful,
probably due to the poor solubility of aglycone 5 in
either phase.6 Glycosylation could be achieved with
2 equiv of 2,3,4,6-tetra-O-acetyl-a-DD-glucopyranosyl
bromide and 5 equiv of K2CO3 in acetone for 24 h. Sub-
sequent saponification of the acetyl groups provided
compounds 6a–d in 20–30% yield for the two steps.9a

No N-glucoside of 5 was isolated from the reaction un-
der the conditions investigated. The last two steps have
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application to other heteroaromatic systems in this
study.

Scheme 2 depicts the synthesis of indole analogues 10a–
d. Aglycones 9a and b were obtained from indolecarbal-
dehydes 7a–c10 by the Wittig reaction and hydrogena-
tion at 15 psi. Glycosylation of aglycone 9 was carried
out under the conditions described above to provide
tetra-acetylglucosides in yields of 40–75%. Lithium
hydroxide-promoted glycosylation of indoles has been
reported,11 but did not afford higher yields. Saponifica-
tion of the acetyl groups provided compounds 10a–d in
20–30% yield for the two steps.9b

Benzimidazole 18, benztriazole 19, and benzimidazolone
20 were constructed from 12, which was prepared by
acylation and silylation of commercially available 2-
amino-3-nitrophenol (Scheme 3). Hydrogenation of the
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Scheme 3. Reagents: (a) ArCH2COCl, Et3N, CH2Cl2; or ArCH2CO2H, EDCI

(d) BH3ÆTHF; (e) CDI or triphosgene, THF; (f) TBAF, THF; (g) 2,3,4,6-te

acetone; (h) K2CO3, MeOH; (i) HC(OEt)3, p-TSA; (j) NaNO2, HCl (3 N).
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nitro group and borane reduction of the amide fortu-
itously provided a 3:2 ratio of 13 and 14, separable by
flash chromatography. The benzimidazole system was
formed by treatment of compound 13 with triethylor-
thoformate. Subsequent deprotection of the phenol
group provided the benzimidazole aglycone 15. Treat-
ment of compound 14 with sodium nitrite provided
the benztriazole aglycone 16. Cyclization of 13 with tri-
phosgene, followed by deprotection of the phenol group,
led to the benzimidazolone aglycone 17. Glycosylation
of aglycones 15–17 under the conditions described
above provided analogues 18–20 in low to moderate
yields.9c

In Scheme 4, the intermediate 23 was prepared from
compound 21 using a synthetic approach that was sim-
ilar to that outlined for the formation of the dihydroch-
alcone 4 described in Scheme 1. Cyclization of 23 with
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the ylide derived from triethylphosphonoacetate affor-
ded a 1H-quinolin-2-one in 31% yield.12 Subsequent
deprotection of the phenol group provided aglycone
24. Glycosylation and deprotection as described above
gave analogue 25 in low yield.9d

All compounds were screened in a cell-based SGLT
functional assay,13 and IC50 values are presented in Ta-
ble 1. The indazole analogues 6a–d showed only moder-
ate inhibitory activity toward SGTL2, but were selective
for SGLT2 compared to the parent compound 1.
Replacement of the benzofuran in analogue 6a with
2,3-dihydrobenzofuran in compound 6b did not change
the SGLT2 inhibitory activity. However, the benzofuran
moiety could cause unwanted P450 inhibition of 1.

The SAR of compound 1 suggested that the phenol
group at the 6 0-position participates in a hydrogen
bonding interaction,5b,6 which supported the computa-
tional hypotheses by Weilert-Badt et al.14 However, this
trend was not observed with the heterocyclic analogues.
Good activity was preserved when the N-1 position of
the indole was alkylated as in compound 10b. Likewise,
the lack of hydrogen bonding ability at the N-1 position
of the benzimidazoles 18 did not diminish SGLT2 inhib-
itory activity. In addition, urea 20 and lactam 25 showed
much weaker SGLT2 inhibitory activity than the other
scaffolds, though this may be due to steric effects.

In summary, we have demonstrated that the ketone/phe-
nol portion of compound 1 can be replaced with a ben-
zo-fused heterocycle while retaining the desired in vitro
SGLT2 inhibitory activity. Further modification of this
series will be reported in due course.
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