

SCIENCE

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

Bioorganic & Medicinal Chemistry Letters 13 (2003) 3405-3408

Glucose-Lowering in a *db/db* Mouse Model by Dihydropyridine Diacid Glycogen Phosphorylase Inhibitors

Anthony K. Ogawa,^{a,*} Chris A. Willoughby,^{a,*} Raynald Bergeron,^b Kenneth P. Ellsworth,^b Wayne M. Geissler,^b Robert W. Myers,^b Jun Yao,^b Georgianna Harris^b and Kevin T. Chapman^a

^aDepartment of Basic Chemistry, Merck Research Laboratories, Rahway, NJ 07065, USA ^bDepartment of Metabolic Disorders-Diabetes, Merck Research Laboratories, Rahway, NJ 07065, USA

Received 16 April 2003; revised 22 July 2003; accepted 29 July 2003

This paper is dedicated to the memory of Chris A. Willoughby

Abstract—The synthesis of a series of novel dihdyropyridine diacid glycogen phosphorylase inhibitors is presented. SAR and functional assay data are discussed, along with the effect of a single inhibitor on blood glucose in a diabetic animal model. © 2003 Elsevier Ltd. All rights reserved.

A recent World Health Organization report estimates that approximately 130 million people worldwide are afflicted with type 2 diabetes.¹ Patients suffer from reduced insulin sensitivity and secretion that result in glucose intolerance and postabsorptive hyperglycemia. Hepatic glucose output (HGO), a significant contributor to diabetic hyperglycemia,² derives from both the hydrolytic breakdown of stored glycogen (glycogenolysis), and gluconeogenesis, the latter of which is elevated in type 2 diabetics relative to normal patients.³ Recent evidence suggests that a portion of the gluconeogenic flux cycles through the glycogenolytic pathway,⁴ thereby identifying a viable intervention point for restoring glycemic control. Phosphorylated glycogen phosphorylase a (GPa) catalyzes the breakdown of glycogen to glucose-1-phosphate, which represents the rate determining step in glycogenolytic glucose production. Glucose lowering by inhibition of GPa with small molcule inhibitors has been reported for several unique structural classes.⁵ GPa, therefore, represents an attractive therapeutic target for the treatment of type 2 diabetes.

Recent literature reported the inhibition of glycogenolysis by a dihydropyridine dicarboxylate inhibitor (U6751) in rat liver.⁶ (Fig. 1) An enzyme-inhibitor co-crystal structure (3AMV) indicated a binding site also utilized by AMP to allosterically activate glycogen phosphorylase b.⁷ Although AMP binding does not impact GPa activity, the spatial proximity of the aforementioned bound inhibitor to Ser14, the residue phosphorylated to activate GP, suggests an inhibitory mechanism for this compound class.

At present, SAR exploration of the dihydropyridine dicarboxylate scaffold and demonstrated efficacy in a diabetic model remain unreported. We report herein the synthesis and evaluation of racemic dihdyropyridine GPa inhibitors that address the functional role of several substituents, as well as an optimized GPa inhibitor that effected sustained glucose lowering in a db/db mouse model.

The core 1,4-dihydropyridine scaffold for all reported inhibitors derived from a Hantzsch synthesis that

Figure 1. Previously reported inhibitor U6751.

^{*}Corresponding author. Tel.: +1-732-594-4199; fax: +1-732-594-9473; e-mail: anthony_ogawa@merck.com *Deceased.

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter \odot 2003 Elsevier Ltd. All rights reserved. doi:10.1016/S0960-894X(03)00798-4

Scheme 1. Reagents and conditions: (i) R_2NH_2 , MeOH, rt (crude product >95% pure by ¹H NMR); (ii) cat *p*TSA, CH₃C(O)CH₂-CO₂R₄, benzene, reflux; (iii) 140 °C, neat; (iv) NaOH, (1:1) dioxane/H₂O, 50 °C; (v) TFA.

involved regio-selective condensation of enamine substrates with α -carboxy- α , β -unsaturated ketones at elevated temperature⁸ (Scheme 1). Cyclization was followed by methyl ester hydrolysis, which proceeded cleanly at 50 °C overnight with no hydrolysis of the C5isopropyl ester observed. Isolation of the C2,C3-dicarboxylate as the bis-sodium salt yielded the desired product.⁹ The synthesis of inhibitor **3** required TFA deprotection 3,4-dimethoxybenzyl group (**12**) prior to ester hydrolysis.

In vitro analysis of rac-U6751 and inhibitors 1-5 provided broad SAR for the dihydropyridine scaffold. Qualitative analysis of the 3AMV structure suggested that the C4-o-chlorophenyl substituent from U6751 oriented the C4-aryl group perpendicular to the dihydropyridine ring system.⁷ Assay of the C4-phenyl derivative (1) resulted in a 10-fold increase in IC_{50} , thereby supporting the aforementioned structure-function hypothesis (Table 1). Removal of the C2-carboxylate (2) verifed the necessity for the C2,C3-diacid functionality, as the potency fell by > 200-fold. Clearly, disruption of salt bridges formed with one or more of the proximal 3AMV imparted arginine residues in grave consequences on GP inhibition.

Regarding the N1-substituent, the N1-desalkyl inhibitor (3) was significantly less active, and although the physical underpinnings for this effect were unclear, productive van der Waals interactions between the ethyl group and proximal GPa residues must clearly exist. N1-trifluoroethyl

Table 1. In vitro liver enzyme, muscle enzyme and hepatocyte inhibition assay results for compounds $1-3^{10,11}$

Compd	Structure	HLGPa IC ₅₀ (nM)	HMGPa IC ₅₀ (nM)	Cell EC ₅₀ (µM)
rac-U6751		39	138	2.23
1		395	1195	6.50
2		15,600	15,000	NA
3		692	172	11.0
4		43	52	1.89
5		11	26	1.13

substitution (4) had little effect on potency relative to rac-U6751, but the N1-benzyl inhibitor (5) was distinctly more potent against GPa, both in vitro and in the hepatocyte cell-based assay as well. In order to evaluate the potential for this inhibitor series, subsequent SAR of the corresponding N1-benzylic moiety was pursued and will be discussed later.

C5-carboxamide inhibitors (16–19) were synthesized to examine the SAR of the hydrophobic pocket occupied by the isopropyl ester in 3AMV. The syntheses of 16–19 followed from *tert*-butyl ester deprotection of 10 to afford an intermediate C5-acid (Scheme 2). Amide formation under standard conditions, followed by diester hydrolysis yielded the corresponding inhibitors.

Unfortunately, carboxamide replacement of the C5ester yielded very poor GPa inhibitors (Table 2). Somewhat surprising was the potency loss for amide 16 compared to isosteric *rac*-U6751 (>200-fold), thereby suggesting that the isopropyl amide unable to adopt a productive conformation.

In order to expand on the SAR at N1, several analogues of N1-benzyl inhibitor **5** were made utilizing the

Scheme 2. Reagents and conditions: (i) $140 \degree C$, neat; (ii) $Pd(PPh_3)_4$, dimedone; (iii) R-NH₂, EDC, HOBt; (iv) NaOH, (1:1) dioxane/H₂O, 50 °C.

Table 2. In vitro liver and muscle enzyme inhibition assay data for compounds $16-19^{10}$

Hantzsch chemistry outlined in Scheme 1. A comparison of mono-substituted chlorobenzyl inhibitors (20-22) revealed a general preference for *meta*- and *para*phenyl ring substitution over ortho substitution. The preference against ortho subsituents was corroborated by dichlorobenzyl inhibitors 23-25, as the addition of an o-Cl substituent afforded decreased potency relative to the parent mono-substituted benzyl inhibitors, 21-22. Assay of this inhibitor series in rat hepatocytes supported the general trend established by the in vitro assay. Noteworthy was the relative activity of p-Cl-benzyl substituted inhibitor 22 and meta-substituted inhibitor 21, in which presently unidentified factors related to the primary hepatocytes differentially impacted inhibitor potency in a cell assay. A second *m*-Cl substituent blunted this effect (27), yielding a 2-fold improvement in cell potency despite a similar 2-fold reduction in enzyme potency. para Substitution was still preferred as seen from a comparison of equipotent GPa inhibitors 26 and 27. Lastly, a comparison of 3,4-Cl₂-inhibitor, 26, with the 3,4-dimethoxybenzyl inhibitor, 29,¹² indicated a preference for the latter substituent that was exceptionally potent in the cell assay, as well (Table 3).

Table 3. In vitro liver enzyme, muscle enzyme and hepatocyte inhibiton assay data for compounds **20–29**.^{10,11}

Compd	R	HLGPa IC ₅₀ (nM)	HMGPa IC ₅₀ (nM)	Cell EC ₅₀ (µM)
5	Н	11	26	1.13
20	2-Cl	79	178	3.71
21	3-Cl	8	29	4.01
22	4-Cl	2	6	0.48
23	2,3-Cl ₂	109	233	6.19
24	2,4-Cl ₂	104	185	7.13
25	2,5-Cl ₂	65	91	6.71
26	3,4-Cl ₂	13	41	1.06
27	3,5-Cl ₂	15	37	2.22
28	3-NO ₂	5	10	0.44
29	3,4-(OMe) ₂	4	11	0.27

A pharmacodynamic study treating db/db mice with 29 resulted in a dose dependent effect on plasma glucose concentration that was clearly evident at six h postdose¹³ (Fig. 2). In addition, a 100 mpk dose of **29** yielded glucose levels statistically similar to lean animals. Of particular interest was the observed efficacy of 29 despite its sub-optimal pharmacokinetic profile.14 Rough calculations involving c_{max} and $t_{1/2}$ combined with the observed EC₅₀ for **29** do not predict blood levels commensurate with the observed efficacy at 6 h. Several potential explanations exist, in addition to the potential species difference between the hepatocyte assay and PK/PD models, which will be discussed in a subsequent communication. Initial tissue analysis indicated that glycogen accumulation occurred exclusively in the liver and not in peripheral skeletal muscle (data not shown), the implications of which in relation to McArdle's disease¹⁵ will be discussed in the aforementioned future publication. This represents the first

Figure 2. Blood glucose effect of compound 29 in db/db mice. x-Axis represents time post-dose or vehicle administration. Each datapoint represents an n = 7.

demonstrated glucose normalization by this inhibitor class in a relevant diabetic animal model.

In conclusion, a series of dicarboxylate GP inhibitors provided SAR for the central dihydropyridine scaffold, which led to the synthesis of compound **29**. Oral administration of **29** to db/db mice led to glucose normalization not previously reported in a diabetic model.

Acknowledgements

The authors are grateful to Dr. David E. Moller for helpful discussions. The authors also wish to thank Sherrie McCormick for formulation and mass spectral analysis, and to Judith Fenyk-Melody and Xiaolan Shen for the in vivo phase of rodent pharmacokinetics.

References and Notes

1. Fact Sheet No. 138. World Health Organization, Geneva, 2002.

2. (a) McCormack, J. G.; Westergaard, N.; Kristiansen, M.; Brand, C. L.; Lau, J. *Curr. Pharm. Des.* **2001**, *7*, 1457. (b) Consoli, A. *Diabetes Care* **1992**, *15*, 430.

3. Magnusson, I.; Rothman, D. L.; Katz, L. D.; Shulman, R. G.; Shulman, G. I. J. Clin. Invest. 1992, 90, 1323.

4. Hellerstein, M. K.; Neese, R. A.; Linfoot, P.; Christiansen, M.: Turror, S.: Lather, A. J. Clin. January 1007, 100, 1205

M.; Turner, S.; Letsher, A. J. Clin. Invest. 1997, 100, 1305.

5. (a) Treadway, J. L.; Mendys, P.; Hoover, D. J. *Expert Opin. Invest. Drugs* **2001**, *10*, 439. (b) Hoover, D. J.; Lefkowitz-Snow, S.; Burgess-Henry, J. L.; Martin, W. H.; Armento, S. J.; Stock, I. A.; McPherson, R. K.; Gereroux, P. E.; Gibbs, E. M.; Treadway, J. L. *J. Med. Chem.* **1998**, *41*, 2934. (c) Martin, W. H.; Hoover, D. J.; Armento, S. J.; Stock, I. A.; McPherson, R. K.; Danley, D. E.; Stevenson, R. W.; Barrett, E. J.; Treadway, J. L. *Proc. Natl. Acad. Sci. U.S.A.* **1998**, *95*, 1776. 6. (a) Goldmann, S.; Ahr, H.-J.; Puls, W.; Bischoff, H.; Petzinna, D.; Schlossman, K.; Bender, J. US Patent 4,786,641, 1988. (b) Oikonomakos, N. G.; Tsitsanou, K. E.; Zographos, S. E.; Skamnaki, V. T.; Goldmann, S.; Bischoff, H. *Protein Sci.* **1999**, *8*, 1930. (c) Bergans, N.; Stalmans, W.; Goldmann, S.; Vanstapel, F. *Diabetes* **2000**, *49*, 1419.

7. Zographos, S. E.; Oikonomakos, N. G.; Tsitsanou, K. E.; Leonidas, D. D.; Chrysina, E. D.; Skamnaki, V. T.; Bischoff, H.; Goldmann, S.; Watson, K. A.; Johnson, L. N. *Structure* **1997**, *5*, 1413.

8. (a) Sato, Y. US Patent 4,145,432, 1979. (b) Sato, Y. US Patent 4,284,634, 1981. (c) Sato, Y.; Ichihashi, M.; Okumura, K. *Chem. Pharm. Bull.* **1992**, *40*, 912.

9. Treatment of the concentrated diacid compound with 2 equiv NaOH(aq) precluded formation of the maleic anhydride.

10. IC_{50} values derived from inhibiting phosphorolysis of glycogen using recombinant human liver or muscle enzyme. The standard error for this assay (15%) arose from titration of an internal standard. Glucose-1-phosphate production was monitored via an enzymatic assay involving phosphoglucomutase/ glucose-6-phosphate dehydrogenase-mediated NADH production (ex. 340 nm, em. 465 nm).

11. Inhibition of glucagon-stimulated glycogenolysis in primary rat hepatocytes. The standard error for this assay (15%) derived from an internal standard. Inhibition of glucose production determined by digesting remaining glycogen and quantifying by monitoring glucose dehydrogenase-mediated NADPH production (ex. 340 nm, em. 465 nm).

12. Characterization for compound **29**: ¹H NMR (500 MHz, CD₃OD) δ 7.15 (3H, m), 6.96 (1H, ddd, *J*=7.6, 7.5, 1.5 Hz), 6.92 (1H, m), 6.85 (2H, m), 5.50 (1H, s), 4.87 (2H, m), 4.78 (1H, d, *J*=16.0 Hz), 3.72 (3H, s), 3.65 (3H, s), 2.36 (3H, s), 1.21 (3H, d, *J*=6 Hz), 1.05 (3H, d, *J*=6.5 Hz). LC/MS ESI (C₂₇H₂₈ClNNaO₈) calcd for MNa⁺: 552.14; found: 552.1.

13. Glucose levels determined at indicated times post-dosing of either compound **29** or vehicle. Each curve represents a single group of n=7 animals, and timepoints therein an average of the group.

14. Pharmacokinetic data from C57BL/6J mice (3/pt), 1 mpk po: $t_{1/2} = 1.4$ h, $C_{max} = 12$ nM, % F = 4.5.

15. Stryer, L. *Biochemistry*; W.H. Freeman and Co.: New York, 1995; p 598.