Preliminary Note

Synthesis and reactions of N,N-dichloroperfluoroalkanesulfonylamides

Shi-zheng Zhu*, Cheng-ming Zhou, Ai-wen Li and Bin Xu

Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032 (China)

(Received June 4, 1993; accepted August 29, 1993)

Abstract

Reactions of N,N-dichloroperfluoroalkanesulfonylamides with alkenes, benzene, dimethyl sulfide and dimethyl sulfoxide in the presence of zinc dust gave addition or insertion products via the fluoroalkanesulfonylnitrene intermediate. On heating $R_1SO_2NCl_2$ in the presence of alkene without zinc, 1:1 addition products were formed via a free-radical mechanism.

N,N-Dichlorotrifluoromethanesulfonylamide, CF₃-SO₂NCl₂, was first prepared in 1974 [1]. Its chemistry, however, has received little study. Recently, Yagupol'skii *et al.* reported its reactions with diphenyl sulfide [2] and trifluoromethylphenyl sulfide [3].

Here, we report the preparation of some N,N-dichlorofluoroalkanesulfonylamides and their reactions with benzene, dimethyl sulfide, dimethyl sulfoxide and alkenes. The title compounds were conveniently prepared by the one-pot reaction of fluoroalkanesulfonylamides with KOH(aq.) and chlorine gas:

$$\begin{array}{c} R_{f}SO_{2}NH_{2} \xrightarrow{KOH(aq.), \ Cl_{2}} \\ (1) & \\ R_{f}SO_{2}NCl_{2} \\ (2) & \\ R_{f}=I(CF_{2})_{2}O(CF_{2})_{2}, \ \textbf{2a} \\ \\ R_{f}=Cl(CF_{2})_{2}O(CF_{2})_{2}, \ \textbf{2b} \\ \\ R_{f}=H(CF_{2})_{2}O(CF_{2})_{2}, \ \textbf{2c} \end{array}$$

Compounds 2 were obtained as yellowish liquids. They are unstable, for example, after storage for 1 week in a flask at room temperature with nearly 50% of 2 decomposing to the corresponding fluoroalkane-sulfonylamides (detected by 19 F NMR spectroscopy: the chemical shifts of $-CF_2$ S in compounds 1 and 2 were 40 ppm and 29 ppm, respectively; TFA external

standard; upfield positive). Heating 2 with benzene in the presence of zinc dust afforded 70% of $R_rSO_2NHC_6H_5$ (3). Similarly, treatment of 2 with dimethyl sulfide or dimethyl sulfoxide gave the sulfonium ylid $R_rSO_2N=SMe_2$ (4) and the sulfoxonium ylid $R_rSO_2N=S(O)Me_2$ (5), respectively. The *N*-fluoroal-kanesulfonylaziridines 6 were obtained by refluxing 2 with styrene or 1,4-dimethyl-but-2-ene in CH_2Cl_2 . In these two reactions, $R_rSO_2NH_2$ was also formed in c. 15% yield.

These results appear to indicate that fluoroal-kanesulfonylnitrene intermediates are involved in all the above questions [4, 5]. This is similar to the reactions of fluoroalkanesulfonylazides [6] (see Scheme 1).

$$[R_1 = R_2 = R_3 = H, R_4 = C_6H_5$$
 (6a); $R_1 = R_2 = R_3 = R_4 = CH_3$ (6b)

Reagents, conditions and yields: i, C_6H_6 , reflux, 8 h, 70%; ii, Me_2S , r.t., 8 h, 68%; iii, DMSO, 60 °C, 8 h, 65%; iv, PhCH=CH₂, CH₂Cl₂, r.t., 8 h, 62%, Me_2C =CMe₂, r.t., 8 h, 64%.

Scheme 1.

It was noteworthy that the reaction of 2 with styrene occurred rapidly without zinc powder, and gave 1:1 addition products:

$$2 + R_1CH = CHR_2 \xrightarrow{CH_2Cl_2} R_fSO_2NCICHR_1CHCIR_2$$
(7) (8)

$$[R_1 = H; R_2 = C_6H_5]$$

This reaction was demonstrated to be a free-radical reaction process since the radical intermediate $R_{\rm f}$ SO₂NClCH₂CHPh could be captured by Bu^tNO. The ESR spectrum showed triplet-doublet peaks ($a_{\rm N} = 15.18$ G, $a_{\rm H} = 3.04$ G, g = 2.0052).

Reduction of 8 by NaHSO₃, followed by elimination of HCl with alcoholic NaOH gave N-fluoroalkanesulfonylaziridine (6a) [7]:

$$8 \xrightarrow{\text{NaHSO}_3} R_1 \text{SO}_2 \text{NHCH}_2 \text{CHClPh} \xrightarrow{\text{NaOH/EtOH}} -\text{HCl}$$

$$R_1 \text{SO}_2 \text{NCH}_2 \text{CHPh}$$
(6a)

^{*}Author to whom correspondence should be addressed.

All the new compounds were fully characterized by their IR, ¹H NMR, ¹⁹F NMR, MS spectra and by elemental analysis.

Further studies on the chemistry of 2 are in progress.

Experimental

General procedure for the preparation of N,N-dichloroperfluoroalkanesulfonylamides 2

Perfluoroalkanesulfonylamides 1a (6.3 g, 15 mmol), KOH (1.7 g, 30 mmol) and water (15 ml) were placed in a 50 ml three-necked flask and the mixture stirred at room temperature for 2 h. The flask was cooled down via an ice bath, then chlorine gas (4.1 g, 60 mmol) was introduced during which time the reaction temperature was kept at 0-5 °C. The reaction mixture was then stirred for another 2 h at 20 °C. A yellowish oil separated which was dried over Na₂SO₄ and distilled under vacuum to give 2a (3.8 g, 52%), b.p. 42-44 °C/ 2 mmHg. IR (film) (ν_{max} , cm⁻¹): 1605 (w); 1420 (m); 1380 (s); 1320 (vs); 1292 (s); 1220–1120 (vs); 1092 (s); 990 (s); 713 (s); 600 (m); 530 (m). ¹⁹F NMR (neat) (TFA external, upfield positive) δ : -11.8 (s, ICF₂); 5.20 (m, CF₂); 8.5 (m, CF₂O); 29.3 (s, CF₂S) ppm. MS m/z%: 492 (MH⁺, 0.62); 424 (M⁺ – F – SO, 1.90); 364 $(M^+-I, 0.96); 343 (M^+-SO-C_2F_4, 5.52); 329$ $(M^+ - SON - C_2F_4, 4.82); 227 (IC_2F_4^+, 100); 205$ (ISO₂N⁺, 15.7). Analysis: Calc. for C₄Cl₂F₈INO₃S: C, 9.76; N, 2.85; F, 30.89%. Found: C, 10.04; N, 2.99; F, 31.30%.

Typical reaction of 2 in the presence of zinc powder

A mixture of **2b** (2 g, 5 mmol), DMSO (10 ml) and zinc powder (1 g, 15 mmol) was stirred for 8 h at 60 °C. After filtration, the filtrate was fractionally distilled

under reduced pressure giving 5b (1.3 g, 64%); b.p. 98–100 °C/2 mmHg. IR (film) (ν_{max} , cm⁻¹): 2971 (s); 2892 (s); 1580 (m); 1443 (m); 1380 (s); 1370 (s); 1277 (s); 1210-1100 (vs); 1005 (vs); 980 (s); 881 (m); 700 (m); 653 (s); 517 (s). ${}^{1}H$ NMR δ : 3.50 (s, 2CH₃) ppm. ¹⁹F NMR δ: -1.0 (s, CICF₂); 6.5 (m, OCF₂); 11.6 (m, CF_2O); 42.3 (s, CF_2S) ppm. MS m/z %: 408/410 (MH⁺, 0.75/0.37); 392/394 (M⁺H-O, 25.96/16.09); 372 $(M^+ - Cl, 2.64); 344/346 (M^+ H - SO_2, 4.34/2.72); 332/$ 334 $(M^+H-SMe_2-N, 20.22/8.40)$; 156 (M^+-R_6) 11.09); 141 $(M^+ - R_f - Me, 4.99)$; 140 $(M^+ - R_f - O,$ 17.32); 135/137 (ClC₂F₄⁺, 15.39/7.45); 85/87 (ClCF₂⁺, 14.72/6.37); 80 (SOS+, 100); 78 (Me₂SO+, 5.74); 64 (SO₂⁺, 85.47); 61 (MeSN⁺, 12.90); 47 (MeS⁺, 5.14). Analysis: Calc. for $C_6H_6F_8CINO_4S_2$: C, 17.67; H, 1.47; N, 3.44; F, 37.30%. Found: C, 18.03; H, 1.80; N, 3.13; F, 37.00%.

Acknowledgement

The authors wish to thank the Shanghai National Science and Technology Foundation for financial support.

References

- 1 V.P. Nazaretyan, O.A. Radchenko and L.M. Yagupol'skii, *Zh. Org. Khim.*, 10 (1974) 2460.
- 2 R.Yu. Gavrilova, N.V. Kondratenko, V.I. Popov and L.M. Yagupol'skii, Zh. Org. Khim., 25 (1989) 1128.
- N.V. Kondratenko, R.Yu. Gavrilova and L.M. Yagupol'skii, Zh. Org. Khim., 24 (1988) 456.
- 4 R.A. Abramovitch, T.D. Bailey, T. Takaya and V. Uma, J. Org. Chem., 39 (1974) 340.
- 5 D.S. Breslow and M.F. Sloan, Tetrahedron Lett., (1968) 5349.
- 6 S.-z. Zhu, Tetrahedron Lett., 33 (1992) 6503.
- 7 U.K. Nadir, R.L. Sharma and V.K. Koul, J. Chem. Soc., Perkin Trans. I, (1991) 2015.