Synthetic Communications[®], 37: 3319–3328, 2007 Copyright © Taylor & Francis Group, LLC ISSN 0039-7911 print/1532-2432 online DOI: 10.1080/00397910701489495

Study on the Synthesis and Bioactivity of Novel Mahkoside A Derivatives

Yan-Bing Zhang, Pi-Yong Zhang, Gui-Fu Dai, and Hong-Min Liu

Department of Chemistry, New Drug Research and Development Center, Zhengzhou University, Zhengzhou, China

Abstract: A series of novel Mahkoside A derivatives was synthesized, and their in vitro cytotoxic activities were evaluated against the human cancer cell line Ec-9706. A Preliminary structure–activity relationship study showed compounds **7** and **8** have obvious cytotoxic activities (IC_{50} : 30.0 and 12.5 μ g · mL⁻¹, respectively).

Keywords: benzophenone, Koenigs–Knorr reaction, Mahkoside A, 2,3,6-tri-O-acetyl-4-chloro-4-deoxy- β -D-galactoside

1 INTRODUCTION

Mahkota Dewa (Phaleria macrocarpa [Scheff.] Boerl) is widely distributed in Indonesia. Empirically, the stems, leaves, and fruits of it are used to control many diseases such as cancer, impotency, hemorrhoids, diabetes mellitus, allergies, liver and heart diseases, kidney disorders, blood diseases, rheumatism, high blood pressure, stroke, migraines, various skin diseases, and acne.^[11] There had not been any report about the chemical constituents of the plant before we first separated a new derivative of benzophenone, named Mahkoside A,^[21] from *Mahkota Dewa*. It was reported that this class of compounds is usually used as an ultraviolet absorber, photo sensitizer, and medical intermediate;^[31] exhibits notable cytotoxicity against the ovarian cancer cell line,^[4] the human tumor cell

Address correspondence to Hong-Min Liu, Department of Chemistry, New Drug Research and Development Center, Zhengzhou University, Zhengzhou 450052, China. E-mail: liuhm@zzu.edu.cn

Received February 2, 2007

line,^[5] the colon cancer cell line,^[6] the human submandibular gland adenocarcinoma cell line, and primary human gingival fibroblast;^[7] combats the human parasite *Trypanosoma cruzi* (Chagas's disease);^[8] and displays significant antioxidant activity.^[9] Hence, we attempted to synthesize various Mahkoside A derivatives and evaluate the in vitro cytotoxicity of the product obtained.

2 RESULTS AND DISCUSSION

2.1 Chemistry

To find new Mahkoside A derivatives possessing potent bioactivity, we needed a variety of structurally modificated compounds to study the structure-activity relationships of Mahkoside A. Selective protection of Mahkoside A (1) with benzyl chloride in the presence of anhydrous K₂CO₃ afforded 4,4'-dibenzyloxy Mahkoside A (2) in 80% yield. Acid hydrolysis of 2 with aqueous HCl furnished 6-hydroxy-4,4'-dibenzyloxy-2methoxy benzophenone (3) in 92% yield. In the previous syntheses of flavonol O-glycosides, all the glycosidations employed glycosyl bromides or chlorides under either Koenigs-Knorr conditions (promoted by silver salts) or, later, under phase-transfer-catalyzed (PTC) alkaline conditions.^[10] Although the latter glycosidation yield was relatively low (normally lower than 50%), it greatly improved and simplified the workup procedures.^[10] We attempted to use the basic PTC conditions (Bu₄NBr, K₂CO₃, CHCl₃/ H₂O) in the glycosylation of benzophenone **3** with 2,3,6-tri-O-acetyl-4chloro-4-deoxy- α -D-galactopyranosidyl bromide and successfully gave 4 in 63% yield. This result might be attributed to the decrease of the side reactions of the glycosyl bromide under basic conditions, such as elimination to give the glycal and cleavage of the acyl protecting groups.^[10] The 4,4'dibenzyloxy group on 4 were then completely cleaved by hydrogenolysis in the catalysis of Pd-C under normal pressure, and the acetate groups on the sugar moiety were removed with NaOH in methanol to afford new glycoside 5.

On the other hand, another method for structural modification of benzophenone **3**, alkylamine of 6-OH, was conducted. Intermediate **3** was reacted with dibromoethane in the refluxing absolute ethanol in the presence of K_2CO_3 to give 6-(2-bromoethoxy)-4,4'-dibenzyloxy-2-methoxybenzophenone **6**. Subsequent substitution of the bromo group with different amino groups led to 6-aminoalkyloxy derivatives **7** and **8** in 74% and 94%, respectively. The final removal of benzyl groups of **8** with catalytic hydrogenolysis afforded **9** in high yield. When a solution of Mahkoside A (**1**) in ethanol was treated with 30% aqueous HCl at reflux temperature, 4,6,4'-trihydroxy-2-methoxybenzophenone (**10**) was obtained in 95% yield. All procedures are shown in Scheme 1.

Scheme 1. BnCl, K₂CO₃, CH₃CH₂OH, reflux; (b) HCl, reflux; (c) K₂CO₃, CHCl₃, (C₄H₉)₄NBr, 40°C, 2,3,6-tri-O-acetyl-4-chloro-4-deoxy-β-D-galactosidyl bromide; (d) i: H₂, 10% Pd-C, EtOH-EtOAc, 40°C; ii: NaOH, MeOH, rt; (e) BrCH₂CH₂Br, K₂CO₃, C₂H₅OH, reflux; (f) RH K₂CO₃, DMF, rt; (g) H₂, 10% Pd-C, EtOH-EtOAc, 40°C; (h) HCl, reflux.

2.2 Biological Activity

The in vitro cytotoxicity of novel Mahkoside A derivatives 2-4 and 6-10 against human cancer cell line Ec-9706 were evaluated in an assay system. The results are listed in Table 1. The results showed that compounds 7 and 8

Compound	$IC_{50}~(\mu g\cdot mL^{-1})$	Inhibition (100 μ g · mL ⁻¹)
1	>100	18.7
2	>100	19.2
3	>100	6.4
4	>100	17.9
6	>100	7.0
7	30.0	
8	12.5	
9	>100	33
10	>100	28.9

Table 1. In vitro activity of Mahkoside A derivatives

exhibit higher antitumor activities (IC₅₀ 30 μ g · mL⁻¹ and 12.5 μ g · mL⁻¹), compound **6** does not show any activity, and others are less bioactive. On the basis of this result, we can conclude that the 6-aminoalkyloxy group greatly enhances cytotoxicity and the substitution of two hydroxyl groups at 4,4'-position with two alkyloxy groups increases cytotoxicity also, which are two effective ways to improve the cytotoxicity. The study on the structure–activity relationship indicated that the suitable substitutions at benzene rings greatly improve the bioactivity, but the sugar moiety gives less contribution. The further structural modification of these compounds to improve the bioactivity is in progress.

3 EXPERIMENTAL

3.1 General Methods

¹H and ¹³C NMR spectra were acquired on a Bruker Avance DPX-400 spectrometer with chemical shifts (δ) given in parts per million relative to Me₄Si as an internal standard. Melting points were determined on a WC-1 melting-point apparatus and are uncorrected. IR spectra were obtained on a Thermo Nicolet IR200 unit. High-resolution mass spectra (HRMS) were obtained on a Waters Micromass Q-Tof MicroTM instrument using the ESI technique. Thin-layer chromatography (TLC) was performed on glass plates precoated with silica gel GF₂₅₄ to monitor the reactions and certify the purity of the reaction products. Visualization was accomplished by spraying chromatograms with 10% ethanolic sulfuric acid and charring them on a hot plate. Column chromatography was carried out on silica gel (200–300 mesh).

3.2 Preparation of 2,3,6-tri-O-acetyl-4-chloro-4-deoxy-α-D-galactopyranosidyl Bromide

2,3,6-Tri-O-acetyl-4-chloro-4-deoxy- α -D-galactopyranosidyl bromide was synthesized by following the literature methods.^[11,12]

3.3 4,4'-Dibenzyloxy Mahkoside A (2)

To a mixture of Mahkoside A (1, 422 mg, 1.00 mmol) and dry K_2CO_3 (276 mg, 2.00 mmol) in dry ethanol (10 mL), benzyl chloride (1 mL) was added. The mixture was refluxed for 3 h (TLC showed the disappearance of Mahkoside A). The resulting mixture was diluted with water (10 mL) and extracted with EtOAc (3 × 10 mL). The organic layer was washed with brine and dried over anhydrous Na₂SO₄. The residue obtained after evaporation of the solvent was purified by flash chromatography on silica gel (6:1

3322

Novel Mahkoside A Derivatives

CHCl₃-CH₃OH) to afford **2** (480 mg, 80% yield) as a yellow solid. Mp 86–88°C; IR (KBr): 3402, 1646, 1599, 1454, 1162, 1076, 923 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 3.72 (s, 3H, CH₃O), 3.43–3.81 (m, 10H), 4.82 (d, *J* = 8.4 Hz, 1H, H-1'-gal), 4.85 (s, 2H, ArCH₂), 5.03 (s, 2H, ArCH₂), 6.21 (s, 1H, H-3), 6.44 (s, 1H, H-5), 6.87 (d, *J* = 8.4 Hz, 2H, H-3', H-5'), 7.38–6.89 (m, 10H, Ar-H), 7.75 (d, *J* = 8.6 Hz, 2H, H-2', H-6'); ¹³C NMR (CDCl₃, 400 MHz): δ 55.6 (CH₃O) 61.9 (C-6'-gal), 69.7 (C-4'-gal), 70.1 (2ArCH₂), 73.5 (C-2'-gal), 75.8 (C-3'-gal), 76.0 (C-5'-gal), 94.8 (C-5), 95.7 (C-3), 103.3 (C-1'-gal), 112.8 (C-1), 114.4 (C-3',5'), 127.5, 127.6, 128.1, 128.2, 128.3, 128.6 (Ar), 131.8 (C-1'), 132.2 (C-2',6'), 136.1 (Ar), 136.2 (Ar), 157.3 (C-6), 157.7 (C-2), 162.7 (C-4'), 162.9 (C-4), 194.3 (C-7); HRMS (ESI) calcd. for C₃₄H₃₄O₁₀: *m/z* 625.2052 [M + Na]⁺. Found: 625.2041.

3.4 6-Hydroxy-4,4'-dibenzyloxy-2-methoxybenzophenone (3)

To a solution of 2 (151 mg, 0.25 mmol) in 95% ethanol (10 mL), 30% aq HCl (1 mL) was added. The mixture was refluxed for 2 h, then cooled to room temperature and neutralized with satd. aq. NaHCO₃. The resulting mixture was extracted with CH₂Cl₂. The organic layer was washed with water and dried over anhydrous Na₂SO₄. Subsequent concentration gave a residue. The residue was purified by flash chromatography on silica gel (4:1 petroleum ether-EtOAc) to afford 3 (101 mg, 92% yield) as a yellow solid. Mp 110–112°C; IR (KBr): 3160, 1634, 1605, 1508, 1172 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 3.85 (s, 3H, CH₃O), 4.83 (s, 2H, Ar-CH₂), 5.01 (s, 2H, ArCH₂), 6.04 (d, J = 2.3 Hz, 1H, H-3), 6.19 (d, J = 2.2 Hz, 1H, H-5), 6.76 (d, J = 7.0 Hz, 2H, H-3', H-5'), 6.85–7.41 (m, 10H, Ar-H), 7.57 (dd, J = 6.9 Hz, J = 1.8 Hz, 2H, H-2', H-6'); ¹³C NMR (CDCl₃, 400 MHz): δ 55.6 (CH₃O), 70.1 (ArCH₂), 70.0 (ArCH₂), 92.4 (C-5), 93.8 (C-3), 106.1 (C-1), 113.8 (C-3',5'), 126.0, 127.4, 127.5, 128.0, 128.1, 128.6 (Ar), 130.6 (C-2',6'), 134.4 (C-1'), 135.6 (Ar), 136.4 (Ar), 160.5 (C-6), 161.5 (C-2), 165.2 (C-4'), 165.8 (C-4), 197.9 (C-7). HRMS (ESI) calcd. for C₂₈H₂₄O₅: m/z 463.1522 [M + Na]⁺. Found: 463.1521.

3.5 4,4'-Dibenzyloxy-2-methoxybenzophenon-6-yl 2,3,6-tri-O-acetyl-4-chloro-4-deoxy-β-D-galactopyranoside (4)

A mixture of **3** (73 mg, 0.165 mmol), a catalytic amount of Bu₄NBr, and K₂CO₃ (46 mg, 0.33 mmol) in 2:1 CHCl₃–H₂O (10 mL) was stirred at 40°C for 1 h. Then, 2,3,6-tri-O-acetyl-4-chloro-4-deoxy- β -D-galactosidyl bromide (128 mg, 0.33 mmol) was added, and stirring continued at 40°C for 1 day. The reaction mixture was diluted with CH₂Cl₂ (10 mL) and washed with water (10 mL) and brine (10 mL). The organic layer was then dried over

Na₂SO₄ and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (10:1 CHCl₃-EtOAc) to afford 4 (78 mg, 63% yield) as a yellow solid. Mp 61-63°C; IR (KBr): 1751, 1660, 1601, 1507, 1231, 1094, 910 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 1.96 (s, 3H, CH₃CO) 2.08 (s, 3H, CH₃CO), 2.10 (s, 3H, CH₃CO), 3.79 (s, 3H, CH₃O); 4.06 (t, 1H, J = 5.9 Hz, H-5'-gal), 4.24 (dd, 1H, J = 5.2 Hz, J = 11.5 Hz, H-6'-gal), 4.37 (dd, 1H, J = 7.0 Hz, J = 11.5 Hz, H-6'a-gal), 4.49 (d, 1H, J = 3.6 Hz, H-4'-gal), 4.91 (d, 1H, J = 8.0 Hz, H-1'-gal), 4.95 (d, 1H, J = 4.0 Hz, H-3'gal), 4.97 (s, ArCH₂, 2H), 5.12 (s, ArCH₂, 2H), 5.33 (dd, 1H, J = 8.0 Hz, J = 10.0 Hz, H-2'-gal), 6.29 (d, 1H, J = 2.0 Hz, H-3), 6.49 (d, 1H, J = 2.0 Hz, H-5), 6.96 (d, 2H, J = 8.8 Hz, 2H, H-3',5'), 7.77-7.05 (m, 10H, 2Ar-H), 7.78 (d, 2H, J = 8.8 Hz, H-2'6'); ¹³C NMR (CDCl₃, 400 MHz): δ 20.5 (CH₃CO), 55.5 (CH₃O), 57.2 (C-4'-gal), 63.2 (C-6'-gal), 67.2 (C-2'-gal), 70.1 (ArCH₂), 70.2 (ArCH₂), 71.5 (C-3'-gal), 71.8 (C-5'gal), 94.9 (C-5), 96.8 (C-3), 101.0 (C-1'-gal), 114.1 (C-1), 114.4 (C-3',5'), 126.7, 127.5, 127.7, 128.2, 128.4, 128.7 (Ar), 131.3 (C-1'), 131.9 (C-2',6'), 135.6 (Ar), 136.4 (Ar), 155.5 (C-6), 157.1 (C-2), 161.7 (C-4'), 162.8 (C-4), 169.0 (CH₃CO), 170.3 (CH₃CO), 170.4 (CH₃CO), 192.5 (C-7). HRMS (ESI) calcd. for C₄₀H₃₉ClO₁₂: m/z 769.2028 [M + Na]⁺. Found: 769.2014.

3.6 4,4'-Dihydroxy-2-methoxybenzophenon-6-yl-4-chloro-4deoxy-β-D-galactopyranoside (5)

A solution of 4 (60 mg, 0.08 mmol) in 1:1 EtOH-EtOAc (80 mL) was treated with a catalytic amount of 10% Pd-C. After stirring under 1 atm of H₂ at 40°C for 7 h, the reaction mixture was filtered and concentrated in vacuo. The residue was dissolved in dry CH₃OH (10 mL), followed by addition of a catalytic amount of NaOH. After stirring for 1 h at room temperature, the reaction mixture was filtered and solid was washed with CH₃OH (10 mL). The filtrate and washings were combined and concentrated. The residue was purified by flash chromatography on silica gel (4:1 CH₂Cl₂-CH₃OH) to give 5 (21 mg, 61% yield) as a brown solid. Mp 190-192°C; IR (KBr): 3423, 1621, 1600, 1433, 1163, 1081 cm⁻¹; ¹H NMR (CD₃OD, 400 MHz): δ 3.46 (dd, 1H, J = 7.9 Hz, J = 9.2 Hz, H-2'-gal), 3.65 (dd, 1H, J = 5.8 Hz, J = 11.2 Hz, H-6'-gal), 3.72 (dd, 1H, J = 6.8 Hz, J = 11.2 Hz, H-6'-gal), 3.77 (d, 1H, J = 3.6 Hz, H-3'-gal), 3.80 (s, 3H,CH₃-O); 3.89 (t, 1H, J = 6.4 Hz, H-5'-gal), 4.31 (d, 1H, J = 3.6 Hz, H-4'-gal), 4.88 (d, 1H, J = 7.6 Hz, H-1'-gal), 6.16 (d, 1H, J = 2.0 Hz, H-3), 6.39 (d, 1H, J = 2.0 Hz, H-5), 6.78 (d, 2H, J = 8.4 Hz, H-3',5'), 7.68 (d, 2H, J = 8.8 Hz, H-2'6'); ¹³C NMR (CD₃OD, 400 MHz) & 55.9 (CH₃O), 62.6 (C-4'-gal), 63.2 (C-6'-gal), 71.6 (C-2'-gal), 73.6 (C-3'-gal), 95.0 (C-5), 96.8 (C-3), 103.1 (C-1'-gal), 111.6 (C-1), 115.9 (C-3',5'), 131.9 (C-1'), 158.3 (C-6), 159.3 (C-2), 163.8 (C-4'), 164.3 (C-4), 197.1 (C-7); HRMS (ESI) calcd. for $C_{20}H_{21}ClO_9$: m/z 463.0772 [M + Na]⁺. Found: 463.0756.

Novel Mahkoside A Derivatives

3.7 6-(2-Bromoethoxy)-4,4'-dibenzyloxy-2methoxybenzophenone (6)

A solution of 3 (110 mg, 0.25 mmol), K₂CO₃ (69 mg, 0.5 mmol), and dibromoethane (1 mL) in dry ethanol (10 mL) was refluxed for 6 h. The reaction mixture was filtered, and the solid was washed with ethanol (10 mL). The filtrate and washings were combined and concentrated. The residue was purified by flash chromatography on silica gel (4:1 petroleum ether-EtOAc) to give 6 (88 mg, 65% yield) as a yellow solid. Mp 97-100°C; IR (KBr): 1659, 1602, 1448, 1161 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 3.38 (t, 2H, J = 6.8 Hz, the protons of carbon connected with bromine), 3.80 (s, 3H, CH₃O), 4.19 (t, 2H, J = 6.8 Hz, OCH₂), 5.01 (s, 2H, ArCH₂), 5.12 (s, 2H, ArCH₂), 6.14 (d, 1H, J = 1.6 Hz, H-3), 6.21 (d, 1H, J = 1.6 Hz, H-5), 6.97 (d, 2H, J = 8.8 Hz, H-3',5'), 7.44-7.09 (m, 10H, 2Ar-H), 7.81 (d, 2H, J = 8.8 Hz, H-2'6'); ¹³C NMR (CDCl₃, 400 MHz) δ: 11.1 (2-CH₂CH₃), 47.5 (2CH₂CH₃), 50.9 (C-CH₂-N), 55.5 (CH₃O), 66.7 (O-CH₂-C), 70.1 (ArCH₂), 70.3 (ArCH₂), 91.8 (C-5), 92.8 (C-3), 112.0 (C-1), 114.4 (C-3',5'), 126.7, 127.5, 127.6, 128.2, 128.3, 128.7 (Ar), 131.7 (C-2',6'), 131.9 (C-1'), 136.3 (Ar), 136.6 (Ar), 157.5 (C-6), 157.6 (C-2), 162.1 (C-4'), 162.6 (C-4), 193.3 (C-7). HRMS (ESI) calcd. for C₃₀H₂₇BrO₅: m/z 547.1120 [M + H]⁺. Found: 547.1110.

3.8 6-(2-Diethylaminoethoxy)-4,4'-dibenzyloxy-2methoxybenzophenone (8)

A solution of **6** (60 mg, 0.11 mmol), K_2CO_3 (30 mg, 0.22 mmol), and diethylamine (1 mL) in dry DMF was stirred for 10 h at room temperature. The mixture was filtered. The filtrate was diluted with water (10 mL) and extracted with CH_2Cl_2 (3 × 10 mL). The organic layer was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (4:1 CH₂Cl₂-CH₃OH) to give 8 (56 mg, 94%) yield) as a yellow syrup. IR (KBr): 3032, 1661, 1600, 1455, 1250, 1159 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 0.93 (t, 6H, J = 7.1 Hz, 2CH₃); 2.56 (d, 4H, J = 6.0 Hz, 2CH₂CH₃), 2.81 (s, 2H, the protons of carbon connected with diethylamino), 3.79 (s, 3H, OCH₃), 4.09 (s, 2H, OCH₂), 4.99 (s, 2H, ArCH₂), 5.13 (s, 2H, ArCH₂), 6.16 (d, 1H, J = 1.8 Hz, H-3), 6.18 (d, 1H, J = 1.8 Hz, H-5), 6.96 (d, 2H, J = 8.8 Hz, H-3',5'), 7.44-7.09 (m, 10H, 2Ar-H), 7.81 (d, 2H, J = 8.8 Hz, H-2',6'); ¹³C NMR (CDCl₃, 400 MHz) &: 11.1 (2CH2CH3), 47.5 (2CH2CH3), 50.9 (C-CH2-N), 55.5 (CH₃O), 66.7 (O-CH₂-C), 70.1 (ArCH₂), 70.3 (ArCH₂), 91.8 (C-5), 92.8 (C-3), 112.0 (C-1), 114.4 (C-3',5'), 126.7, 127.5, 127.6, 128.2, 128.3, 128.7 (Ar), 131.7 (C-2',6'), 131.9 (C-1'), 136.3 (Ar), 136.6 (Ar), 157.5 (C-6), 157.6 (C-2), 162.1 (C-4'), 162.6 (C-4), 193.3 (C-7). HRMS (ESI) calcd. for $C_{34}H_{37}NO_5$: m/z 540.2750 [M + H]⁺. Found: 540.2770.

3.9 6-[2-(Piperid-1-yl)-ethyloxy]-4,4'-dibenzyloxy-2methoxybenzophenone (7)

A similar procedure as described previously for the preparation of **8** from **6** was used for the preparation of **7**. Yield 74% as a yellow syrup. IR (KBr): 3388, 1659, 1599, 1455, 1251, 1160 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ : 3.05–2.68 (d, 10H, CH₂NCH₂), 3.78 (s, 3H, OCH₃), 4.02 (s, 2H, OCH₂), 4.98 (s, 2H, ArCH₂), 5.14 (s, 2H, ArCH₂), 6.12 (s, 1H, H-3), 6.19 (s, 1H, H-5), 6.97 (d, 2H, J = 7.2 Hz, H-3',5'), 7.45–7.08 (m, 10H, 2Ar-H), 7.78 (d, 2H, J = 7.3 Hz, H-2'6'); ¹³C NMR (CDCl₃, 400 MHz) δ : 43.2 (NCH₂CH₂N), 49.9 (NCH₂CH₂N), 55.5 (CH₃O), 56.2 (CH₂NR₁R₂), 67.2 (O-CH₂-C), 70.2 (ArCH₂), 70.3 (ArCH₂), 92.2 (C-5), 92.9 (C-3), 112.2 (C-1), 114.5 (C-3',5'), 126.8, 127.5, 127.7, 128.2, 128.4, 128.7, (Ar), 131.8 (C-2',6'), 131.9 (C-1'), 131.7 (C-1'), 136.3 (Ar), 136.7 (Ar), 157.4 (C-6), 157.5 (C-2), 162.1 (C-4'), 162.8 (C-4), 193.4 (C-7); HRMS (ESI) calcd. for C₃₄H₃₆N₂O₅: *m/z* 553.2702 [M + H]⁺. Found: 553.2706.

3.10 6-(2-Diethylaminoethoxy)-4,4'-dihydroxy-2methoxybenzophenone (9)

A suspension of 8 (72 mg, 0.13 mmol) and a catalytic amount of 10% Pd-C in 1:1 EtOH-EtOAc (80 mL) was stirred under 1 atm of H₂ at 40°C for 7 h. The reaction mixture was filtered and concentrated in vacuo. The residue was purified by silica-gel chromatography (2:1 CH₂Cl₂-CH₃OH) to afford 9 (46 mg, 96% yield) as a yellow syrup. IR 1660, 1604, 1432, 1274, 1157 cm^{-1} ; ¹H NMR (KBr): 3436, $(CD_3COCD_3, 400 \text{ MHz}) \delta: 0.84 \text{ (t, 6H, } J = 7.2 \text{ Hz}, 2CH_2CH_3), 1.23$ (d, 4H, J = 4.6 Hz, 2CH₂CH₃), 2.70 (s, 2H, the protons of carbon connected with diethylamino), 3.74 (s, 3H, OCH₃), 3.99 (t, 2H, J = 5.2 Hz, OCH₂), 6.12 (s, 1H, H-3), 6.14 (s, 1H, H-5), 6.80 (d, 2H, J = 8.8 Hz, H-3', 5'), 7.55 (d, 2H, J = 8.4 Hz, H-2'6'); ¹³C NMR (CD₃COCD₃, 400 MHz) δ: 8.2 (2CH₂CH₃) 47.1 (2CH₂CH₃), 49.6 (C-CH₂-N), 55.2 (CH₃O), 63.6 (O-CH₂-C), 91.7 (C-5), 94.6 (C-3), 107.8 (C-1), 115.0 (C-3',5'), 131.5 (C-2',6'), 131.7 (C-1'), 158.6 (C-6), 160.8 (C-2), 161.9(C-4'), 164.1 (C-4), 195.0 (C-7). HRMS (ESI) calcd. for $C_{20}H_{25}NO_5$: m/z 360.1811[M + H]⁺. Found: 360.1813.

3.11 4,4',6-Trihydroxy-2-methoxybenzophenone (10)

A similar procedure as described previously for the preparation of **3** from **2** was used for the preparation of **10** from **1**. Yield 95% as a yellow solid. Mp $83-85^{\circ}$ C; IR (KBr): 3347, 1634, 1608, 1438, 1162; ¹H NMR (CD₃COCD₃,

3326

Novel Mahkoside A Derivatives

400 MHz) δ : 3.80 (s, 3H,OCH₃), 6.04 (s, 2H, H-3,5), 6.85 (d, 2H, J = 8.4 Hz, H-3',5'), 7.61 (d, 2H, J = 8.8 Hz, H-2'6'); ¹³C NMR (CD₃COCD₃, 400 MHz) δ : 55.6 (CH₃O), 94.3 (C-5), 94.3 (C-3), 115.0 (C-1), 115.1 (C-3',5'), 132.3 (C-2',6'), 132.9 (C-1'), 161.8 (C-6), 162.1 (C-2), 162.4 (C-4'), 165.9 (C-4), 197.6 (C-7). HRMS (ESI) calcd. for C₁₄H₁₂ O₅: m/z 283.0583 [M + Na]⁺. Found: 283.0583.

3.12 Biological Activity Assays

In vitro cytotoxicity study: The Ec-9706 cell line was kindly presented by the Henan Institute of Medical Sciences, China. The culture medium was RPMI-1640 supplemented with 10% (v/v) fetal calf serum, 100 U/mL penicillin, and 100 μ g/mL streptomycin.

Sensitivity test: Cancer cells, growing in monolayer cultures at 37°C under 5% CO₂, were trypsinized, rinsed with PBS (w/o Ca²⁺ and Mg²⁺), and plated into 96-well plates (7 × 10³ cells/well). The next day, test substances were freshly dissolved in DMSO, resulting in 10-mg/mL stock solutions. Stock solutions were diluted in the culture medium and added (200 μ L/well) at various concentrations to the wells, resulting in five final concentrations between 6.25 and 100 μ g/mL. The MTT-test was performed 48 h later.

REFERENCES

- 1. Harmanto, N. Conquering Disease in Unison with Mahkota Dewa; Denata Printing: North Jakarta, Indonesia, 2003; p. 14.
- Zhang, Y. B.; Xu, X. J.; Liu, H. M. Study on chemical constituents of Mahkota Dewa. J. Asian Nat. Prod. Res. 2006, 8, 119–123.
- 3. Chen, Z. X. A novel synthesis of benzophenone. Fine Chem. 2003, 20, 179-181.
- Chaturvedula, V. S. P.; Schilling, J. K.; Kingston, D. G. I. New cytotoxic coumarins and prenylated benzophenone derivatives from the bark of *Ochrocarpos punctatus* from the Madagascar rainforest. *J. Nat. Prod.* **2002**, *65*, 965–972.
- 5. Cueto, M.; Jensen, P. R.; Kauffman, C.; Fenical, W.; Lobkovsky, E.; Clardy, J. Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge. *J. Nat. Prod.* **2001**, *64*, 1444–1446.
- Baggett, S.; Protiva, P.; Mazzola, E. P.; Hui, Y.; Ressler, E. T.; Basile, M. J.; Weinstein, I. B.; Kennelly, E. J. Bioactive benzophenones from *Garciniaxantho-chymus* fruits. *J. Nat. Prod.* 2005, *68*, 354–360.
- Atsumi, T.; Iwakura, I.; Fujisawa, S.; Ueha, T. The production of reactive oxygen species by irradiated camphorquinone-related photosensitizers and their effect on cytotoxicity. *Archives of Oral Biology* **2001**, *46*, 391–401.
- Esteva, M. I.; Kettler, K.; Maidana, C.; Fichera, L.; Ruiz, A. M.; Bontempi, E. J.; Andersson, B.; Dahse, H. M.; Haebel, P.; Ortmann, X. R.; Klebe, G.; Schlitzer, M. Benzophenone-based farnesyltransferase inhibitors with high activity against *Trypanosoma cruzi. J. Med. Chem.* **2005**, *48*, 7186–7191.

- Kouam, S. F.; Ngadjui, B. T.; Krohn, K.; Wafo, P.; Ajaz, A.; Choudhary, M. I. Prenylated anthronoid antioxidants from the stem bark of *Harungana madagascariensis*. *Phytochemistry* **2005**, *66*, 1174–1179.
- 10. Li, M.; Han, X. W.; Yu, B. Tetrahedron Lett. 2002, 43, 9467.
- Liu, F. W.; Zhang, Y. B.; Liu, H. M.; Song, X. P. Preparation of a and b anomers of 1,2,3,6-tetra-O-acetyl-4-chloro-4-deoxy-D-galactopyranose based upon anomerization and kinetic acetylation. *Carbohydr. Res.* 2005, 340, 489–495.
- Fletcher, H. G.; Whistler, R. L.; Wolfrom, M. L.; BeMiller, J. N.; Shafizadeh, F. Methods Carbohydr. Chem. 1963, 12, 226.

3328

Copyright of Synthetic Communications is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.