

Tetrahedron 55 (1999) 4255-4270

TETRAHEDRON

A Facile Synthesis of Spiroisoxazolines: Intramolecular Cyclization of 3-Aryl-2-nitroacrylates Promoted by Titanium Tetrachloride

Seiko Hirotani* and Eisuke Kaji

School of Pharmaceutical Sciences, Kitasato University Shirokane, Minatoku, Tokyo 108-8641, Japan

Received 21 December 1998; accepted 2 February 1999

Abstract: Titanium tetrachloride-induced cyclization of 3-(o- or m-substituted p-methoxyphenyl)-2nitro acrylates (1) provided stereoselectively $(4\alpha,5\beta)$ -1-oxa-2-azaspiro[4, 5]deca-2,6,9-trien-8-ones (2). Ortho-substituted p-methoxyphenyl nitroacrylates gave 2 in good yield. 3-(4'-methoxy-1'-naphthyl)-2nitroacrylate also reacted with titanium tetrachloride to give quantitatively $(4\alpha,5\beta)$ -4'-oxospiro[isoxazole-(4H)5,1'(4'H)-naphthalene]. 3-(10'-methoxy-9'-anthryl)-2-nitroacrylate was converted to 10-oxospiro-[anthracene-(10H)9,5'(4'H)-isoxazole]. © 1999 Elsevier Science Ltd. All rights reserved.

Keyword: titanium tetrachloride; intramolecular cyclization; nitroacrylates; spiroisoxazolines

We have previously reported the reaction of 3-aryl-2-nitroacrylates 1 with titanium tetrachloride, where naphthyl or phenanthryl derivatives react with toluene in the presence of titanium tetrachloride to give tolylated spiroisoxazolines in a diastereoselective manner.¹ In an attempt of the application of this method to formation of a new type of spiroisoxazoline derivatives, we found that *p*-cyclohexadienone spiroisoxazolin **2a** was obtained from the reaction of 3-(p-methoxyphenyl)-2-nitroacrylate 1a with titanium tetrachloride in dichloromethane. Under the similar reaction conditions, *o*-methoxyphenyl detivative gave 3-chloro-2-hydroxyimino propionate,² and *m*-methoxyphenyl derivative was converted into salicylaldehyde.³ It is clear from the above examples that the position of methoxyl substituent on aryl ring governs the kind of the product. Cyclohexadienone spiroisoxazolines are important model compounds on syntheses of dibromotyrosine-derived marine metabolies,⁴ which contain one or two spiroisoxazoline units. Additionally, it was reported that *p*-cyclohexadienone spiroisoxazolines were prepared as useful antitumor agents.⁵ Several reports have been made on the synthetic approaches so far, which have been achieved through intramolecular oxidative cyclization of 1-hydroxyphenyl-2-propanone oximes,⁶ or 1,3-dipolar cycloaddition of nitrile oxide to a quinone methide.⁷ This paper describes a novel synthesis of spiroisoxazolines connecting arenone ring as well as it's scope and limitation.

*Email : hirotanis@platinum.pharm.kitasato-u.ac.jp

Result and Discussion

Ethyl 3-aryl-2-nitroacrylates 1 were prepared by the condensation of arylaldehydes and ethyl nitroacetate. A mixture of E and Z isomer of ethyl 3-(4'-methoxyphenyl)-2-nitroacrylate (1a) reacted at 0 °C with two equivalents of titanium tetrachloride to give spiroisoxazoline 2a with a caged dimer 5. The mass spectrum indicated the molecular formula for 5 with one more hydrogen and chlorine atom than 2 x 2a. It was noted that the yield of 2a was improved by suppression of formation of the dimer. The treatment of 1a (1 mmol) with two equivalents titanium tetrachloride in 10 ml dichloromethane gave 2a in 46% isolated yield along with 5 in 34% yield, while the reaction in 50 ml dichloromethane gave 2a in 58% isolated yield with 4-methoxysalicylaldehyde (4a) in 12% yield (Scheme 1 and Table 1). Spiroisoxazoline 2a was unchanged upon treatment with titanium tetrachloride. Further changes in the reaction conditions failed to suppress these side-reactions. Perhaps the intermediate from 1a might react with 2a to yield 5, or convert to 4a.

The cyclization of several 3-(o-, or m-substituted p-methoxyphenyl)-2-nitroacrylates was attempted. Theresults are listed in Table 1. Nitroacrylates 1b - 1g and 1i - 1l showed high stereoselectivity, and afforded 2b - 2d, 2f, 2g, and 2i - 2l as a single diastereoisomer. Compounds 1b, 1c and 1d, which have a substituent on ortho position of p-methoxy-phenyl group, cyclized to 4-chloro-6-substituted pcyclohexadienone spiroisoxazolines 2b, 2c and 2d in moderate to good yields. o-Methoxy derivative 1b slowly reacted to give spiroisoxazolines, 2b and 6b in total 57% yield (a ratio 17:1), with 1b in 11% recovery after 24 hours. **6b** was not p-cyclohexadienone but o-cyclohexadienone spiroisoxazoline (Scheme 3). In the case of o-bromo derivative 1e, the expected 2e was not detected but 2d was formed via Br-Cl exchange reaction. Further the released bromide ion formed other spiroisoxazolines 2d', 2'd and 2'd' as shown in Table 1. The reaction of meta substituted p-methoxyphenyl nitroacrylates with titanium tetrachloride gave a drastic change in the product distribution resulting in the formation of 3-chloro-2hydroxyimino propionates 3. Oxime 3 was converted into corresponding salicylaldehyde 4 in ca. 40% yield under the work up conditions or column chromatography on silica gel. In the case of *m*-methyl derivative 1f, 2f and 3f were obtained in a 9:8 ratio. m-Bromo derivative 1g gave 3g as a major product with 2g. m-Methoxy derivative 1h afforded only 3h and 4h, and spiroisoxazoline was not detected. Thus o-substituted p-methoxyphenyl group promoted the cyclization reaction effectively, while m-substituents decreased the rate of spiroisoxazolines. In case of o-, m- and p-trisubstituted nitroacrylate, 2,4,5-trimethoxy derivative 1k gave 2k in 57% yield. But, 2,3,4-trimethoxy derivative 1j gave quantitatively 2j. 2,3-Dimethyl-4-methoxy derivative 1 i also afforded 2i quantitatively. 2,4,6-Trimethoxyphenyl nitroacrylate showed a low activity, and the starting material was recovered unchanged after 24 hours. In the case of 2,6-dichloro-4methoxyphenyl derivative 11, this cyclization reaction proceeded slowly to give 21 and 21' in total 48% yield with 11 in 18% recovery .

Table 1 The synthesis of spiroisoxazolines 2

 $\begin{array}{l} \textbf{l} & \textbf{2d} (38\%) + \textbf{2d'} (6\%) + \textbf{2'd} (15\%) + \textbf{2'd'} (1\%) \\ \textbf{2)} & \textbf{2d} (47\%) + \textbf{2d'} (8\%) + \textbf{2'd} (26\%) + \textbf{2'd'} (2\%) \\ \textbf{4)} & \textbf{2l} (36\%) + \textbf{2l'} (12\%) \end{array}$

0

3) Estimated by ¹H NMR of the crude product

To obtain more information with respect to the halogen exchange reaction, we carried out the reaction of titanium tetrabromide with 1a, 1d and 1e (Scheme 2). Nitroacrylates 1a and 1e gave stereoselectively spiroisoxazoline 2'a', 2'e and 2'e' in low yield, 21%, 4% and 12%, respectively. Compound 1d gave two corresponding 2'd and 2'd', and two halogen-exchanged 2'e and 2'e' in total 17% yield. As main product, 1a gave an inseparable mixture of three types of 3-aryl-3-hydroxy-2-hydroxyiminopropionates in ca. 30% yield. 1d and 1e gave 5-bromo-4-methoxysalicylaldehyde (4g) in 21-25% yield.

The structures of 2 were established by IR, Mass, ¹H and ¹³C NMR as shown in Table 2 and 3. The stereochemistry of 6-unsubstituted and 6-methylsubstituted spiroisoxazolines as $(4\alpha, 5\beta)$ -isomer were clear from NOE experiments (2c, 2f, 2g, 2i and 2'a'). 6-Methoxysubstituted spiroisoxazolines were confirmed by NOE experiment and long-rang heteronuclear coupling constants $(J_{C,H})$.⁸ For 2k, NOE was not observed between H-4 and C₆-OCH₃, and also between H-4 and H-10. In 2b, 2j and 2k, vicinal (³J) C-H coupling constant was larger for C-6 than C-10. 2k also has the same relative structure($4\alpha, 5\beta$). Compound 6b was determined by NOE experiments (CH₃O and H-7, CH₃O and H-9), and a HMBC cross peak (³J_(CH)) which was seen between H-4 signal and CO carbon signal (δ =192.5).

On the basis of absence of NOE between H-4 and H-10, the stereochemistry of 6-halosubstituted spiroisoxazolines was deduced and they were confirmed by chemical shifts and/or ${}^{3}J_{CH}$. Bromine atom

rather than chlorine atom affected downfield shift for H-10, and C-10 in *cis* relationship (example; **2d** (C₄-Cl): $\delta_{\rm H} = 7.04$, $\delta_{\rm C} = 140.3$, **2'd**(C₄-Br): $\delta_{\rm H} = 7.07$, $\delta_{\rm C} = 142.8$ ppm). In **21'**, **2'e** and **2'e'**, ${}^{3}J_{(C6,H4)}$ was larger than ${}^{3}J_{(C10,H4)}$.

The reaction could be extended to a range of aryl groups and the results are showed in scheme 4. Fortunately the reaction of 4-methoxy-1-naphthyl derivative 1m gave near quantitative conversion to isolated spiroisoxazoline 2m in 93% yield. H-4 of the isoxazoline ring and H-8' of the naphthalene ring were in a *cis*-orientation by NOE experiment. 10-Methoxy-9-anthryl derivative 1n afforded spiroisoxazoline *N*-oxide 7n as a major product and saturated nitro compound 8n. The formation of 2n from 1n required a higher reaction temperature (room temp.) as compared with the reactions (0°C) of 4-methoxyphenyl derivatives 1b -1g and 1i - 11 or 4-methoxy-1-naphthyl derivative 1m. When the reaction was performed at room temperature, 2n was formed in 21% yield.

A mechanism consistent with the results detailed above involves coordination of TiCl₄ to the oxygen of nitro group to give a complex that can be represented as intermediate **B** (scheme 5). An *ipso* attack by oxygen of nitro group yields spiro intermediate **C**, which undergoes an attack by chloride anion followed by loss of TiOCl₂^{1,10} yielding **D**. Then, **D** converts to spiroisoxazoline **2** by demethylation (path a). The stereoselectivity of nucleophilic addition of X in C (R⁴=H) is rationalized by steric hindrance. Intermediate **C** from **1n** leads to spiroisoxazoline **N**-oxide **7n** by no cleavages of N-O bond involving oxidation at a lower temperature. **D** undergoes an attack on *ortho* position by chloride anion yielding intermediate **E**¹ (path b). Demethylation of **E** is followed by addition of **2a** to a dimer **5**. Oxime **3** is formed *via* aromatization of **E** followed to give salicylaldehyde **4**.

In summary, a novel synthesis of spiroisoxazolines has been accomplished using 3-aryl-2-nitroacrylates through TiCl₄-inducced intramolecular *ipso* attack by oxygen of nitro group. The prepared $(4\alpha, 5\beta)$ -4'-oxospiro-[isoxazole-(4H)5,1'(4'H)-naphthalene] (**2m**), 10-oxospiro[anthracene-(10H)9,5'(4'H)-isoxazole]

(2n) exhibited cytotoxicity against murine leukemia P388(IC₅₀ Values : 0.12 and 42 μ g/ml, respectively) in vitro.

We express sincere thanks to Dr. Katsuharu Iinuma (Director, Pharmaceutical Technology Laboratories. Meiji Seika Kaisha Ltd., Kanagawa) for biological assay.

Та	able 2	¹³ C NMR data (δ , in CDCl ₃) for 2										
	3	4	5	6	7	8	9	10	C00	OCH	2 CH3	3
2a	151.5	63.7	85.0	139.1	129.6	183.5	131.9	139.4	157.8	63.1	14.2	
2b	151.2	64.0	85.3	168.5	102.1	185.4	130.4	136.5	158.0	62.9	14.0	56.5(CH ₃ O)
2c	151.2	64.6	87.4	151.3	128.3	184.2	130.0	141.2	157.9	63.1	14.0	17.5 (CH ₃)
2d	151.1	64.6	86.6	148.2	129.6	182.3	129.3	140.3	157.5	63.1	14.0	
2d'	151.2	64.3	88.2	148.3	128.2	175.3	126.0	140.2	157.3	63.3	14.0	
2f	151.7	63.7	85.8	134.5	137.2	184.5	132.0	139.3	158.1	63.0	14.0	15.5(CH ₃)
2g	151.8	63.1	86.9	139.4	127.3	176.7	130.7	139.9	157.7	63.2	14.0	
2i	151.2	64.7	88.3	144.6	133.9	184.0	129.3	140.6	158.1	63.0	14.0	14.0(C ₆ -CH ₃) 11.0(C ₇ -CH ₃)
2j	151.3	63.7	88.2	155.1	136.5	186.7	129.6	136.3	158.0	62.8	14.0	61.6(C ₆ -OCH ₃) 61.1(C ₇ -OCH ₃)
2k	151.5	63.7	88.1	169.0	101.3	180.3	151.3	103.3	158.2	62.8	14.0	56.9(C ₆ -OCH ₃) 55.7(C ₉ -OCH ₃)
21	150.2	64.3	89.6	148.7	129.5	180.3	129.9	148.7	157.4	63.4	14.0	
21'	150.2	64.7	90.8	144.1	134.0	173.8	128.9	149.1	157.3	63.4	14.0	$^{3}J(C_{6},H_{4})=6.5Hz,^{3}J(C_{10},H_{4})=5.0Hz$
2'a'	152.5	50.6	86.5	138.9	127.0	176.7	130.4	142.3	157.6	63.2	14.0	
2'd	151.7	51.9	86.1	147.9	129.4	182.4	128.7	142.8	157.6	63.1	14.0	
2'e	151.7	52.8	86.5	139.5	133.7	181.8	128.4	143.4	157.6	63.1	14.0	${}^{3}J(C_{6},H_{4})=5.5Hz,{}^{3}J(C_{10},H_{4})=2.0Hz$
2'd'	151.7	51.3	87.9	148.3	127.9	175.6	125.4	142.8	157.4	63.3	14.0	3
2'e'	151.7	52.3	88.3	140.0	132.2	175.1	125.0	143.4	157.4	63.2	14.0	$J(C_{4},H_{4})=5.5Hz, J(C_{10},H_{4})=2.0Hz$

	H-4	H-6	H-7		H-9	H-10
2a	5.27	6 62(dd 10 0 3 0)	6.32(dd.	10.0, 1.5)	6 48(dd, 10.0, 1.5)	7.10(dd, 10.0, 3.0)
2b	5.57 -		5.57(d. 1	.5)	6.32(dd, 10.0, 1.5)	6.83(d. 10.0)
2c	5.38	-	6.11(da.	1.9, 1.3)	6.37(dd, 10.0, 1.9)	7.01(d, 10.0)
2d	5.63	-	6.49(d, 1	.9)	6.41(dd, 10.0, 1.9)	7.04(d, 10.0)
2d'	5.64	-	6.61	,	-	7.46
2f	5.26	6.39(da, 3.0, 1.3)	-		6.46(d, 10.0)	7.07(dd, 10.0, 3.0)
2g	5.32	7.05(d, 3.0)	-		6.59(d, 10.0)	7.15(dd, 10.0, 3.0)
2ī	5.38	-	-		6.36(d, 10.0)	6.93(d, 10.0)
2j	5.59	-	-		6.25(d, 10.0)	6.76(d, 10.0)
2k	5.50	-	5.54		-	5.66
21	5.81		6.57		6.57	-
21'	5.82	-	-		6.69	-
2'a'	5.36	7.08(d, 3.0)	-		6.55(d, 10.0)	7.17(dd, 10.0, 3.0)
2'd	5.63	-	6.46(d, 1	.8)	6.36(dd, 10.0, 1.8)	7.07(d, 10.0)
2'e	5.60	-	6.72(d, 1	.8)	6.38(dd, 10.0, 1.8)	7.13(d, 10.0)
2'd'	5.63	-	6.57		-	7.49
2'e'	5.60	-	6.82		-	7.55
	OCH ₂		CH ₃	others		NOE
	OCH ₂ 4.42(q, 1	7.1)	CH ₃ 1.40(t, 7.1)	others		NOE H-4 and H-6 (3%)
2a 2b	OCH ₂ 4.42(q, 4.42(q,	7.1) 7.1)	CH ₃ 1.40(t, 7.1) 1.40(t, 7.1)	others 	D)	NOE H-4 and H-6 (3%)
2a 2b 2c	OCH ₂ 4.42(q, 4.42(q, 4.43(q,	7.1) 7.1) 7.1)	CH ₃ 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1)	others 3.75(CH ₃ (1.88(d, 1.3	D) 5, CH ₃)	NOE H-4 and H-6 (3%) * H-4 and CH ₃ (2%)
2a 2b 2c 2d	OCH ₂ 4.42(q, 4.42(q, 4.43(q, 4.43(q,	7.1) 7.1) 7.1) 7.1) 7.1)	CH ₃ 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1)	others 3.75(CH ₃ (1.88(d, 1.3	D) 8, CH ₃)	NOE H-4 and H-6 (3%) * H-4 and CH ₃ (2%)
2a 2b 2c 2d 2d'	OCH2 4.42(q, 1 4.42(q, 1 4.43(q, 1 4.43(q, 1 4.44(q, 1)	7.1) 7.1) 7.1) 7.1) 7.1) 7.1)	CH ₃ 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.41(t, 7.1)	others 3.75(CH ₃ (1.88(d, 1.3	D) 3, CH ₃)	NOE H-4 and H-6 (3%) * H-4 and CH ₃ (2%)
2a 2b 2c 2d 2d 2d' 2f	OCH2 4.42(q, 4.42(q, 4.43(q, 4.43(q, 4.44(q, 4.43 and	7.1) 7.1) 7.1) 7.1) 7.1) 14.44(dq, 10.5, 7.1)	CH ₃ 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.41(t, 7.1) 1.41(t, 7.1)	others 3.75(CH ₃ (1.88(d, 1.3 - 1.93(d, 1.3	D) 3, CH ₃) 3, CH ₃)	NOE H-4 and H-6 (3%) * H-4 and CH ₃ (2%) H-4 and H-6 (4%)
2a 2b 2c 2d 2d' 2f 2g	OCH ₂ 4.42(q, 1 4.42(q, 1 4.43(q, 1 4.43(q, 1 4.44(q, 1 4.43 and 4.42 and	7.1) 7.1) 7.1) 7.1) 14.44(dq, 10.5, 7.1) 14.43(dq, 10.5, 7.1)	CH ₃ 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.41(t, 7.1) 1.41(t, 7.1) 1.43(t, 7.1)	others 3.75(CH ₃ (1.88(d, 1.3 - 1.93(d, 1.3	D) 5, CH ₃) 3, CH ₃)	NOE H-4 and H-6 (3%) * H-4 and CH ₃ (2%) H-4 and H-6 (4%) H-4 and H-6 (5%)
2a 2b 2c 2d 2d' 2f 2g 2i	OCH2 4.42(q, 4.42(q, 4.43(q, 4.43(q, 4.43(q, 4.43(q, 4.43(q, 4.44(q, 4.43(q, 4.43(q, 4.44(q, 4.43(q, 4.42(q, 4.42(q, 4.43(q, 4.42(q, 4)(4)(q, 4.42(q, 4)(q, 4.42(q, 4)(4)(q, 4.42(q, 4)(q,	7.1) 7.1) 7.1) 7.1) 1.4.44(dq, 10.5, 7.1) 1.4.43(dq, 10.5, 7.1) 1.4.43(dq, 10.5, 7.1) 7.1)	CH ₃ 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.41(t, 7.1) 1.41(t, 7.1) 1.43(t, 7.1) 1.43(t, 7.1)	others 3.75(CH ₃ (1.88(d, 1.3 - 1.93(d, 1.3 - 1.83(q, 1.6	D) 5, CH ₃) 5, CH ₃) 0, C ₆ -CH ₃),	NOE H-4 and H-6 (3%) * H-4 and CH ₃ (2%) H-4 and H-6 (4%) H-4 and H-6 (5%) H-4 and C ₆ -CH ₃ (4%)
2a 2b 2c 2d 2d' 2f 2g 2i	OCH2 4.42(q, 4.42(q, 4.43(q, 4.43(q, 4.43(q, 4.44(q, 4.43 and 4.42 and 4.42(q,	7.1) 7.1) 7.1) 7.1) 14.44(dq, 10.5, 7.1) 14.43(dq, 10.5, 7.1) 14.43(dq, 10.5, 7.1) 7.1)	CH ₃ 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.41(t, 7.1) 1.41(t, 7.1) 1.43(t, 7.1) 1.43(t, 7.1)		D) 5, CH ₃) 5, CH ₃) 0, C ₆ -CH ₃), 0, C ₇ -CH ₃)	NOE H-4 and H-6 (3%) * H-4 and CH ₃ (2%) H-4 and H-6 (4%) H-4 and H-6 (5%) H-4 and C ₆ -CH ₃ (4%)
2a 2b 2c 2d 2d' 2f 2g 2i 2j	OCH2 4.42(q, 4.42(q, 4.43(q, 4.43(q, 4.43(q, 4.43(q, 4.443(q, 4.443(q, 4.443(q, 4.443(q, 4.442(q, 4.444(q, 4.444(q, 4)44(q, 4)44(7.1) 7.1) 7.1) 7.1) 14.44(dq, 10.5, 7.1) 14.43(dq, 10.5, 7.1) 7.1) 7.1)	CH_3 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.41(t, 7.1) 1.41(t, 7.1) 1.41(t, 7.1) 1.43(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1)	- 3.75(CH ₃ (1.88(d, 1.3 - 1.93(d, 1.3 - 1.83(q, 1.0 1.91(q, 1.0 3.78(C ₇ -O	D) 5, CH ₃) 6, CH ₃) 7, C ₆ -CH ₃), 7, C ₇ -CH ₃) 7, CH ₃), 4.05(C ₆ -OCH ₃)	NOE H-4 and H-6 (3%) * H-4 and CH ₃ (2%) H-4 and H-6 (4%) H-4 and H-6 (5%) H-4 and C ₆ -CH ₃ (4%) *
2a 2b 2c 2d 2d' 2f 2g 2i 2j 2k	OCH2 4.42(q, 4.43(q, 4.43(q, 4.43(q, 4.43(q, 4.43 and 4.42 and 4.42(q, 4.42(q, 4.42(q, 4.42(q,	7.1) 7.1) 7.1) 7.1) 14.44(dq, 10.5, 7.1) 14.43(dq, 10.5, 7.1) 14.43(dq, 10.5, 7.1) 7.1) 7.1)	$\begin{array}{c} CH_{3}\\ 1.40(t, 7.1)\\ 1.40(t, 7.1)\\ 1.40(t, 7.1)\\ 1.40(t, 7.1)\\ 1.41(t, 7.1)\\ 1.41(t, 7.1)\\ 1.43(t, 7.1)\\ 1.43(t, 7.1)\\ 1.40(t, 7.1)\\ 1.40(t, 7.1)\\ 1.40(t, 7.1)\\ \end{array}$		D) b, CH ₃) c, CH ₃) c, C ₆ -CH ₃), c, C ₇ -CH ₃) cH ₃), 4.05(C ₆ -OCH ₃) cH ₃), 3.77(C ₉ -OCH ₃)	NOE H-4 and H-6 (3%) * H-4 and CH ₃ (2%) H-4 and H-6 (4%) H-4 and H-6 (5%) H-4 and C ₆ -CH ₃ (4%) * *
2a 2b 2c 2d 2d' 2f 2g 2i 2j 2k 2j 2k 2l	OCH2 4.42(q, 4.42(q, 4.43(q, 4.43(q, 4.43(q, 4.43(q, 4.43(q, 4.42(q, 4.42(q, 4.42(q, 4.42(q, 4.42(q, 4.42(q, 4.42(q, 4.42(q, 4.42(q, 4.42(q, 4.42(q, 4.42(q, 4.42(q, 4.42(q, 4.43(q, 4.42(q, 4.43(q, 4.42(q, 4	7.1) 7.1) 7.1) 7.1) 1.1 1.4.44(dq, 10.5, 7.1) 1.4.43(dq, 10.5, 7.1) 1.4.43(dq, 10.5, 7.1) 7.1) 7.1) 1.4.46(dq, 10.5, 7.1)	$\begin{array}{c} CH_{3}\\ 1.40(t, 7.1)\\ 1.40(t, 7.1)\\ 1.40(t, 7.1)\\ 1.40(t, 7.1)\\ 1.41(t, 7.1)\\ 1.41(t, 7.1)\\ 1.43(t, 7.1)\\ 1.43(t, 7.1)\\ 1.40(t, 7.1)\\ 1.40(t, 7.1)\\ 1.40(t, 7.1)\\ 1.42(t, 7.1)\\ 1$		D) 5, CH ₃) 6, CH ₃) 7, C ₆ -CH ₃), 7, C ₇ -CH ₃) 7, CH ₃), 4.05(C ₆ -OCH ₃) 7, CH ₃), 3.77(C ₉ -OCH ₃)	NOE H-4 and H-6 (3%) * H-4 and CH ₃ (2%) H-4 and H-6 (4%) H-4 and H-6 (5%) H-4 and C ₆ -CH ₃ (4%) * *
2a 2b 2c 2d 2d' 2f 2g 2i 2j 2k 2l 2l' 2l'	OCH2 4.42(q, 4.42(q, 4.43(q, 4.43(q, 4.43(q, 4.43(q, 4.43(q, 4.43(q, 4.443(q, 4.43(q, 4.442(q, 4.423(q, 4.422(q, 422)(q,	7.1) 7.1) 7.1) 7.1) 14.44(dq, 10.5, 7.1) 14.43(dq, 10.5, 7.1) 7.1) 7.1) 7.1) 14.46(dq, 10.5, 7.1) 14.46(dq, 10.5, 7.1)	CH_3 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.41(t, 7.1) 1.41(t, 7.1) 1.41(t, 7.1) 1.43(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.42(t, 7.	- 3.75(CH ₃ (1.88(d, 1.2 - 1.93(d, 1.3 - 1.83(q, 1.6 1.91(q, 1.6 3.78(C ₇ -O 3.74(C ₆ -O	D) 5, CH ₃) 6, CH ₃) 7, C ₆ -CH ₃), 7, C ₇ -CH ₃) 7, C ₇ -CH ₃) 7, C ₇ -CH ₃), 7, C ₇ -CH ₃) 7, C ₇ -OCH ₃) 7, C ₇ -OCH ₃)	NOE H-4 and H-6 (3%) * H-4 and CH ₃ (2%) H-4 and H-6 (4%) H-4 and H-6 (5%) H-4 and C ₆ -CH ₃ (4%) *
2a 2b 2c 2d 2d' 2f 2g 2i 2j 2k 2l 2l' 2'a'	OCH2 4.42(q, 4.42(q, 4.43(q, 4.43(q, 4.43(q, 4.43(q, 4.43(q, 4.42(q, 4	7.1) 7.1) 7.1) 7.1) 4.44(dq, 10.5, 7.1) 4.43(dq, 10.5, 7.1) 7.1) 7.1) 7.1) 7.1) 1.4.46(dq, 10.5, 7.1) 1.4.46(dq, 10.5, 7.1) 1.4.45(dq, 10.5, 7.1) 1.4.45(dq, 10.5, 7.1) 1.4.45(dq, 10.5, 7.1) 1.4.45(dq, 10.5, 7.1) 1	CH_3 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.41(t, 7.1) 1.41(t, 7.1) 1.41(t, 7.1) 1.43(t, 7.1) 1.43(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.42(t, 7.1) 1.42(t, 7.1) 1.42(t, 7.1) 1.42(t, 7.1)	- 3.75(CH ₃ (1.88(d, 1.3 - 1.93(d, 1.3 - 1.83(q, 1.0 1.91(q, 1.0 3.78(C ₇ -O 3.74(C ₆ -O	D) 5, CH ₃) 6, CH ₃) 7, C ₆ -CH ₃), 7, C ₇ -CH ₃) 7, CH ₃), 4.05(C ₆ -OCH ₃) 7, CH ₃), 3.77(C ₉ -OCH ₃)	NOE H-4 and H-6 (3%) * H-4 and CH ₃ (2%) H-4 and H-6 (4%) H-4 and H-6 (5%) H-4 and C ₆ -CH ₃ (4%) * * H-4 and H-6 (6%)
2a 2b 2c 2d 2d' 2f 2g 2i 2i 2k 2i 2'a' 2'a' 2'a' 2'a'	OCH2 4.42(q, 4.42(q, 4.43(q, 4.43(q, 4.43(q, 4.43(q, 4.44(q, 4.42(q, 4	7.1) 7.1) 7.1) 7.1) 1.4.44(dq, 10.5, 7.1) 4.43(dq, 10.5, 7.1) 4.43(dq, 10.5, 7.1) 7.1) 7.1) 7.1) 1.4.46(dq, 10.5, 7.1) 1.4.45(dq, 10.5, 7.1) 1.4.45(dq, 10.5, 7.1) 7.1)	CH_3 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.41(t, 7.1) 1.41(t, 7.1) 1.41(t, 7.1) 1.41(t, 7.1) 1.43(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.42(t, 7.	- 3.75(CH ₃ (1.88(d, 1.3 - 1.93(d, 1.3 - 1.83(q, 1.0 1.91(q, 1.0 3.78(C ₇ -O 3.74(C ₆ -O	D) 5, CH ₃) 6, CH ₃) 7, C ₆ -CH ₃), 7, C ₇ -CH ₃) 7, CH ₃), 4.05(C ₆ -OCH ₃) 7, CH ₃), 3.77(C ₉ -OCH ₃)	NOE H-4 and H-6 (3%) * H-4 and CH ₃ (2%) H-4 and H-6 (4%) H-4 and H-6 (5%) H-4 and C ₆ -CH ₃ (4%) * * H-4 and H-6 (6%)
2a 2b 2c 2d 2d' 2f 2g 2i 2j 2k 2l 2l' 2'a' 2'd 2'e	OCH2 4.42(q, 4.42(q, 4.43(q, 4.43(q, 4.43(q, 4.43(q, 4.44(q, 4.42 and 4.42(q,	7.1) 7.1) 7.1) 7.1) 1.4.44(dq, 10.5, 7.1) 1.4.43(dq, 10.5, 7.1) 1.4.46(dq, 10.5, 7.1) 1.4.46(dq, 10.5, 7.1) 1.4.45(dq, 10.5, 7.1) 1.4.45(dq, 10.5, 7.1) 1.1) 7.1)	CH_{3} 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.41(t, 7.1) 1.41(t, 7.1) 1.41(t, 7.1) 1.41(t, 7.1) 1.43(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.42(t, 7.1) 1.42(t, 7.1) 1.42(t, 7.1) 1.41(t, 7.1) 1.41(t, 7.1) 1.41(t, 7.1)	- 3.75(CH ₃ (1.88(d, 1.3 - 1.93(d, 1.3 - 1.83(q, 1.0 1.91(q, 1.0 3.78(C ₇ -O 3.74(C ₆ -O	D) 5, CH ₃) 6, CH ₃) 7, C ₆ -CH ₃), 7, C ₇ -CH ₃) 7, CH ₃), 4.05(C ₆ -OCH ₃) 7, CH ₃), 3.77(C ₉ -OCH ₃)	NOE H-4 and H-6 (3%) * H-4 and CH ₃ (2%) H-4 and H-6 (4%) H-4 and H-6 (5%) * * H-4 and H-6 (6%)
2a 2b 2c 2d 2d' 2f 2g 2i 2j 2k 2l 2l' 2'a' 2'a' 2'd 2'e 2'd'	OCH2 4.42(q, 4.43(q, 4.43(q, 4.43(q, 4.43(q, 4.43(q, 4.43(q, 4.42(q, 4.42(q, 4.42(q, 4.42(q, 4.42(q, 4.42(q, 4.42(q, 4.42(q, 4.42(q, 4.42(q, 4.44(q, 4.44(q, 4.44(q, 4.44(q, 4.44(q, 4.44(q, 4.44(q, 4.44(q, 4.44(q, 4.44(q, 4.44(q, 4.44(q, 4.44(q, 4.44(q, 4.44(q, 4.44(q, 4.44(q, 4.44(q, 4.44(q, 4.42(q, 4	7.1) 7.1) 7.1) 7.1) 14.44(dq, 10.5, 7.1) 14.43(dq, 10.5, 7.1) 14.43(dq, 10.5, 7.1) 14.46(dq, 10.5, 7.1) 14.46(dq, 10.5, 7.1) 14.45(dq, 10.5, 7.1) 14.45(dq, 10.5, 7.1) 7.1) 7.1) 7.1) 7.1) 7.1)	CH_3 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.41(t, 7.1) 1.41(t, 7.1) 1.41(t, 7.1) 1.43(t, 7.1) 1.43(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.40(t, 7.1) 1.42(t, 7.1) 1.42(t, 7.1) 1.41(t, 7.1) 1.41(t, 7.1) 1.41(t, 7.1) 1.42(t, 7.	- 3.75(CH ₃ (1.88(d, 1.3 - 1.93(d, 1.3 - 1.83(q, 1.0 1.91(q, 1.0 3.78(C ₇ -O 3.74(C ₆ -O	D) 5, CH ₃) 6, CH ₃) 7, C ₆ -CH ₃), 7, C ₇ -CH ₃) 7, CH ₃), 4.05(C ₆ -OCH ₃) 7, CH ₃), 3.77(C ₉ -OCH ₃)	NOE H-4 and H-6 (3%) * H-4 and CH ₃ (2%) H-4 and H-6 (4%) H-4 and H-6 (5%) H-4 and C ₆ -CH ₃ (4%) * * H-4 and H-6 (6%)

Table 3 ¹H NMR data (δ , in CDCl₃) for 2

Copling constants(Hz) in parenthesis *) Scheme 3

Experimental

Melting points (uncorrected) were determined on a Yamatokagaku MP-1 apparatus. Mass spectra were obtained on JEOL JMS-AX505HA mass spectrometer. NMR spectra were recorded on Varian VXR-300 or XL-400 spectrometer. Infrared spectra were determined on a JASCO IR-810 spectrometer. Ethyl nitroacetate is commercially available (Fluka AG), but expensive. Therefore, it has been prepared.¹¹ 4-Methoxy-2-methylbenzaldehyde, 2-chloro-4-methoxybenzaldehyde, 2-bromo-4-methoxybenzaldehyde, 2,6-dichloro-4-methoxybenzaldehyde, 2,6-dichloro-4-methoxybenzaldehyde, 10-methyl-9-anthraldehyde were prepared by reaction of the corresponding arene with dichloromethyl methyl ether. Ethyl 3-(4'-methoxyphenyl)-2-nitroacrylate (**1a**),¹² ethyl 3-(3',4'-dimethoxyphenyl)-2-nitroacrylate (**1b**),¹³ ethyl 3-(2',4',6'-trimethoxyphenyl)-2-nitroacrylate¹⁴ were reported.

General procedure for the synthesis of ethyl 3-aryl-2-nitroacrylates (1b-1g, 1i-1n)

Ethyl 3-aryl-2-nitroacrylates were prepared by the procedure of Dornow et al.¹⁵ The reaction gave a mixture of Z and E isomers. The two isomers were separated by column chromatography followed by fractional recrystallization (1d, 1e, 1l, 1m and 1n). Structural assignments were attempted on the basis of the work of

Watarai¹⁶or Babievskii.¹⁷ The spectra data of 1b - 1g, 1i - 1n are as follows.

Ethyl 3-(2',4'-dimethoxyphenyl)-2-nitroacrylate (1b) : Yield 64%. A 3:1 mixture of Z and E isomer: Mp 88.0 - 90.0°C (benzene-ligroin). IR(KBr, cm⁻¹): 1730(ester CO), 1540(NO₂), 1380 and 1330 (NO₂). ¹H NMR(300MHz, CDCl₃, δ): Z isomer; 1.35(3H, t, J =7.0Hz, CH₃), 3.84 and 3.85(3H, s, each CH₃O), 4.35(2H, q, J =7.1Hz, OCH₂), 6.43(1H, d, J =2.2Hz, H-3'), 6.47 (1H, dd, J = 8.5 and 2.2Hz, H-5'), 7.28(1H, d, J =8.5Hz, H-6'), 7.89 (1H, s, H-3); E isomer 1.35(3H, t, J =7.0Hz, CH₃), 3.86 and 3.87(3H, s, each CH₃O), 4.40(2H, q, J =7.1Hz, OCH₂), 6.44 (1H, d, J =2.2Hz, H-3'), 6.50(1H, dd, J = 8.5 and 2.2Hz, H-5'), 7.37(1H, d, J =8.5Hz, H-6'), 8.42 (1H, s, H-3). ¹³C NMR(100MHz, CDCl₃, δ); Z-isomer 14.5(CH₃), 55.9(2 x CH₃O), 62.9(OCH₂), 98.7(C-3'), 106.4(C-5'), 111.5, 128.4(C-3), 130.9(C-6'), 138.6, 160.3, 160.7, 164.9; E-isomer; 13.8(CH₃), 55.6 and 55.7(CH₃O), 62.6(OCH₂), 98.3(C-3'), 106.2(C-5'), 111.1, 131.7(C-6'), 132.2(C-3), 139.8, 161.0, 162.1, 165.1. MS(*mlz*, rel.%): 281(M⁺, 61), 162(100). Anal. Found: C 55.57, H 5.39, N 4.87. Calcd for C₁₁H₁₃NO₆: C 55.51, H 5.38, N 4.98.

Ethyl 3-(4'-methoxy-2'-methylphenyl)-2-nitroacrylate (1c) : Yield 28%. Z isomer : Mp 77-79 $^{\circ}$ (dichloromethane-hexane). IR(KBr, cm⁻¹): 1700(ester CO), 1535 and 1375(NO₂). ¹H NMR(300MHz, CDCl₃, δ): 1.35(3H, t, J =7.0Hz, CH₃), 2.41(3H, s, CH₃), 3.81(3H, s, CH₃O), 4.37(2H, q, J =7.1Hz, OCH₂), 6.72(1H, dd, J =9.0 and 2.5Hz, H-5'), 6.78(1H, d, J = 2.5Hz, H-3'), 7.29(1H, d, J =9.0 Hz, H-6'), 7.72(1H, s, H-3). ¹³C NMR(100MHz, CDCl₃, δ):14.1(CH₃), 20.2(CH₃), 55.3(CH₃O), 62.8(OCH₂), 112.3(C-5'), 116.6(C-3'), 120.8, 129.4(C-6'), 130.9(C-3), 139.8, 141.2, 159.5, 162.2. HRMS: *m/z*, 265.0952, Calcd for C₁₃H₁₅NO₅ : M, 265.0950.

Ethyl 3-(2'-chloro-4'-methoxyphenyl)-2-nitroacrylate (1d) : Yield 83%(E:Z = 1:1): MS(*m*/*z*, rel%): 287/285 (M⁺, 18/52), 222(100). HRMS :*m*/*z*, 287.0377/285.0399, Calcd for C₁₂H₁₂NO₅Cl : M+2/M, 287.0375/285.0404. Z isomer : Mp 78-80 °C (dichloromethane-hexane). IR(KBr, cm⁻¹) : 1720(ester CO), 1540 and 1370(NO₂). ¹H NMR(300 MHz, CDCl₃, δ) : 1.36(3H, t, *J*=7.1Hz, CH₃), 3.83(3H, s, CH₃O), 4.38(2H, q, *J*=7.0Hz, OCH₂), 6.80 (1H, dd, *J*=9.0 and 2.5 Hz, H-5'), 7.00(1H, d, *J*=2.5 Hz, H-3'), 7.34(1H, d, *J*=9.0 Hz, H-6'), 7.89(1H, s, H-3). ¹³C NMR(75MHz, CDCl₃, δ) : 1.40 (CH₃), 55.8(CH₃O), 63.0(OCH₂), 113.9(C-5'), 115.8(C-3'), 119.9, 128.9(C-3), 130.0(C-6'), 137.2, 140.4, 159.1, 162.7. *E* isomer : oil. IR(film, cm⁻¹); 1740(ester CO), 1540 and 1330(NO₂). ¹H NMR(300MHz, CDCl₃, δ) : 1.32(3H, t, *J*=7.0Hz, CH₃), 3.85(3H, s, CH₃O), 4.40(2H, q, J=7.0 Hz, OCH₂), 6.82(1H, dd, *J*=9.0 and 2.5 Hz, H-5'), 7.03(1H, d, *J*=2.5 Hz, H-3'), 7.45(1H, d, *J*=9.0 Hz, H-6'), 8.41(1H, s, C-3). ¹³C NMR(75MHz, CDCl₃, δ):13.8(CH₃), 55.8(CH₃O), 63.0(OCH₂), 113.8(C-2'), 115.7 (C-3'), 119.9, 130.9(C-6'), 132.9(C-3), 138.2, 140.4, 161.1, 163.1.

Ethyl 3-(2'-bromo-4'-methoxyphenyl)-2-nitroacrylate (1e): Yield 82% (E:Z=1:1). Z isomer : Mp 77.0-79.0 °C(ethyl acetate-hexane). IR(KBr, cm⁻¹) : 1710(ester CO), 1535 and 1370(NO₂). ¹H NMR(300MHz, CDCl₃, δ) : 1.35(3H, t, J=7.1Hz, CH₃), 3.81(3H, s, CH₃O), 4.37(2H, q, J=7.1Hz, OCH₂), 6.82(1H, dd, J=9.0 and 3.0Hz, H-5'), 7.18(1H, d, J=3.0Hz, H-3'), 7.30(1H, d, J=9.0Hz, H-6'), 7.83(1H, s, CH). ¹³C NMR(100MHz, CDCl₃, δ) : 14.0(CH₃), 55.7(CH₃O), 63.0(OCH₂), 114.2(C-5'), 119.0(C-3'), 121.7(C-2'), 127.0(C-1'), 130.0(C-6'), 131.5(C-3), 140.6(C-2), 159.0(COO), 162.4(C-4'). MS(*m*/z, rel%): 331/329(M⁺, 45/44), 222(100). Anal. Found : C 43.62, H 3.74, N 4.14, Br 24.20. Calcd for C₁₂H₁₂BrNO₅ : C 43.66, H 3.66, N 4.24, Br 24.20. *E* isomer : oil. IR(film, cm⁻¹) : 1740 (ester CO), 1540 and 1330(NO₂). ¹H NMR(300MHz, CDCl₃, δ) : 1.30(3H, t, J=7.0Hz, CH₃), 3.84(3H, s, CH₃O), 4.38(2H, q, J=7.1Hz, OCH₂), 6.86(1H, dd, J=9.0 and 3.0Hz, H-5'), 7.21(1H, d, J=3.0Hz, H-3'), 7.42(1H, d, J=9.0Hz, H-6'), 8.35(1H, s, CH). ¹³C NMR(100MHz, CDCl₃, δ) : 13.7(CH₃), 55.8(CH₃O), 63.0 (OCH₂), 114.1(C-5'), 119.0 (C-3'), 121.5(C-2'), 128.0(C-1'), 130.9(C-6'), 135.3(C-3), 141.7(C-2), 160.9(COO), 162.8(C-4'). HRMS: m/z, 330.9921/328.9903. Calcd for C₁₂H₁₂BrNO₅ : M+2/M, 330.9878/328.9899.

Ethyl 3-(4'-methoxy-3'-methylphenyl)-2-nitroacrylate (1f) : Yield 64%. Z isomer : Mp 114.0-115.5 $^{\circ}$ C (benzene-hexane). IR(KBr, cm⁻¹): 1720(ester CO), 1540 and 1385(NO₂). ¹H NMR(300MHz, CDCl₃, δ): 1.35(3H, t, J =7.0Hz, CH₃), 2.19(3H, s, CH₃), 3.87(3H, s, CH₃O), 4.35(2H, q, J =7.1Hz, OCH₂), 6.83(1H, d, J =8.5Hz, H-5'), 7.20(1H, dd, J = 2.2 and 0.5Hz, H-2'), 7.29(1H, dd, J =8.5 and 2.2Hz, H-6'), 7.43(1H, s, H-3). ¹³C NMR (100MHz, CDCl₃, δ):14.1(CH₃), 16.1(CH₃), 55.5(CH₃O), 62.7(OCH₂), 110.4(C-5'), 120.9, 128.0, 130.1(C-6'), 132.4(C-2'), 132.9(C-3), 137.9, 159.7(COO), 161.2(C-4'). Anal. Found: C 58.58, H 5.68, N 5.24. Calcd for C₁₃H₁₅NO₄: C 58.86, H 5.71, N 5.28.

Ethyl 3-(3'-bromo-4'-methoxyphenyl)-2-nitroacrylate (1g) : Yield 87%. Z isomer : Mp 142.6-144.3 $^{\circ}$ C (toluene-hexane). IR(KBr, cm⁻¹):1715(ester CO), 1530 and 1365(NO₂). ¹H NMR(300MHz, CDCl₃, δ): 1.35(3H, t, J = 7.0Hz, CH₃), 3.94(3H, s, CH₃O), 4.37(2H, q, J = 7.5 and 3.5Hz, CH₂), 6.91(1H, d, J = 8.5Hz, H-5'), 7.37 (1H, dd, J = 8.5 and 2.5Hz, H-6'), 7.39(1H, s, CH), 7.62(1H, d, J = 2.5Hz, H-2'). ¹³C NMR(100MHz, CDCl₃, δ); 14.0(CH₃), 56.5(CH₃O), 63.0(OCH₂), 112.2(C-5'), 112.6(C-3'), 122.6(C-1'), 130.4(C-6'), 131.1(C-3), 135.3(C-2'), 139.2(C-2), 158.9(COO), 159.2(C-4'). MS(m/z, rel%) : 331/329(M⁺, 90/89), 212(100). Anal. Found: C 43.49, H 3.59, N 4.25, Br 24.15. Calcd for C₁₂H₁₂BrNO₅ : C 43.66, H 3.66, N 4.24, Br 24.20.

Ethyl 3-(4'-methoxy-2',3'-dimethylphenyl)-2-nitroacrylate (1i) : Yield 35%. A 4:9 mixture of Z and E isomer : Mp 75-76°C (dichloromethane-hexane). IR(KBr, cm⁻¹) : 1730 (ester CO), 1530, 1330 and 1305(NO₂). ¹H NMR (300MHz, CDCl³, δ) : Z isomer ; 1.36(3H, t, J=7.0Hz, CH₃), 2.16(3H, s, C₃-CH₃), 2.30(3H, C₂-CH₃), 3.82(3H, s, CH₃), 4.37(2H, q, J=7.0Hz, OCH₂), 6.69(1H, d, J=8.2Hz, H-5'), 7.18(1H, d, J=8.2Hz, H-6'), 7.82(1H, s, H-3); E isomer ; 1.30(3H, t, J=7.1Hz, CH₃), 2.18(3H, s, C₃-CH₃), 2.34(C₂-CH₃), 3.85(3H, s, CH₃), 4.36(2H, q, J=7.1Hz, CH₂), 6.72(1H, d, J=8.2Hz, H-5'), 7.28(1H, d, J=8.2Hz, H-6'), 8.38(1H, s, H-3). ¹³C NMR(100MHz, CDCl₃, δ) : Z isomer ; 11.8(C₃-CH₃), 14.0(ester CH₃), 16.4(C₂-CH₃), 55.5(CH₃O), 62.7(OCH₂), 108.2(C-5'), 121.1(C-1'), 126.1, 126.4(C-6'), 133.1(C-3), 138.2, 140.6(C-2), 160.0, 160.6; E isomer; 11.8(C₃-CH₃), 13.7(ester CH₃), 16.4(C₂-CH₃), 55.5(CH₃O), 62.7(OCH₂), 136.4(C-3), 139.4, 141.1(C-2), 159.4, 161.5. MS(m/z, rel%) : 279(M', 100). HRMS : m/z, 279.1097 Calcd for C₁₄H₁₇NO₅ : M, 279.1107.

Ethyl 3-(2',3',4'-trimethoxyphenyl)-2-nitroacrylate (1j) : Yield 78% (E:Z=1:1). Z isomer : Mp 69.5 °C (toluene-hexane). IR(KBr,cm⁻¹); 1720(ester CO), 1520 and 1380(NO₂) ⁻¹H NMR(300MHz, CDCl₃, δ) : 1.35(3H, t, J=7.1Hz, CH₃), 3.85(3H, s, C_3 -OCH₃), 3.89(3H, s, C_4 -OCH₃), 3.95(3H, s, C_2 -OCH₃), 4.36(2H, q, J=7.1Hz, CH₂), 6.65(1H, s, J=9.0Hz, H-5'), 7.09 (1H, s, J=9.0Hz, H-6'), 7.83(1H, s, H-3). ⁻¹³C NMR(100MHz, CDCl₃, δ) : 14.1(CH₃), 56.1(C₄-OCH₃), 60.9(C₃-OCH₃), 61.9(C₂-OCH₃), 62.7 (OCH₂), 107.8(C-5'), 116.0(C-1'), 124.0(C-6'), 127.8(C-3), 139.2(C-2), 142.0, 153.9, 157.3, 159.6 (COO). MS(m/z, rel%): 311(M⁺, 100). HRMS:m/z, 311.1018, Calcd for C₁₄ H₁₇O₇N : M, 311.1005. *E* isomer from the mixture of *E* and *Z* isomer : ⁻¹H NMR (300MHz, CDCl₃, δ); 1.34(3H, t, J=7.0Hz, CH₃), 3.85(3H, s, C₃-CH₃O), 3.91(3H, s, C₂-CH₄O), 3.94(3H, s, C₂-OCH₃), 4.40(2H, q, J=7.0Hz, CH₂), 6.69(1H, s, J=8.0Hz, H-5'), 7.19 (1H, s, J=8.0Hz, H-6'), 8.30(1H, s, H-3). ⁻¹³C NMR(100MHz, CDCl₃, δ); 13.8(CH₃), 56.2(C₄-OCH₃), 60.9(C₃-OCH₃), 61.9(C₂-OCH₃), 61.9(C₂-OCH₃), 62.7(OCH₂), 107.7(C-5'), 116.0(C-1'), 125.6(C-6'), 132.1(C-3), 140.9(C-2), 142.2, 154.3, 157.7, 161.7(COO).

Ethyl 3-(2',4',5'-trimethoxyphenyl)-2-nitroacrylate (1k): Yield 46%(E:Z=1:7). Z isomer: Mp 93.4-94.8°C (toluene-hexane). IR(KBr,cm⁻¹): 1730(ester CO), 1520 and 1320(NO₂). ¹H NMR(300MHz, CDCl₃, δ): 1.34(3H,

t, J = 7.0Hz, CH₃), 3.77 (3H, s, C₅-CH₃O), 3.87 (3H, s, C₂-CH₃O), 3.93(3H, s, C₄-CH₃O), 4.35(2H, q, J = 7.1Hz, CH₂), 6.47(1H, s, H-3'), 6.80 (1H, s, H-6'), 7.92(1H, s, H-3). ¹³C NMR(100MHz, CDCl₃, δ): 14.1(CH₃), 56.1(C₄-CH₃O), 56.2(C₂-CH₃O), 56.3(C₅-CH₃O), 62.5(OCH₂), 96.2(C-3'), 109.3 (C-1'), 110.6(C-6'), 127.3(C-3), 138.0(C-2), 143.4(C-5'), 154.1(C-4'), 155.1(C-2'), 160.0 (COO). MS(*mlz*, rel%) : 311(M⁺, 100). Anal. Found : C 53.75, H 5.46, N 4.50. Calcd for C₁₄H₁₇NO₇ : C 54.01, H 5.50, N 4.50. *E* isomer from the mixture of *E* and *Z* isomer : ¹H NMR (300MHz, CDCl₃, δ); 1.35(3H, t, J = 7.0Hz, CH₃), 3.79(3H, s, C₅-CH₃O), 3.89(3H, s, C₂-CH₃O), 3.95(3H, s, C₄-CH₃O), 4.40(2H, q, J = 7.1Hz, CH₂), 6.48(1H, s, H-3'), 6.96 (1H, s, H-6'), 8.47(1H, s, H-3). ¹³C NMR(100MHz, CDCl₃, δ); 13.5(CH₃), 56.1(C₄-CH₃O), 56.3(C₂-CH₃O), 56.3(C₅-CH₃O), 62.7(OCH₂), 96.1(C-3'), 109.2(C-1'), 111.7(C-6'), 131.9(C-3), 139.4(C-2), 143.3(C-5'), 154.8(C-4'), 156.01(C-2'), 162.3(COO).

Ethyl 3-(2',6'-dichloro-4'-methoxyphenyl)-2-nitroacrylate (11) : Yield 76%(E:Z=5:2). Z isomer : Mp 75.0°C (toluene-hexane). IR(KBr, cm⁻¹) : 1730(ester CO), 1540 and 1370(NO₂). ¹H NMR(300MHz, CDCl₃, δ) : 1.39 (3H, t, J=7.0Hz, CH₃), 3.81(3H, s, CH₃O), 4.41(2H, q, J=7.0Hz, CH₂), 6.85(2H, s, H-3' and H-5'), 7.63(1H, s, H-3). ¹³C NMR (100MHz, CDCl₃, δ); 14.0(CH₃), 55.9(CH₃O), 63.3(CH₂), 114.4(C-3' and C-5'), 120.5, 131.7(C-3), 134.7(C-2' and 6'), 145.1, 158.7, 161.0. HRMS : *m/z*, 320.9998/ 318.9995. Calcd for C ₁₂H₁₁NO₅Cl₂ : M+2/M, 320.9987/ 319.0014. *E* isomer : Mp 123-125 °C (ethyl acetate -hexane). IR(KBr, cm⁻¹) : 1745(ester CO), 1540 and 1340(NO₂). ¹H NMR(300MHz, CDCl₃, δ) : 1.18(3H, t, J=7.0Hz, CH₃), 3.84(3H, s, CH₃O), 4.26(2H, q, J=7.0Hz, CH₂), 6.93(2H, s, H-3' and H-5'), 7.92(1H, s, H-3). ¹³C NMR(100MHz, CDCl₃, δ) : 13.6(CH₃), 56.0(CH₃O), 62.8(CH₂), 114.4(C-3' and C-5'), 120.9, 134.0(C-3), 135.1(C-2' and 6'), 146.1, 159.1, 161.2. MS(*m*/z, rel%); 321/319(M⁺, 6/9), 258/256(100/31). HRFABMS: *m*/z, 322.0047/ 320.0079 Calcd for C₁₂H₁₃NO₅Cl₂ : MH⁺+2/MH⁺, 322.0065/ 320.0093.

Ethyl 3-(4'-methoxy-1'-naphthyl)-2-nitroacrylate (1m) : Yield 66%(E : Z = 1:7). Z isomer : Mp 92.5-93.0°C (ethyl ether-petroleum ether). IR(KBr, cm⁻¹) : 1730(ester CO), 1540 and 1370(NO₂). ¹H NMR(300MHz, CDCl₃, δ) : 1.40(3H, t, *J*=7.1Hz, CH₃), 4.03(3H, s, CH₃O), 4.43(2H, q, *J*=7.1Hz, OCH₂), 6.80(1H, d, *J*=8.0Hz, H-3'), 7.56(1H, m, H-6'), 7.59(1H, dd, *J*=8.0 and 1.0Hz, H-2'), 7.64(1H, td, *J*=8.0 and 1.7Hz, H-7'), 7.95(1H, d, *J*=8.0Hz, H-8'), 8.27(1H, s, H-3), 8.33(1H, dd, *J*=8.0 and 1.5Hz, H-5'). ¹³C NMR (100MHz, CDCl₃, δ) : 14.1(CH₃), 55.7(CH₃O), 62.9(OCH₂), 104.0(C-3'), 118.4(C-4a'), 122.8(C-8'), 122.9(C-5'), 125.5, 126.0(C-6'), 128.1(C-7'), 128.3(C-2'), 131.1(C-3), 132.5, 141.2(C-2), 158.6(COO), 159.4(C-4'). Anal. Found : C 63.56, H 4.97, N 4.58. Calcd for C₁₆H₁₅NO₅ : C 63.78, H 5.02, N 4.65. *E* isomer : Mp 90.5-92.5°C(ethyl ether-petroleum ether). IR(KBr, cm⁻¹) : 1730(ester CO), 1520 and 1330(NO₂). ¹H NMR(300MHz, CDCl₃, δ) : 1.28(3H, t, *J*=7.1Hz, CH₃), 4.06(3H, s, CH₃O), 4.37(2H, q, *J*=7.1Hz, OCH₂), 6.83(1H, d, *J*=8.0Hz, H-3'), 7.57(1H, m, H-6'), 7.64(1H, m, H-7'), 7.69(1H, dd, *J*=8.0 and 1.0Hz, H-2'), 8.00(1H, d, *J*=8.0Hz, H-3'), 8.35(1H, dd, *J*=8.0 and 1.5Hz, H-5'), 8.72(1H, s, H-3). ¹³C NMR (100 MHz, CDCl₃, δ) : 1.28(3H, t, *J*=7.1Hz, CH₃), 4.06(2H, s, H-3). ¹³C NMR (100 MHz, CDCl₃, δ) : 13.7(CH₃), 55.8(CH₃O), 62.8(OCH₂), 103.6(C-3'), 118.4(C-4a'), 123.0(C-6'), 123.0(C-5'), 125.6, 126.2(C-6'), 128.3(C-7'), 129.5(C-2'), 132.9, 134.6(C-3), 141.2(C-2), 159.3(COO), 161.5(C-4'). Anal. Found: C 64.05, H 5.07, N 4.79.

Ethyl 3-(10'-methoxy-9'-anthryl)-2-nitroacrylate (1n) : Yield 21%(E : Z = 7:6). Z isomer : Mp 127.0-128.0 °C (ethyl ether). IR(KBr, cm⁻¹) : 1720(ester CO), 1540 and 1370(NO₂). ¹H NMR(300MHz, CDCl₃, δ) : 1.35(3H, t, J=7.0Hz, CH₃), 4.16(3H, s, CH₃O), 4.51(2H, q, J=7.0Hz, OCH₂), 7.52(2H, dd, J=8.5 and 6.5Hz, H-3' and H-6'), 7.56(2H, m, H-2' and H-7'), 7.92-7.97(2H, m, H-1' and H-8'), 8.32-8.36(2H, m, H-4' and H-5'), 8.50(1H, s, H-3). ¹³C NMR (100MHz, CDCl₃, δ) : 14.1(CH₃), 63.4(OCH₂), 63.6(CH₃O), 118.7(C-4a' and C-10a'), 123.0(C-4' and C-5'), 124.1(2C), 125.0(C-1' and C-8'), 125.5(C-3' and C-6'), 127.1(C-2' and C-7'), 129.7(C-9'), 134.6(C-3),

146.3(C-2), 154.7(C-10'), 158.6(COO). Anal. Found : C 68.37, H 4.88, N 3.99. Calcd for $C_{20}H_{17}NO_5$: C 68.30, H 4.85, N 3.86. *E* isomer : oil. IR(film, cm⁻¹) : 1740(ester CO), 1540 and 1335(NO₂). ¹H NMR(300MHz, CDCl₃, δ) : 0.56(3H, t, *J*=7.1Hz, CH₃), 3.83(2H, q, *J*=7.0Hz, OCH₂), 4.18(3H, s, CH₃O), 7.54(2H, td, *J*=6.5 and 2.0Hz, H-3' and H-6'), 7.58(2H, td, *J*=6.5 and 2.0Hz, H-2' and H-7'), 7.95-8.01(2H, m, H-1' and H-8'), 8.35-8.39(2H, m, H-4' and H-5'), 8.91(1H, s, H-3). ¹³C NMR (100MHz, CDCl₃, δ) : 12.9(CH₃), 62.3(OCH₂), 63.7(CH₃O), 119.1(C-4a' and C-10a'), 123.0(C-4' and C-5'), 124.1(2C), 124.9(C-1' and C-8'), 125.5(C-3' and C-6'), 127.3(C-2' and C-7'), 130.2(C-9'), 136.8(C-3), 146.5(C-2), 155.1(C-10'), 159.5(COO). Anal. Found : C 68.53, H 4.96, N 3.70.

General procedure for the synthesis of spiroisoxazolines (2)

Titanium tetrachloride(0.22 ml, 2 mmol) was added to a solution of 1a - 1g, 1j - 1n (1 mmol) in dichloromethane (20 ml) at 0 °C. The reaction mixture was stirred during two hours. Water (20 ml) was added and resulting solution was exracted with dichloromethane (3 x 40 ml), washed with water (3 x 60 ml), dried oved Na₂SO₄, and evaporated. The residue was chromatographed on silica gel (toluene \rightarrow toluene: ethyl acetate 10:1 gradient) to give 2a - 2g, 2i - 2n. ¹H and ¹³C NMR data for 2a - 2g, 2i - 2l is listed in Table 2 and 3.

Ethyl 4-chloro-8-oxo-1-oxa-2-azaspiro[4,5]deca-2,6,9-triene-3-carboxylate (2a), and Ethyl 4,2',4"-trichloro-4',4"-dioxodispiro[isoxazole-5(4H),1'-3',2":5',6":6',3"-bicyclohexane-1",5"'(4"'H)-isoxazole]-3,3"'dicarboxylate (5). (1)Reaction in 20 ml of dichloromethane : A solution of hexane and ethyl acetate (8:1) was added to the crude product obtained from 1a. The precipitates were filtered to give 5 (76 mg, 28%). Evaporation of the filtrate gave a residue, which was chromatographed on silica gel(toluene: ethyl acetate 10:1) to give 1a (10 mg, 4%) and 2a (120 mg, 47%). (2)Reaction in 50 ml of dichloromethane: The crude product was chromatographed on silica gel(toluene: ethyl acetate 10:1) to give 2-hydroxy-4-methoxybenzaldehyde (4a) (18 mg, 12%), 1a (31 mg, 12%) and 2a (147 mg, 58%). 2a : Mp 62.0-64.0°C. IR(KBr, cm⁻¹) : 1730 (ester CO), 1675(CO). MS(m/z, rel%) : 257/255(M⁺, 0.8/2.1), 142/140(M⁺-115, 34/100). Anal. Found : C 51.86, H 4.00, N 5.45, Cl 14.07, Calcd for $C_{11}H_{10}NO_4Cl$: C 51.68, H 3.64, N 5.48, Cl 13.87. 5 : Mp 206-210 ℃ (dichloromethane-methanol). ¹H NMR(400MHz, CDCl₁, δ) : 1.37 and 1.38(each 3H, t, J=7.0Hz, CH₁), 2.76(1H, dd, J=5.5 and 1.8Hz, H-3'), 2.77(1H, dd, J=18.8 and 1.8Hz, H-5"), 3.03(1H, ddd, J=6.5, 5.5 and 1.8Hz, H-2"), 3.15(1H, ddd, J=6.5, 4.0 and 1.8Hz, H-6"), 3.17(1H, d, J=6.5Hz, H-6'), 3.19(1H, d, J=6.5Hz, H-3"), 3.28(1H, dd, J=18.8 and 4.0Hz, H-5"), 3.38(1H, t, J=6.5Hz, H-5'), 4.39(2H, q, J=7.1Hz, OCH₂), 4.38 and 4.40(each 1H, dq, J=10.5 and 7.1Hz, OCH), 4.51(1H, d, J=1.8Hz, H-2'), 4.85(1H, s, H-4'''), 5.60(1H, s, H-4). ¹³C NMR (100MHz, $CDCl_3$, δ) : 14.0(2 x CH₃), 37.0(C-6"), 38.2(C-5"), 40.9(C-3"), 41.4(C-6'), 41.6(C-2"), 45.1(C-5'), 50.8(C-3'), 41.4(C-6'), 41.4(C-59.8(C-4''), 60.9(C-4), 62.0(C-2'), 63.0 and 63.3(OCH₂), 91.0(C-5), 91.7(C-5''), 152.8(C-3), 154.4(C-3'''), 157.3 and 157.8(COO), 205.6(C-4'), 206.8(C-4"). FABMS : m/z, 573.0256/571.0207/569.0305 Calcd for $C_{22}H_{21}N_2O_8Cl_3Na$: MNa⁺+4/MNa⁺+2/MNa⁺ 573.0214/ 571.0236/ 569.0261.

(4α,5β)-Ethyl 4-chloro-6-methoxy-8-oxo-1-oxa-2-azaspiro[4,5]deca-2,6,9-triene-3-carboxylate (2b), and 4-chloro-8-methoxy-6-oxo-1-oxa-2-azaspiro[4,5]deca-2,7,9-triene-3-carboxylate (6b). The crude product was chromatographed on silica gel (toluene: ethyl acetate 10:1) to give 1b (30 mg, 11%), 6b (9 mg, 3%) and 2b (153 mg, 54%). 2b : Mp 113.0-113.5 °C (benzene-hexane). IR(KBr, cm⁻¹); 1725 (ester CO), 1670(CO). MS(m/z, rel%); 287/285(M⁺, 4/12), 172/170(M⁺-115, 34/100). Anal; Found C 50.43, H 4.19, N 4.76, Cl 12.29, Calcd for C₁₂H₁₂NO₅Cl C 50.45, H 4.23, N 4.90, Cl 12.41. 6b : oil. IR(film, cm⁻¹) : 1730 (ester CO), 1660(CO). MS(m/z, rel%) : 287/285(M⁺, 1.9/7.0), 250(100), 172/170(M⁺-115, 12/34). HRFABMS : m/z, 288.0465/ 286.0487, Calcd for $C_{12}H_{13}NO_5Cl$: MH⁺+2/MH⁺, 288.0453/286.0482. ¹H NMR(400MHz, CDCl₃, δ) : 1.38(3H, t, *J*=7.0Hz, CH₃), 3.84(3H, s, OCH₃), 4.39(2H, q, *J*= 7.0Hz, OCH₂), 5.37(1H, d, *J*=2.0Hz, H-7), 5.51(1H, s, H-4), 6.35(1H, dd, *J*=10.0 and 2.0 Hz, H-9), 6.56 (1H, d, *J*=10.0Hz, H-10). ¹³C NMR (100MHz, CDCl₃, δ) : 14.0(CH₃), 56.6(OCH₃), 62.7(OCH₂), 64.2 (C-4), 87.0 (C-5), 96.8(C-7), 127.1(C-9), 133.8(C-10), 150.7(C-3), 158.0(COO), 170.7(C-8), 192.4(CO).

(4α,5β)-Ethyl 4-chloro-6-methyl-8-oxo-1-oxa-2-azaspiro[4,5]deca-2,6,9-triene-3-carboxylate (2c): Mp 86-87°C. IR(KBr, cm⁻¹) : 1735(ester CO), 1670(CO), 1640(CN). MS(m/z, rel%) : 271/269(M⁺, 8/24), 156/154(M⁺-115, 34/100). HRMS : m/z, 271.0427/269.0461 Calcd for $C_{12}H_{12}CINO_4$: M+2/M, 271.0430/ 269.0455.

(4α,5β)-Ethyl 4,6-dichloro-8-oxo-1-oxa-2-azaspiro[4,5]deca-2,6,9-triene-3-carboxylate (2d) : Mp 73.0-73.5 °C(ethanol). IR(film, cm⁻¹) : 1730(ester CO), 1670(CO). MS(m/z, rel%) : 291/289(M⁺, 17/25), 176/174(M⁺-115, 77/100). HRMS : m/z, 292.9854/ 290.9880/ 288.9897, Calcd for C₁₁H₉NO₄Cl₂ : M+4/M+2/M, 292.9857/ 290.9881/ 288.9909.

(4α,5β)-Ethyl 4-bromo-6-chloro-, 9-bromo-4,6-dichloro- and 4,9-dibromo-6-chloro-8-oxo-1-oxa-2-azaspiro[4,5]deca-2,6,9-triene-3-carboxylate (2'd, 2d' and 2'd'), The crude product obtained from 1e was chromatographed on silica gel (toluene: ethyl acetate 10:1) to give a mixture of 2d' and 2'd' (47.5 mg, 8% and 2%, respectively) and a mixture of 2d and 2'd (224 mg, 47% and 26%, respectively). 2'd from the mixture of 2d and 2'd : MS(m/z, rel%); 337/335/333(M⁺, 9/35/27), 222/220/218(M⁺-115, 27/100/77). HRMS: m/z, 336.9326/ 334.9373/ 332.9407, Calcd for C₁₁H₉NO₄BrCl : M+4/M+2/M, 336.9358/ 334.9382/ 332.9403. 2d': MS(m/z, rel%) : 371/369/367(M⁺, 9/21/13), 256/254/252(M⁺-115, 45/100/ 59), HRMS : m/z, 370.8966/ 368.9027/ 366.9048, Calcd for C₁₁H₈NO₄BrCl₂ : M+4/M+2/M, 370.8965/ 368.8990/ 366.9014 and 2'd' : MS(m/z, rel%): 415/413/411(M⁺, 11/15/8), 300/298/296(M⁺-115, 69/100/43). HRMS: m/z, 414.8445/ 412.8465/ 410.8522, Calcd for C₁₁H₈NO₄Br₂Cl : M+4/M+2/M, 414.8466/ 412.8487/ 410.8509.

(4α,5β)-Ethyl 4-chloro-7-methyl-8-oxo-1-oxa-2-azaspiro[4,5]deca-2,6,9-triene-3-carboxylate (2f) and (*E*)-Ethyl 3-chloro-3-(2'-chloro-4'-methoxy-5'-methylphenyl)-2-hydroxyiminopropionate (3f). A solution of hexane and ethyl acetate (8:1) was added to the crude product obtained from 1f. The precipitates were filtered to give 3f (74 mg, 24%). Evaporation of the filtrate gave a residue, which was chromatographed on silica gel (toluene:ethyl acetate 10:1) to give 2f (113 mg, 42%), and 2-hydroxy-4-methoxy-5-methylbenzaldehyde (4f)(23 mg, 14%). 2f : oil. IR(film, cm⁻¹) : 1735(ester CO), 1680(CO), 1655(CN). MS(*m*/*z*, rel%); 271/269(M⁺, 2/5), 156/154(M⁺-115, 35/100). HRMS : *m*/*z*, 271.0438/269.0485, Calcd for C₁₂H₁₂ClNO₄ : M+2/M, 271.0426/ 269.0455. 3f : Mp 125.0-125.5 °C(ethyl acetate-hexane). ¹H NMR (400MHz, CDCl₃, δ) : 1.29(3H, t, J=7.1Hz, ester CH₃), 2.21(3H, s, C₇-CH₃), 3.81(3H, s, OCH₃), 4.25 and 4.29(each 1H, dq, *J*=10.5 and 7.1Hz, OCH), 6.60(1H, s, H-3), 6.76(1H, s, H-3'), 7.73(1H, brs, H-6'), 9.88(1H, brs, OH). ¹³CNMR(100MHz, CDCl₃, δ) : 13.9(ester CH₃), 16.0(C₅-CH₃), 47.9(C-3), 55.6(OCH₃), 62.2(ester OCH₂), 110.6(C-3'), 124.6(C-1'), 125.6(C-5'), 130.1(C-2'), 132.3(C-6'), 148.4(C-2), 158.2(C-4'), 161.1(COO). IR(KBr, cm⁻¹) ; 3280(OH), 1745(ester CO), 1610(C=N). MS(*m*/*z*, rel%) : 321/ 319(M⁺, 21/27), 286/284 (69/100). HRFABMS : *m*/*z*, 321.0365/ 319.0372, Calcd for C₁₃H₁₅NO₄Cl₂ : M+2/M, 321.0351/ 319.0378.

 $(4\alpha, 5\beta)$ -Ethyl 7-bromo-4-chloro-8-oxo-1-oxa-2-azaspiro[4,5]-2,6,9-triene-3-carboxylate (2g) and (E)-Ethyl 3-chloro-3-(5'-bromo-2'-chloro-4'-methoxyphenyl)-2-hydroxyiminopropionate (3g). The same procedure as for **1f**, afforded **2g** (37 mg, 11 %), **3g** (239.5mg, 62%) and 5-bromo-2-hydroxy-4-methoxybenzaldehyde (**4g**)(39 mg, 17%). **2g**: oil. IR(film, cm⁻¹) : 1730(ester CO), 1680(CO). MS(*m/z*, rel%); 335/333(M⁺, 2/5), 220/218(M⁺-115, 73/100). HRFABMS : *m/z*, 359.9295/357.9279/355.9314, Calcd for C₁₁H₉NO₄BrClNa : MNa⁺+4/ MNa⁺+2/ MNa⁺, 359.9251/ 357.9281/ 355.9301. **3g** : Mp 119.0-120.0 °C (ethyl acetate-hexane). ¹H NMR (400MHz, CDCl₃, δ) : 1.31(3H, t, *J*=7.1Hz, ester CH₃), 3.89(3H, s, OCH₃), 4.26 and 4.30(each 1H, dq, *J*=3.5 and 7.1Hz, OCH), 6.55(1H, s, H-3), 6.84(1H, s, H-3'), 8.16(1H, s, H-6'). ¹³C NMR (100MHz, CDCl₃, δ) : 13.9(ester CH₃), 47.1(C-3), 56.6(OCH₃), 62.4 (ester OCH₂), 110.1(C-5'), 112.3(C-3'), 126.8(C-1'), 131.9(C-2'), 135.2(C-6'), 147.6(C-2), 156.3(C-4'), 160.9(COO). IR(KBr, cm⁻¹) : 3300(OH), 1740 (ester CO). MS(*m/z*, rel%) : 387/ 385/ 383 (M⁺, 0.8/1.5/ 0.6), 250/248(100/95). Anal. Found : C 37.44, H 3.17, N 3.64, Br 20.64, Cl 18.71, Calcd for C₁₂H₁₂NO₄Br Cl₂ : C 37.43, H 3.14, N 3.64, Br 20.75, Cl 18.41.

Ethyl 3-chloro-3-(2'-chloro-4',5'-dimethoxyphenyl)-2-hydroxyiminopropionate (3h). The same procedure as for 1f, afforded 3h, 2-hydroxy-4,5-dimethoxybenzaldehyde (4h)(77mg, 44%) and 1h (36mg, 13%). 3h could not be isolated. 3h in the crude product : ¹H NMR(400MHz, CDCl₃, δ); 1.28(3H, t, J=7.1Hz, CH₃), 3.85(3H, s, C₅-OCH₃), 3.91(3H, s, C₄-OCH₃), 4.24 and 4.28(each 1H, dq, J=10.5 and 7.1Hz, OCH), 6.62(1H, s, H-3), 6.89(1H, s, H-3'), 7.55(1H, s, H-6'). ¹³C NMR(100MHz, CDCl₃, δ); 13.9(ester CH₃), 48.1(C-3), 56.1(2 x OCH₃), 62.1(ester OCH₂), 111.8(C-3'), 113.4(C-6'), 123.8(C-1'), 125.3(C-2'), 147.7(C-4'), 148.4(C-2), 149.6(C-4'), 161.2(COO). HRFABMS : *m/z*, 337.0304/ 335.0349, Calcd for C₁₃H₁₅NO₅Cl₂ : M+2/M, 337.0300/ 335.0327.

(4α,5β)-Ethyl 4-chloro-6,7-dimethyl-8-oxo-1-oxa-2azaspiro[4,5]deca-2,6,9-triene-3-carboxylate (2i) : Mp 77.5-78.0 °C (dichloromethane-hexane). IR (film, cm⁻¹); 1730 (esterCO), 1675(CO) . MS(*m*/z, rel%): 285/283(M⁺, 4/12), 170/168(M⁺-115, 35/100). HRMS : *m*/z, 285.0592/283.0592, Calcd for C₁₃H₁₄NO₅Cl : M+2/M, 285.0587/283.0611.

(4α,5β)-Ethyl 4-chloro-6,7-dimethoxy-8-oxo-1-oxa-2-azaspiro[4,5]deca-2,6,9-triene-3-carboxylate (2j) : Mp 67.5-69.0 °C (dichloromethane-hexane). IR(KBr, cm⁻¹) : 1730 (ester CO), 1675(CO). MS(m/z, rel%) : 317 /315(M⁺, 17/46), 202/200(M⁺-115, 35/100). HRMS : m/z, 317.0477/315.0513, Calcd for C₁₃H₁₄NO₆Cl : M+2/M, 317.0486/ 315.0510.

 $(4\alpha,5\beta)$ -Ethyl 4-chloro-6,9-dimethoxy-8-oxo-1-oxa-2-azaspiro[4,5]deca-2,6,9-triene-3-carboxylate (2k): Mp 130.0-131.0°C(dichloromethane-hexane). IR(KBr, cm⁻¹) :1720 (ester CO), 1680(CO). FABMS (*m*/z, rel%) : 318/316(MH⁺, 31/88), 203/201(MH⁺-115, 34/100). HRFABMS : *m*/z, 318.0567/ 316.0583, Calcd for C₁₃H₁₅NO₆Cl: MH⁺+2/MH⁺, 318.0559/ 316.0597.

(4α,5β)-Ethyl 4,6,10-trichloro- and 4,6,7,10-tetrachloro-8-oxo-1-oxa-2-azaspiro[4,5]deca-2,6,9-triene-3carboxylate (2l and 2l') and Ethyl 5-chloro-4-hydroxy-7-methoxy-4H-1,2-benzoxazine-3-carboxylat (10l). The crude product obtained from 1l was chromatographed on silica gel (toluene: ethyl acetate 10:1) to give 1l (57 mg, 18%), 2l' (42 mg, 12%), 2l (116mg, 36%) and 10l (50 mg, 17%). 2l : Mp 112.0 $\$ (ethyl ether hexane). IR(KBr, cm⁻¹) : 1725 (ester CO), 1665(CO), 1590(CN). MS(*m*/*z*, rel%) : 327/325/323(M⁺, 32/91/93), 21/216(66/100), 212/210/208(M⁺-115, 36/76/84). HRMS : *m*/*z*. 326.9446/ 324.9535/ 322.9538, Calcd for C₁₁H₈NO₄Cl₃: M+4/M+2/M, 326.9464/ 324.9491/ 322.9519. 2l' : Mp 141.0-142.0 $\$ (ethyl ether - hexane). IR (KBr, cm⁻¹) : 1735 (ester CO), 1680(CO), 1590(CN). MS(*m*/*z*, rel%) : 361/359/357(M⁺, 39/80/62), 246/244/242 (M⁺-115, 49/ 100/78). HRMS: *m*/*z*, 360.9106/358.9127/ 356.9127, Calcd for C₁₁H₇NO₄Cl₄: M+4/M+2/M, 360.9173/ 358.9101/ 356.9129 . **101** : Mp 130 - 131 °C (ethyl acetate-hexane). ¹H NMR(δ , CDCl₃, 400Hz) : 1.43 (3H, t, *J*= 7.0Hz), 3.12(1H, dd, *J*=5.0 and 0.5Hz, OH), 3.82(3H, s, CH₃O), 4.46(2H, q, *J*=7.0Hz, OCH₂), 5.75(1H, d, *J*= 5.0Hz, H-4), 6.64(1H, d, *J*=2.5Hz, H-8), 6.87(1H, *J*=2.3 and 0.5Hz, H-6). ¹³C NMR(δ , CDCl₃, 100Mz) : 14.1 (CH₃), 52.2(C-4), 55.9(CH₃O), 62.9(OCH₂), 97.5(C-8), 108.0(C-4a), 113.9(C-6), 135.1(C-5), 148.5(C-3), 154.1(C-8a), 160.7(C-7), 162.8(COO). IR(KBr, cm⁻¹) : 3480 and 3440(OH), 1710(COO). MS(*m*/z, rel%) : 287/285(M⁺, 8/21), 185(100). HRMS : *m*/z, 287.0375/285.0382, Calcd for C₁₂H₁₂NO₃Cl : M+2/M, 287.0379/ 285.0404. **101** was determined by IR, HRMS and NMR. 4*H*-1,2-benzoxazines have been obtained by the acid-catalyzed reactions of nitro olefin with benzene,¹⁸⁾ the ring transformation of 4-aryl-2-isoxazoline 2-oxides,¹⁹⁾ and the reaction of *m*-methoxyphenyl nitroacrylate with toluene in the presence of titanium tetrachloride.³⁾

(4α,5β)-Ethyl 4-chloro-4'-oxospiro[isoxazole-(4H)5,1'(4'H)-naphthalene]-3-carboxylate (2m): Mp 112.0 -113.0 °C (ethyl ether-petroleum ether). ¹H NMR (400MHz, CDCl, δ) : 1.43(3H, t, J=7.1Hz, ester CH₃), 4.45 (2H, q, J= 7.1Hz, OCH₂), 5.46(1H, s, H-4), 6.60(1H, d, J=10.0Hz, H-3'), 7.13(1H, d, J=10.5Hz, H-2'), 7.25(1H, dd, J=7.5 and 1.2Hz, H-8'), 7.56(1H, td, J=7.5 and 1.2Hz, H-6'), 7.62(1H, td, J=7.5 and 1.2Hz, H-7'), 8.14(1H, dd, J=7.5 and 1.2Hz, H-5'). ¹³C NMR (100MHz, CDCl, δ) : 14.1(ester CH₃), 63.1(OCH₂), 67.8(C-4), 87.3(C-5), 124.4(C-8'), 127.4(C-5'), 129.1(C-4a'), 130.1(C-6'), 130.8(C-3'), 134.1(C-7'), 139.5(C-8a'), 141.5(C-2'), 151.1(C-3), 158.2(COO), 183.0(C-4'). IR(KBr, cm⁻¹) : 1730(ester CO), 1675(CO). MS(*m/z*, rel%) : 307/305(M*, 17/42), 192/190(M*-115, 34/100). Anal. Found : C 59.09, H 3.93, N 4.68, Cl 11.39, Calcd for C₁₅H₁₂NO₄Cl : C 58.93, H 3.96, N 4.58, Cl 11.60. The stereochemistry was determined by NOE experiments (H-4 and H-8', 5%).

Ethyl 4'-chloro-2',10-dioxospiro[anthracene-(10H)9,5'(4'H)-isoxazole]-3-carboxylate (7n), and Ethyl 2nitro-3-(10'-oxo-9'-anthrylidene) propionate (8n). Titanium tetrachloride (0.22 ml, 2 mmol) was added to a solution of 1n (351 mg, 1 mmol) in dichloromethane (10 ml) at 0°C. Ethyl ether was added to the crude product and the precipitate was filtered to give 8n (48 mg, 14%). Evaporation of the filtrate gave a residue, which was chromatographed on silica gel (toluene) to give 1n (98 mg, 28%), and 7n (78 mg, 21%). 7n : Mp 166.5-168.0 °C (dichloromethane-hexane). IR(KBr, cm⁻¹): 1740(ester CO), 1670(CO). 1635(CN), FABMS(m/z, rel%) : 374/372(MH⁺, 0.8/2.1), 208(76), 165/163 (CHCIC(NO)COOEt, 34/100). HRFABMS : m/z, 374.0641/ 372.0637 Calcd for C₁₉H₁₅NO₃Cl : MH⁺+2/MH⁺, 374.0609/ 372.0639. ¹H and ¹³C NMR data is listed Table 4.

The structure of **7n** was determined by comparison of the NMR spectra of **2n** and **7n** as showed in Table 4. The ¹³C NMR spectrum of **7n** lacked the signal for C-3'(δ 150.6 ppm) found in **2n** and displayed an additional signal at δ 108.7 ppm. The characteristic ¹³C signal(δ 108.7 ppm) agreed with the value reported⁹ for C-3 of an isoxazoline *N*-oxide ring. The ¹H NMR signals for *peri* protons(H-1, H-8) to isoxazoline *N*-oxide ring in **7n** were deshielded by 0.18-0.19 ppm in comparison with those in **2n**. Since all the other ¹H and ¹³C signals showed virtually identical chemical shifts and patterns with those for **2n**, these supported the structure of spiroisoxazoline *N*-oxide.

Table 4	¹ H and	¹³ C	NMR	(δ,	CDCl ₃)data
---------	--------------------	-----------------	-----	-----	-------------------------

	2	<u>n</u>	7n		
3'	150.6	-	108.7	•	
4'	68.5	5.24	70.0	5.41	
5'	91.2	-	81.9	-	
1	128.1	7.71	127.5	7.89	
2	132.8	7.70	132.8	7.72	
3	129.9	7.60	130.0	7.62	
4	127.4	8.24	127.8	8.24	
4a	131.1	-	131.3	-	
10	182.4	-	182.8	-	
10a	130.1	-	130.2	-	
5	128.6	8.28	129.0	8.28	
6	129.8	7.58	130.0	7.61	
7	134.0	7.64	134.0	7.69	
8	123.7	7.39	122.8	7.58	
8a	140.1	-	140.2	•	
<u>9a</u>	136.8	-	136.4	-	

8n : Mp 134.5-135.5°C (benzene-hexane). IR(KBr, cm⁻¹) : 1760(ester CO), 1665(CO), 1565 and 1380 (NO₂). ¹H NMR (400MHz, CDCl, δ): 1.36(3H, t, *J*=7.1Hz, ester CH₃), 4.36 and 4.40(2H, dq, *J*= 10.5 and 7.1Hz, OCH₂), 6.26(1H, d, *J*=10.7Hz, H-2'), 6.70(1H, d, *J*=10.7Hz, H-3), 7.57(1H, td, *J*=7.5 and 1.1Hz, H-6'), 7.64(1H, td, *J*=7.5 and 1.5Hz, H-3'), 7.68(1H, td, *J*=7.5 and 1.8Hz, H-7'), 7.74(1H, dd, *J*=8.0 and 1.5Hz, H-1'), 7.87(1H, d, *J*=8.0Hz, H-8'), 8.23(1H, dd, *J*=8.0 and 1.2Hz, H-5'), 8.32(1H, dd, *J*=7.5 and 1.2Hz, H-4'). ¹³C NMR (100MHz, CDCl, δ) : 13.9(ester CH₃), 63.9(OCH₂), 86.5(C-2), 119.0(C-3), 124.1(C-8'), 127.0(C-1'), 127.2(C-5'), 128.2(C-4'), 129.4(C-6'), 130.0(C-3'), 130.8(C-10a'), 132.4(C-4a'), 132.6(C-2'), 133.4(C-7'), 134.7(C-8a'), 139.3(C-9'), 140.9(C-9'), 163.4 (COO), 183.0(C-10'). HRHABMS : *m/z*, 336.0905, Calcd for C₁₉H₁₃NO₅ : MH', 336.0872

Ethyl 4'-chloro-10-oxospiro[anthracene-(10H)9,5'(4'H)-isoxazole]-3-carboxylate (2n). Titanium tetrachlo ride (0.22 ml, 2 mmol) was added to a solution of 1n (351 mg, 1 mmol) in dichloromethane (10 ml) at 0 °C. The reaction mixture was stirred at room temperature during 3 hours. 1n, 2n and 7n were isolated in 26%, 21% and 6%. 2n : Mp 149.0-153.0(dichloromethane-hexane). IR(KBr, cm⁻¹) :1730(ester CO), 1670(CO). MS(m/z, rel%) : 357/355(M⁺, 8/23), 242/240(M⁺-115, 25/72), 208(100). Anal. Found : C 64.15, H 3.96, N 3.82, Cl 9.92, Calcd for C₁₉H₁₄NO₄Cl : C 64.14, H 3 .97, N 3.94, Cl 9.96. ¹H and ¹³NMR data is listed Table 4. An 1% NOE was obtained between H-4' and H-8.

The reaction of ethyl 3-aryl-2-nitroacrylate with titanium tetrabromide

(4α,5β)-Ethyl 4,7-dibromo-8-oxo-1-oxa-2-azaspiro[4,5]deca-2,6,9-triene-3-carboxylate (2'a'), and Ehyl 3-(2'-bromo-4'-methoxypheny, 3'-bromo-4'-methoxyphenyl and 4'-methoxyphenyl)-3-hydroxy-2-hydroxyiminopropionates (3'aa, 3'a' and 3'a). Titanium tetrabromide (0.74 mg, 2 mmol) was added to a solution of 1a (251 mg, 1 mmol) in dichloromethane (20 ml) at 0°C. The reaction mixture was stirred for 2 hours. Water(20 ml) was added and the resulting solution was extracted with dichloromethane (3 x 40 ml), washed with water (4 x 60 ml), dried over Na₂SO₄, and evaporated. The residue was chromatographed (hexane: ethyl acetate $10:1 \rightarrow 1:1$ gradient) to give 78 mg(21% yield) of 2'a' and 103 mg mixture of oximes (3'aa: 3'a': 3'a = 7:6:7). 2'a': oil. $IR(KBr, cm^{-1})$: 1740 (ester CO), 1690(CO). MS(m/z, rel%) : $381/379/377(M^*, 0.7/1.1/0.5)$, 266/264/262 $(M^{+}-115, 26/55/27), 152/150 (100/94)$. HRFABMS : m/z, 381.8940/ 379.8947/ 377.8997, Calcd for $C_{11}H_{10}NO_{4}Br_{2}$: MH⁺+4/ MH⁺+2/ MH⁺, 381.8935/ 379.8956/ 377.8977. the mixture of **3'aa 3'a'** and **3a**: ¹H NMR(400MHz, $CDCl_3$, δ) : 1.31, 1.32 and 1.32(3H, t, J=7.1Hz, ester CH₃), 4.22-4.34(3 x OCH₂), 3.78 and 3.79(each 3H, s, OCH₁), 3.87(3H, s, OCH₁ of **3'aa**), **3'aa**; 6.24(1H, s, H-3), 6.86(1H, dd, J=8.5 and 2.5Hz, H-5'), 7.12(1H, d, J=2.5Hz, H-3'), 7.39(1H, d, J=8.5Hz, H-6'), 3'a'; 6.10(1H, s, H-3), 6.83(1H, dd, J=8.5 and 2.5Hz, H-5'), 7.32(1H, ddd, J=8.8, 2.5 and 0.8Hz, H-6'), 7.61(1H, dd, J=2.5 and 0.8Hz, H-2'), 3'a; 6.12(1H, s, H-3), 6.88(2H, d, J=8.8Hz, H-3' and H-5'), 7.34 (2H, d, J=8.8Hz, H-2' and H-6'). ¹³C NMR(100MHz, CDCl₃, \delta): 13.8, 13.9 and 13.9(ester CH₃), 62.3, 62.4 and 62.4(ester OCH₂), 55.2 and 55.5(OCH₃), 56.3(OCH₃ of **3'a'**), 163.0, 163.1 and 163.2 (COO), 3'aa; 68.4(C-3), 113.5(C-5'), 118.4(C-3'), 123.9(C-2'), 126.0(C-6'), 130.7(C-1'), 151.7(C-2), 159.9 (C-4'), 3'a'; 67.0(C-3), 110.7(C-3'), 111.8(C-5'), 125.9(C-6'), 130.8(C-2'), 133.1(C-1'), 151.1(C-2), 155.5(C-4'), 3'a; 67.8(C-3), 114.0(C-3' and C-5'), 127.1(C-2' and C-6'), 131.5(C-1'), 151.5(C-2), 159.3(C-4'). HRFABMS : 3'aa and 3'a' m/z, 331.9992/ 329.9957, Calcd for C₁₂H₁₃NO₃Br: MH+2/MH 331.9958/ 329.9977, **3'a** m/z, 252.0864, Calcd for $C_{12}H_{14}NO_5$: MH⁻, 252.0872.

(4α,5β)-Ethyl 4,6-dibromo- and 4,6,9-tribromo-8-oxo-1-oxa-2-azaspiro[4,5]deca-2,6,9-triene-3-carboxylate (2'e and 2'e'). The crude product obtained from 1e (330 mg 1 mmol) in a similar way as described above for **1a** was chromatographed (toluene) to give **2'e'**(54 mg, 12%), and **2'e** (14.6mg, 4%) and 5-bromo-2-hydroxy-4-methoxybenzaldehyde (**4g**) (53.6 mg, 23%). **2'e**: oil. IR(KBr, cm⁻¹) : 1730(ester CO), 1670(CO). MS(m/z, rel%) : $381/379/377(M^*, 20/38/20)$, $266/264/262(M^*-115, 63/100/50)$. HRMS: m/z, 381.8940/379.8963/377.98998, Calcd for $C_{11}H_{10}NO_4Br_2$: MH*+4/MH*+2/MH*, 381.8938/379.8957/377.8977.

2'e': Mp 102.5-103.0 °C (dichloromethane-hexane). IR(KBr, cm⁻¹) : 1725(ester CO), 1680(CO). MS(*m*/z, rel%): 459/457/455 (M⁺, 13/13/5), 346/344/342/340(M⁺-115, 33/100/95/33). HRMS : *m*/z, 458.7972/ 456.7981. Calcd for C₁₁H₈NO₄Br₃ : M+4/M+2, 458.7964/ 456.7983.

References

- 1) S. Hirotani, S. Zen, Heterocycles, 1993, 36, 2663.
- 2) S. Hirotani, S. Zen, Nippon Kagakukaishi, 1993, 948.
- 3) S. Hirotani, S. Zen, Yakugaku Zasshi, 1994, 114, 272.
- 4) K. Moody, R. H. Thomson, E. Fattoruso, L. Minale, G. Sodano, J. Chem. Soc., Perkin Trans. 1, 1972, 18; H. Nakamura, H. Wu, J. Kobayashi, Y. Nakanura, Y. Ohizu Y.Hirata, Hirata, Tetrahedron Lett., 1985, 26, 4517; S. A. Morris, R.J. Andersn, Can. J. Chem., 1989, 67, 677; J. Kobayashi, M. Tsuda, K. Agemi, H. Shigemori, M. Ishibashi, T. Sasaki, Y. Mikami, Tetrahedron, 1991, 47, 6617; R. Teeyapant, P. Proksch, Naturewissenschaften, 1993, 80, 369; A. D. Rodriguez, I. C. Pina, J. Nat. Prod., 1993, 56, 907; J. Kobayashi, K. Honma, T. Sasaki, M. Tsuda, Chem., Pharm. Bull., 1995, 43, 403; P. Ciminiello, E. Fattorusso, S. Magno, M. Pansini, J. Nat. Prod., 1995, 58, 689; A. Benharref, M. Pais, C. Devitus, J. Nat. Prod., 1996, 59, 177; P. Ciminiello, E. Fattorusso, M. Forino, S. Magno, M.Pansini, Tetrahedron, 1997, 53, 6565. R. Ebel, M. Brenzinger, A. Kunze, H. J. Gross, P. Proksch, J. Chem. Ecol., 1997, 23, 1451: Y-II. Fang, E. Yokota, I. Mabuchi, H. Nakamura, Y. Ohizumi, Biochem. 1997, 36, 15561.
- Sankyou Co., Ltd., Jpn. Kokai Tokyo Koho JP 59,176,268[83,192,875]: Chem Abstr., 1984, 100, 209789s;
 Banyu Pharmaceutical Co., Ltd., Jpn. Kokai Tokyo Koho JP 59,176,268[84,176,268]: Chem Abstr., 1985, 102, 113470w.
- A. R. Forrester, R. H. Thomson, S.-O. Woo, J. Chem. Soc., Perkin Trans. 1, 1975, 2340; A. R. Forrester, R. H. Thomson, S.-O. Woo, J. Chem. Soc., Perkin Trans. 1, 1975, 2348; H. Noda, M. Niwa, S. Yamamura, Tetrahedron Lett., 1981, 22, 3247; S. Nishiyama, S. Yamamura, Tetrahedron Lett., 1983, 24, 3351; S. Nishiyama, S. Yamamura, Bull. Chem. Soc. Jpn., 1985, 58, 3453; M. Kacan, D. Koyuncu, A. McKillop, J. Chem. Soc., Perkin Trans. 1, 1993, 1771; M. Murakata, K. Yamada, O. Hoshino, J. Chem. Soc., Chem. Commun., 1994, 443; T. R. Boehlow, C. D. Spilling, Nat. Prod. Lett., 1995, 7, 1; M. Murakata, K. Yamada, O. Hoshino, Tetrahedron, 1996, 52, 14713; M. Murakata, M. Tamura, O. Hoshino, J. Org. Chem., 1997, 62, 4428; M. Murakata, K. Yamada, O. Hoshino, Heterocycles, 1998, 47, 921.
- 7) A. D., Woolhouse, Aust. J. Chem., 1977, 30, 1145; L. Fisera, L. Jaroskova, A. Levai, E. Jedlovska, G. Toth, M. Polakova, Heterocycles, 1997, 45, 1651.
- 8) R. U. Lemieux, T. L. Nagabhushan, B. Paul, Can. J. Chem., 1972, 50, 773.
- 9) K. Takahashi, E. Kaji, S. Zen, Nippon Kagakukaishi, 1983, 1678.
- 10) G. Kumaran, G. H. Kulkarni, Tetrahedron Lett., 1998, 35, 5517
- 11) S. Zen, M. Koyama, S. Koto, Org. Synthesis, 1976, 55, 77; S. Sifnades, J. Org. Chem., 1975, 40, 3562.
- 12) W. Lehnert, Tetrathedron, 1972, 28, 663.
- 13) C. G. Wermuth, Bull. Soc. Chim. France, 1976, 1847.
- 14) D. Dauzonne, R. Royer, Synthesis, 1987, 399.
- 15) A. Dornow, H. Menzel, Ann, 1954, 588, 40.
- 16) S. Watarai, K. Yamamura, T. Kinugasa, Bull. Chem. Soc. Jpn., 1967, 40, 1448.
- 17) K. K. Babievskii, V. M. Belikov, A. I. Vinogradova, V. K. Latov, Zh. Org. khim., 1973, 1722.
- 18) M. Yato, T. Ohwada, K. Shudo, J. Am. Chem. Soc., 1990, 112, 5341.
- 19) K. Harada, E. Kaji, K. Takahashi, S. Zen, Chem. Pharm. Bull., 1994, 42, 1562.