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Abstract: Total synthesis of prelaureatin, which is an 8-membered
cyclic ether isolated from red alga Laurencia nipponica, has been
achieved through a process including stereoselective introduction of
two allyl groups starting from galactose pentaacetate, cleavage of
the hexose ring, and transformation of an acyclic triene into an
oxocene by selective ring-closing metathesis.
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Prelaureatin 11 has been isolated from red alga Laurencia
nipponica as an 8-membered cyclic ether which belongs
to laurenan family of C15-acetogenins involving laureatin
2,2 isolaureatin 3,2 and laurallene 4.3 Laurenans show in-
terest bioactivities, such as potent insecticidal activities of
2 and 3 as well as anticonvulsant activity of 3.4,5 Our pre-
vious chemoenzymatic studies using bromoperoxidase
from Laurencia nipponica or lactoperoxidase have dem-
onstrated that 1 is a key precursor in the biosynthetic route
to laurenans 2, 3, and 4 (Scheme 1).6 These results have
also shown a possibility of the chemical syntheses of all
these laurenans from 1. In fact, this possibility has partly
been proved by the production of 4 after the reaction of
1 with 2,4,4,6-tetrabromo-2,5-cyclohexadien-1-one
(TBCO).6b Thus, we planned total synthesis of 1,7 an im-
portant synthetic intermediate for other laurenan com-
pounds.

Our synthetic strategy is shown in Scheme 2. We planned
to synthesize 1 from triene 6 through a sequence of selec-
tive ring-closing olefin metathesis (RCM) reaction8,9 of 6
and construction of Z-enyne part of the resulting 5 by
Uenishi’s protocol.10 We expected that triene 6, which has
three combinations of reactive sites [C4–C9 (forming a
cyclohexene), C4–C10 (forming an oxepene), and C9–
C10 (forming an oxocene)], would prefer a reaction be-
tween less-hindered olefins rather than formation of a
smaller-sized ring in RCM conditions.11 Further, this
strategy would also rely on the successful preparation of
precursor 6. Since asymmetric synthesis of chiral second-
ary dialkyl ether is not so facile, efficient construction of
asymmetric centers at C6 and C12 is an important chal-
lenge in total synthesis of 1. We adopted C-glycoside 8 as
a key synthetic intermediate having the desired stereo-

chemistries at C6, C7, C12, and C13, which would be de-
rived from D-galactose pentaacetate through a process of
stereoselective introduction of allyl groups at C7 and C12
(corresponding to C1 and C6 in the position numbering of
glycoside, respectively). Cleavage of the hexose ring in 8
followed by conversion of the side chains in the resulting
7 would provide 6.

Scheme 2

Our actual synthesis of 1 is shown in Scheme 3. Allylation
of D-glucose pentaacetate was performed with allyltrime-
thylsilane in the presence of BF3�OEt3 according to Gian-
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nis’ method12 to give 9 selectively in 83% yield, which
was converted to 13 in 80% total yield through a 4-step
process [(i) deacetylation, (ii) one-pot protection of a pri-
mary hydroxyl group with TBDPSCl and a cis-diol part
with dimethoxypropane, (iii) protection with BnBr, and
(iv) desilylation]. Swern oxidation13 of 13 followed by
treatment with allyltributyltin under Grieco’s conditions14

afforded 8 stereoselectively in 79% yield along with 5%
production of the diastereomer of 8.

Alcohol 8 was protected with BnBr and the resulting 15
was deprotected to produce diol 16 in 94% overall yield,
which was converted to diol 7 in 99% yield by a sequence
of oxidative cleavage and reduction. Mesylation of the
diol followed by removal of benzyl groups gave 18, which

was treated with K2CO3 to afford epoxide 19 in 83% total
yield. Protection of the hydroxy group of 19 with TBSCl
and the subsequent ring opening of the epoxide with
Me2CuLi produced 21 in 81% overall yield. Cyanation of
21 with Bu4NCN at 50 °C gave 22 in 78% yield together
with 22% recovery of 21. When the reaction was per-
formed at higher temperature, significant decomposition
of 22 competed. Bromide 24 was synthesized from 22 in
82% total yield via a stepwise route [(i) transformation
into monochloromethanesulfonate ester15 23 and (ii) treat-
ment of 23 with LiBr in THF], because direct bromination
of 22 with Oct3P-CBr4

16 or DPPE-2Br2
17 only led to de-

composition. Nitrile 24 was reduced with DIBALH and

Scheme 3 Reagents and conditions: (a) allyltrimethylsilane, BF3�OEt2, MeCN, 5 °C, 95 h, 83%; (b) MeONa, MeOH, 0 °C, 48 h, 89%;
(c) TBDPSCl, imidazole, DMF, 24 °C, 30 min, then CSA, (MeO)2CMe2, 24 °C, 1.5 h, 91%; (d) NaH, BnBr, Bu4NI, THF, 24 °C, 30 h, 99%;
(e) TBAF, THF, 23 °C, 2 h, ~100%; (f) (COCl)2, DMSO, CH2Cl2, –78 °C, 20 min, then Et3N, –78 °C � 0 °C, 5 min; (g) allyltributyltin, 2.3 M
LiClO4 in Et2O, 23 °C, 23 h, 8: 79% from 13, diastereomer of 8: 5% from 13; (h) NaH, BnBr, Bu4NI, THF, 25 °C, 22 h, ~100%; (i) 12 M aq
HCl–THF (1:5.3), 23 °C, 3.5 h, 94%; (j) NaIO4, MeOH–pH 7 buffer (3:1), 23 °C, 1.3 h; NaBH4, MeOH, 0 °C � 23 °C, 2 h, 99% from 16;
(k) MsCl, Et3N, CH2Cl2, 0 °C � 25 °C, 3.5 h, ~100%; (l) DDQ, 1,2-dichloroethane–H2O (9:1), reflux, 26 h; (m) K2CO3, MeOH, 25 °C, 50 min,
83% from 17; (n) TBSOTf, 2,6-lutidine, CH2Cl2, 23 °C, 4 h, 98%; (o) MeLi, CuI, THF, –20 °C, 1 h, 83%; (p) Bu4NCN (excess), DMSO, 50
°C, 4.5 h, 22: 78%, 21: 22% recovery; (q) ClCH2SO2Cl, 2,6-lutidine, CH2Cl2, 0 °C, 20 min; (r) 0.7 M LiBr in THF, 25 °C, 47 h, 82% from 22;
(s) DIBAL, CH2Cl2, –78 °C, 15 min; (t) CBr4, Ph3P, CH2Cl2, 0 °C � 23 °C, 90 min, 6: 44% from 24, 24: 43% recovery; (u) 27 (0.66 equiv),
CH2Cl2 (2 mM of 6), 35 °C, 32 h, 26: 75%; (v) 28 (0.38 equiv), CH2Cl2 (2 mM of 6), 35 °C, 37 h, 5: 56%, 26: 6%, 6: 13% recovery;
(w) (Ph3P)4Pd (0.1 equiv), Bu3SnH (13 equiv), Ph3P (0.6 equiv), CH2Cl2, 25 °C, 6 h, 82%; (x) TFA–THF–H2O (4:5:5), 22 °C, 5 h, 82%;
(y) (Ph3P)4Pd (0.15 equiv), CuI (1.4 equiv), ethynyltrimethylsilane (11 equiv), i-Pr2NH (9 equiv), THF, 25 °C, 12 h, 31: 46%, 30: 52% recovery;
(z) TBAF, THF–H2O (55:1), 0 °C, 5 h, ~100%.
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the resulting aldehyde 25 was subjected to Wittig reaction
to afford 6 in 44% total yield with 43% recovery of 24.

RCM reactions of 6 using two Grubbs’ catalysts 2718 and
2819 gave the interesting results (Table in Scheme 3).
While the use of catalyst 27 afforded cyclohexene 26 ex-
clusively (75%), less-reactive catalyst 28 led to produc-
tion of the desired oxocene 5 (56%, with 13% recovery of
6) rather than 26 (6%) under the same conditions. In both
cases, no oxepane product was observed.

Finally, the enyne part of 1 was constructed by a modifi-
cation of Uenishi’s protocol.10 Selective hydrogenolysis
of dibromoalkene part of 5 led to a formation of 29 in 82%
yield. Although bromide 29 was inactive to Sonogashira
coupling reaction20 with ethynyltrimethylsilane, desilylat-
ed 30 could be coupled as expected under the same condi-
tions to produce 31 in 46% yield with 52% recovery of 30.
Removal of TMS with TBAF in wet THF produced 1 in
quantitative yield.1,6b Spectral data of synthetic 1 were
identical with those of natural prelaureatin.1 Thus, total
synthesis of 1 was achieved in 26 steps from galactose
pentaacetate.

In conclusion, total synthesis of prelaureatin, isolated
from red alga Laurencia nipponica, has been achieved
through a process including stereoselective introduction
of two allyl groups starting from galactose pentaacetate,
cleavage of the hexose ring, and transformation of an
acyclic triene into an oxocene by selective ring-closing
metathesis.
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