Electrochimica Acta 53 (2008) 5597-5607

Contents lists available at ScienceDirect

Electrochimica Acta

journal homepage: www.elsevier.com/locate/electacta

Electrochemical and spectroscopic properties of 1:2 Ni complexes of 1,3-substitued (CH₃, OCH₃) phenyl-5-phenylformazans

Habibe Tezcan*, Elif Uzluk, Mehmet Levent Aksu

Department of Chemistry, Gazi University, Faculty of Gazi Education, Teknikokullar, 06500 Ankara, Turkey

ARTICLE INFO

Article history: Received 26 October 2007 Received in revised form 5 February 2008 Accepted 9 February 2008 Available online 10 March 2008

Keywords: Formazan nickel(II) complexes Platinum electrodes Cyclic voltammetry Oxidation mechanism Spectroscopy Substituent effect

ABSTRACT

In this study, new 1:2 nickel complexes of 1-[o-, m-, p-(methyl, metoxyphenyl)]-3-(p-metoxyphenyl)-5-phenylformazans were synthesized. Their structures were elucidated and spectral behaviors were investigated with the use of elemental analysis, GC-mass, ¹H NMR, ¹³C NMR, IR, and UV-vis spectra. The redox characteristics of these compounds have been investigated in nonaqueous dimethylsulfoxide at platinum and ultramicro platinum (10 μ m) electrodes. Through controlled potential electrolysis, the oxidation products of each class of compounds can be separated and identified. The oxidation mechanism is suggested and it is proved. It was observed the oxidation mechanism take place in a single step two-electron or one-electron transfer to a disproportionation or dimerization reactions following the radical formation step. Eventually the relation between their absorption properties and electrochemical properties was examined.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Derivatives of formazans were synthesized and structural features, tautomeric and photochromic isomers were investigated [1–4]. Metal complexes of formazans were synthesized and structural determination, magnetic properties, complex stability constant determination and spectroscopic characterization and the formation of Fe complexes depending upon the pH value were investigated [5–11].

Formazans form tetrazolium salt when they are oxidized [12]. Tetrazolium salts are reduced back to formazans by the enzymes in the cell and stain the tissue. Tetrazolium–formazan system is classified as a marker of vitality and this feature enabled the determination of activity on tumor cell [13,14]. This feature caused an increasing interest in the chemistry and especially electrochemistry of formazans.

The study related to the redox behavior of formazans was carried out and it was claimed that ditetrazolium salts are reduced to both mono- and diformazans by one-electron transfer. The first one-electron transfer results in the formation of a tetrazolium radical and this radical was undergoing the disproportion reaction [15]. Formazans are oxidized in a single step two-electron transfer followed by a deprotonation reaction forming corresponding tetrazolium cation [16]. As seen, many studies have been worked with formazans. But electrochemical studies of their nickel(II) complexes have not been reported in the literature. In this study, seven different formazan and their nickel(II) complexes of formazans have been synthesized (Scheme 1). Their structures were elucidated by elemental analyses, GC-mass, FTIR, and their spectral behaviors were investigated using ¹H NMR, ¹³C NMR, FTIR and UV-vis spectral data. The effect of substituents on λ_{max} values was determined.

The biological activity of formazan makes the knowledge of its oxidation potentials and possible mechanisms are very important. Furthermore in this study is determined peak potentials (E_{ox} and E_{red}), diffusion coefficient (D), number of electrons transferred (n) and heterogeneous rate constant (k_s) with the use of cyclic voltammetry, lineer sweep voltammetry and chronoamperometry. Separation and identification of the intermediates and the final products were made through controlled potential electrolysis (CPE). A mechanistic scheme for the oxidation of formazan to tetrazolium salt was proposed based upon these data (Scheme 3).

2. Experimental

2.1. Reagents

All chemicals were obtained from Merck and Fluka except sodium hydroxide and [Ni(CH₃COO)₂·4H₂O] that were purchased from Sigma–Aldrich. Deionized water (Millipore, Milli-Q) was used for synthesis; the organic solvents: CH₃OH, CH₃COCH₃, dimethylsulfoxide (DMSO, 99.9%) and 1,4-dioxane were used for

^{*} Corresponding author. Tel.: +90 312 2021108; fax: +90 312 2227037. *E-mail address:* habibe@gazi.edu.tr (H. Tezcan).

^{0013-4686/\$ -} see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.electacta.2008.02.048

4b: $R1 = p - CH_3$, $R2 = p - OCH_3$

Scheme 1. The structure of the formazans and their nickel(II) complexes synthesized.

electrochemical and spectroscopic measurements. Dimethylsulfoxide was used as solvent. During the solvent purification, all the processes were performed under a dry oxygen-free argon atmosphere. Fractionation was carried out using a 120 cm column filled with glass spirals at a recoil ratio 50:1. Purified solvent was stored under argon in the dark. DMSO (Merck) was boiled four times with calcium hydride (Merck) for 14 h (5 g/L) and subsequently fractionated at 14 Torr. Finally, the main fraction was carefully fractionated.

2.2. Measurements

The UV-vis spectra of the formazans synthesized in this study were obtained with UNICAM UV2-100 UV-visible spectrophotometer using 1 cm quartz cells in 10⁻⁵ mol L⁻¹ DMSO and 325 nm lamps in the range of 250-600 nm. IR spectra were recorded on a MATT-SON 100-FTIR spectrophotometer between 4000 and 400 cm⁻¹ using KBr pellets. ¹H NMR spectra were performed on a Bruker AVANCE DPX-400 MHz and ¹³C NMR 100 MHz spectrophotometer using CDCl₃ and d_6 -DMSO, 10^{-4} mol L⁻¹. Electrochemical studies were carried out with a computerized CHI Instrument 660 B system in a conventional three-electrode cell. A platinum electrode (PE) (CHI102) and a 10 µm-platinum ultramicrodisc electrode (UME) (CHI107) were used as a working electrode. The electrodes were cleaned by electrochemical potential cycling and washed with excess dimethylsulfoxide. A platinum wire was used as the auxiliary electrode. The reference electrode was a silver wire in constant contact with 0.1 M AgNO₃ in dimethylsulfoxide. Ferrocene (Fc) was used as an internal standard to measure formal

potential E^0 vs. Fc⁰/Fc⁺. All measurements were carried out with 1×10^{-5} mol of the reactant in 10 mL dry oxygen-free solvent with 0.1 mol dm⁻³ tetrabuthylammonium tetrafluoroborate (TBA⁺BF₄⁻) as supporting electrolyte. All solutions were deaerated for 10 min with pure argon. All the measurements were taken at room temperature, 25 °C. The voltage scan rate range during the CV measuruments was 10–10,000 mV/s. Elemental analyses were carried out using a LECO-CHNS-932 elemental analyser. Mass spectra were recorded on an AGILENT 1100 MSD mass spectrometer.

2.3. Controlled potential electrolysis (CPE)

CPE experiments were carried out in dry dimethylsulfoxide containing 0.1 mol dm⁻³ tetrabuthylammonium tetrafluoroborate (TBA⁺BF₄⁻) as supporting electrolyte. Compounds **1b** and **7b** are reported here as examples. The potential was controlled at the current plateau of the oxidation wave. As working electrode, a platinum electrode was used. The progress of the electrolysis was followed by recording periodically the decrease in current with time. From time to time the anode was removed from the cell, sprayed with pure acetone and burned in a direct flame, cooled and replaced in the cell. After the electrolysis was completed, the cell was disconnected from the circuit and the solvent was evaporated in vacuum. The residue was shaken with dry ether and the supporting electrolyte was filtered off.

The ethereal layer was evaporated in turn. The obtained residue was chromatographed on thin layer silica gel plates using chloroform as an eluent. The main oxidation product obtained was scraped off the plate and extracted with dimethylsulfoxide, filtered and evaporated in vacuum.

2.4. Synthesis of formazans

2.4.1. 1,3,5-Triphenylformazan (1a)

1,3,5-Triphenylformazan was synthesized by the reaction of benzaldehyde (1.06 g, 0.01 mol), phenylhydrazine (1.08 g, 0.01 mol), aniline (0.93 g, 0.01 mol), concentrated HCl (5 mL) and sodium nitrite (0.75 g) in a methanol, at 0–5 °C alike literature [3,4]. Cherry red colored crystals: mp 172–173 °C; yield 78%. IR: 3069 cm⁻¹ (aromatic C–H), 3050–3000 cm⁻¹ (N–H), 1600 cm⁻¹ (aromatic C=C), 1500 cm⁻¹ (C=N), 1450 cm⁻¹ (N=N), 930–905 cm⁻¹ (CNNC). ¹H NMR: 8.32–7.27 ppm (15H, aromatic H), 1.18 ppm (1H, azo H). ¹³C NMR: 148.80 ppm [1C, (imino-C) C=N], 141.98–119.54 ppm (8C, other carbons). Elemental analysis: calcd. for C₁₉H₁₆N₄: C, 76.00; H, 5.33; N, 18.66. Found: C, 75.97; H, 5.29; N, 18.69%. Calcd. M: 300; found mass: m/z (eV) 301.10, 273.10, 223.00, 195.10, 105.05.

2.4.2. 1-(o-, m-,

p-Tolylphenyl)-3-(p-methoxyphenyl)-5-phenylformazans (2a-4a)

2a–4a were synthesized by the reaction of *p*-methoxybenzaldehyde (1.35 g, 0.01 mol), phenylhydrazine (1.08 g, 0.01 mol), *o*-, *m*-, *p*-tolylaniline (1.07 g, 0.01 mol), concentrated HCl (5 mL) and sodium nitrite (0.75 g) in a methanol, at $0-5^{\circ}$ C a method similar to that for 1,3,5-triphenylformazan. Each compound was recrystallized from methanol.

2.4.3. Selected data for 2a

Red-pink colored crystals: mp 187–188 °C; yield 69%. IR: $3480-3400 \text{ cm}^{-1}$ (aromatic C–H), 2920–2800 cm⁻¹ (N–H), 1600 cm⁻¹ (aromatic C=C), 1500 cm⁻¹ (C=N), 1220 cm⁻¹ (CH₃), 1030 cm⁻¹ (N=N), 800–620 cm⁻¹ (CNNC). ¹H NMR: 8.21–6.97 ppm (13H, aromatic H), 1.60 ppm (1H, azo H), 2.56 ppm (3H, CH₃), 3.90 ppm (3H, OCH₃). ¹³C NMR: 160.46 ppm [1C, (imino-C) C=N], 149.93–23.42 ppm (16C, other carbons). Elemental analysis: calcd. for C₂₁H₂₀N₄O₂ (**2a**): C, 73.25; H, 5.81; N, 16.28. Found: C, 73.21; H, 5.76; N, 16.24%. Calcd M: 344.00; found mass: *m/z* (eV): 345.10, 239.10, 225.00, 119.00.

2.4.4. Selected data for 3a

Purple-red colored crystals: mp $210-211 \,^{\circ}$ C; yield 40%. IR: $3490 \, \text{cm}^{-1}$ (aromatic C—H), $3020-3010 \, \text{cm}^{-1}$ (N—H), $1620 \, \text{cm}^{-1}$ (aromatic C=C), $1495 \, \text{cm}^{-1}$ (C=N), $1200 \, \text{cm}^{-1}$ (CH₃), $1020 \, \text{cm}^{-1}$ (N=N), $850-600 \, \text{cm}^{-1}$ (CNNC). ¹H NMR: $8.34-6.40 \, \text{ppm}$ (13H, aromatic H), $1.30 \, \text{ppm}$ (1H, azo H), $2.44 \, \text{ppm}$ (3H, CH₃), $3.88 \, \text{ppm}$ (3H, OCH₃). ¹³C NMR: $160.80 \, \text{ppm}$ [1C, (imino-C) C=N], $147.36-22.80 \, \text{ppm}$ (16C, other carbons). Elemental analysis: calcd. for $C_{21}H_{20}N_4O_2$ (**3a**): C, 73.25; H, 5.81; N, 16.28. Found: C, 73.19; H, 5.85; N, 16.34%. Calcd M: 344.00; found mass: m/z (eV): 345.50, 240.10, 226.00, 120.05.

2.4.5. Selected data for 4a

Dark purple colored crystals: mp 242–243 °C; yield 74%. IR: 3450–3440 cm⁻¹ (aromatic C–H), 2950–2820 cm⁻¹ (N–H), 1600 cm⁻¹ (aromatic C=C), 1500 cm⁻¹ (C=N), 1250 cm⁻¹ (CH₃), 1010 cm⁻¹ (N=N), 840–540 cm⁻¹ (CNNC). ¹H NMR: 8.16–6.78 ppm (13H, aromatic H), 1.58 ppm (1H, azo H), 2.45 ppm (3H, CH₃), 3.90 ppm (3H, OCH₃). ¹³C NMR: 160.39 ppm [1C, (imino-C) C=N], 148.88–21.56 ppm (14C, other carbons). Elemental analysis: calcd. for C₂₁H₂₀N₄O₂ (**4a**): C, 73.25; H, 5.81; N, 16.28. Found: C, 73.28; H, 5.82; N, 16.20%. Calcd M: 344.00; found mass: m/z (eV): 345.05, 240.10, 226.50, 119.95.

2.4.6. 1-(o-,m-,p-Methoxyphenyl)-3-(p-methoxyphenyl)-5-

phenylformazans (**5a–7a**)

5a–**7a** were synthesized by the reaction of *p*-methoxybenzaldehyde (1.35 g, 0.01 mol), phenylhydrazine (1.08 g, 0.01 mol), *o*-, *m*-, *p*-methoxyaniline (1.28 g, 0.01 mol), concentrated HCl (5 mL) and sodium nitrite (0.75 g) in methanol, at $0-5^{\circ}$ C a method similar to that for 1,3,5-triphenylformazan. Each compound was recrystallized from methanol.

2.4.7. Selected data for 5a

Dark purple colored crystals: mp 196–197 °C; yield 71%. IR: 3490–3400 cm⁻¹ (aromatic C–H), 2900–2800 cm⁻¹ (N–H), 1600 cm⁻¹ (aromatic C=C), 1510 cm⁻¹ (C=N), 1250 cm⁻¹ (CH₃), 1250 cm⁻¹ (OCH₃), 1020 cm⁻¹ (N=N), 800–610 cm⁻¹ (CNNC). ¹H NMR: 8.26–6.83 ppm (13H, aromatic H), 1.31 ppm (1H, azo H), 4.01, 3.96 ppm (6H, OCH₃). ¹³C NMR: 160.36 ppm [1C, (imino-C) C=N], 151.86–55.98 ppm (16C, other carbons). Elemental analysis: calcd. for $C_{21}H_{20}N_4O$ (**5a**): C, 70.00; H, 5.55; N, 15.55. Found: C; 70.06, H; 5.51, N; 15.62%. Calcd. M: 360.00; found mass: *m*/*z* (eV) 361.10, 255.10, 225.10, 122.10.

2.4.8. Selected data for 6a

Red dark-purple colored crystals: mp 205–206.5 C; yield 42%. IR: 3490–3400 cm⁻¹ (aromatic C–H), 3030 cm⁻¹ (N–H), 1600 cm⁻¹ (aromatic C=C), 1505 cm⁻¹ (C=N), 1210 cm⁻¹ (CH₃), 1210 cm⁻¹ (OCH₃), 1030 cm⁻¹ (N=N), 810–580 cm⁻¹ (CNNC). ¹H NMR: 8.36–6.58 ppm (13H, aromatic H), 1.30 ppm (1H, azo H), 3.91, 3.84 ppm (6H, OCH₃). ¹³C NMR: 164.50 ppm [1C, (imino-C) C=N], 160.02–55.90 ppm (16C, other carbons). Elemental analysis: calcd. for C₂₁H₂₀N₄O (**6a**): C, 70.00; H, 5.55; N, 15.55. Found: C; 70.10, H; 5.48, N; 15.70%. Calcd. M: 360.00; found mass: m/z (eV) 361.05, 255.05, 226.05, 123.10.

2.4.9. Selected data for 7a

Dark purple colored crystals: mp 187–188 °C; yield 72%. IR: 3490 cm^{-1} (aromatic C–H), $3050-3000 \text{ cm}^{-1}$ (N–H), 1600 cm^{-1} (aromatic C=C), 1495 cm^{-1} (C=N), 1250 cm^{-1} (CH₃), 1250 cm^{-1} (OCH₃), 1080 cm^{-1} (N=N), $810-510 \text{ cm}^{-1}$ (CNNC). ¹H NMR: 8.12-6.87 ppm (13H, aromatic H), 1.31 ppm (1H, azo H), 3.90, 3.82 ppm (6H, OCH₃). ¹³C NMR: 162.84 ppm [1C, (imino-C) C=N], 160.37-55.70 ppm (14C, other carbons). Elemental analysis: calcd. for $C_{21}H_{20}N_4O$ (**6a**): C, 70.00; H, 5.55; N, 15.55. Found: C; 69.88, H; 5.58, N; 15.57%. Calcd. M: 360.00; found mass: m/z (eV) 361.15, 256.05, 225.35, 122.00.

2.5. Synthesis of nickel(II) complexes

2.5.1. Bis (1,3,5-triphenyl formazanato)nickel(II) complexes (1b)

1,3,5-Triphenylformazan (1a) (1.500 g, 0.005 mol) obtained as outlined in literature [3] was dissolved in dioxane (20 mL). In another flask $[Ni(CH_3COO)_2 \cdot 4H_2O]$ salt (0.0025 mol, 0.625 g) was dissolved in ethanol (22 mL) under reflux with constant stirring at 25 °C and formazan is added to it stirring with a glass rod in 1-2 min. There was a no color change or precipitation observed during this process. The mixture was stirred with a magnetic stirrer at 30–35 °C under reflux. The precipitation started after an hour and the color turned into orange from red after 2h and brown after 3h. The stirring process was continued for 8h. The color remained brown. The mixture was kept in the cupboard for 4 days. The light-brown precipitate was filtered off and washed with 10 mL 0.5 M NaOH, water and methanol. The compound was dried in stove at 40°C for 24h and recrystallized from methanol. Light-brown colored crystals: mp 300°C; yield 85%. IR: 3098–3028 cm⁻¹ (aromatic C–H), 2963 cm⁻¹ (Ni-ligand), 1600 cm⁻¹ (aromatic C=C), 1500 cm⁻¹ (C=N), 1410 cm⁻¹ (N=N), 780–550 cm⁻¹ (CNNC). ¹H NMR: 8.02–7.28 ppm (30H, aromatic H), 3.72–1.58 ppm [3H, solvent (CH₃OH)]. ¹³C NMR: 174.81 ppm [1C, (imino-C) C=N], 163.97–118.50 ppm (17C, other carbons).

2.5.2. Bis [1-(o-,m-,p-tolylphenyl)-3-(p-methoxyphenyl)-5-phenylformazanato]nickel(II) complexes (**2b-4b**)

2a–4a (0.690 g, 0.002 mol) obtained in Section 2.3 were dissolved in dioxane (15 mL). In another flask $[Ni(CH_3COO)_2 \cdot 4H_2O]$ (0.001 mol, 0.250 g) salt was dissolved in ethanol (15 mL) and formazans solution was added to it. The mixtures were stirred at 30–35 °C under reflux for 8 h. The resulting precipitates were kept in the cupboard for 3 days. Following the procedure outlined for compound **1b**. Each product was recrystallized from methanol.

2.5.3. Selected data for 2b

Light green-brown colored crystals: mp 244–245 °C; yield 69%. IR: 3480–3410 cm⁻¹ (aromatic C–H), 2937 cm⁻¹ (Ni-ligand), 1580 cm⁻¹ (aromatic C=C), 1518 cm⁻¹ (C=N), 1241 cm⁻¹ (CH₃), 1027 cm⁻¹ (N=N), 839–589 cm⁻¹ (CNNC). ¹H NMR: 8.23–6.92 ppm (26H, aromatic H), 2.50 ppm (6H, CH₃), 3.90 ppm (6H, OCH₃), 3.82, 1.22 ppm (2H, CH₃OH). ¹³C NMR: 186.87 ppm [1C, (imino-C) C=N], 175.28–114.73 ppm (29C, other carbons). Elemental analysis calcd. for NiC₄₂H₃₈N₈O₂ (**2b**): C, 64.89; H, 4.89; N, 14.42. Found: C, 64.93; H, 4.87; N, 14.47%. M: 744.70. Mass: m/z (eV), found: M.: 745.00. Other peaks: 418.05, 360.00, 226.05.

2.5.4. Selected data for 3b

Orange-brown colored crystals: mp 238 °C; yield 63%. IR: 3475–3410 cm⁻¹ (aromatic C–H), 2950 cm⁻¹ (Ni-ligand), 1580 cm⁻¹ (aromatic C=C), 1500 cm⁻¹ (C=N), 1241 cm⁻¹ (CH₃), 1027 cm⁻¹ (N=N), 840–590 cm⁻¹ (CNNC). ¹H NMR: 8.45–6.83 ppm (26H, aromatic H), 2.45 ppm (6H, CH₃), 3.80 ppm (6H, OCH₃), 3.83, 1.22 ppm (2H, CH₃OH). ¹³C NMR: 185.87 ppm [1C, (imino-C) C=N], 177.60–117.05 ppm (29C, other carbons). Elemental analysis calcd. for NiC₄₂H₃₈N₈O₂ (**3b**): C, 64.89; H, 4.89; N, 14.42. Found: C, 64.85; H, 4.95; N, 14.35%. M: 744.70. Mass: *m/z* (eV), found M: 744.80. Other peaks: 419.15, 359.10, 225.00.

2.5.5. Selected data for 4b

Light green-brown colored crystals: mp 295 °C; yield 61%. IR: $3450-3440 \text{ cm}^{-1}$ (aromatic C–H), 3062 cm^{-1} (Ni-ligand), 2950–2820 cm⁻¹ (N–H), 1600 cm⁻¹ (aromatic C=C), 1500 cm⁻¹ (C=N), 1250 cm⁻¹ (CH₃), 1010 cm⁻¹ (N=N). ¹H NMR: 8.15–6.38 ppm (13H, aromatic H), 2.50 ppm (6H, CH₃), 3.70 ppm (6H, OCH₃), 3.74, 1.39 ppm (2H, CH₃OH). ¹³C NMR: 174.80 ppm [1C, (imino-C) C=N], 169.11–118.21 ppm (25C, other carbons). Elemental analysis calcd. for NiC₄₂H₃₈N₈O₂ (**4b**): C, 64.89; H, 4.89; N, 14.42. Found: C, 64.79; H, 4.83; N, 14.33%. M: 744.70. Mass: *m*/*z* (eV), found M: 745.10. Other peaks: 419.50, 359.10, 225.15.

2.5.6. Bis [1-(o-,m-,p-methoxyphenyl)-3-(p-methoxyphenyl)-5-phenylformazanato]nickel(II) complexes (**5b**-**7b**)

5a–7a (0.690 g, 0.002 mol) prepared in Section 2.3 were dissolved in dioxane (15 mL) in another flask Ni(CH₃COO)₂·4H₂O (0.001 mol, 0.250 g) salt was dissolved in ethanol (15 mL) and formazans were added to it. Following the procedure outlined for compound **1b**. Each product was recrystallized from methanol.

2.5.7. Selected data for 5b

Pink-brown colored crystals: mp 225–226.5 °C; yield 73%. IR: 3490–3455 cm⁻¹ (aromatic C–H), 2964 cm⁻¹ (Ni-ligand), 1607 cm⁻¹ (aromatic C=C), 1509 cm⁻¹ (C=N), 1223 cm⁻¹ (CH₃), 1027 cm⁻¹ (N=N), 839–616 cm⁻¹ (CNNC). ¹H NMR: 8.28–6.41 ppm (26H, aromatic H), 4.02 ppm (12H, OCH₃). ¹³C NMR: 186.87 ppm [1C, (imino-C) C=N], 175.02–115.00 ppm (29C, other carbons). Elemental analysis calcd. for NiC₄₂H₃₈N₈O₄ (**5b**): C, 70.72; H, 5.33; N, 15.71. Found: C, 70.78; H, 5.20; N, 15.76%. M.: 776.70. Mass: *m/z* (eV), found M.: 777.10. Other peaks: 402.00, 344.85, 226.10.

2.5.8. Selected data for 6b

Green colored crystals: mp 273 °C; yield 64%. IR: 3480–3420 cm⁻¹ (aromatic C–H), 2980 cm⁻¹ (Ni-ligand), 1580 cm⁻¹ (aromatic C=C), 1500 cm⁻¹ (C=N), 1240 cm⁻¹ (CH₃), 1027 cm⁻¹ (N=N), 835–620 cm⁻¹ (CNNC). ¹H NMR: 8.42–6.80 ppm (26H, aromatic H), 3.92 ppm (12H, OCH₃). ¹³C NMR: 185.56 ppm [1C, (imino-C) C=N], 177.42–113.32 ppm (29C, other carbons). Elemental analysis calcd. for NiC₄₂H₃₈N₈O₄ (**6b**): C, 70.72; H, 5.33; N, 15.71. Found: C, 70.65; H, 5.28; N, 15.67%. M.: 776.70. Mass: *m/z* (eV), found M: 777.03. Other peaks: 401.80, 345.20, 225.10.

2.5.9. Selected data for 7b

Green colored crystals: mp 271–272 °C; yield 60%. IR: 3450–3440 cm⁻¹ (aromatic C–H), 3058 cm⁻¹ (Ni-ligand), 2950–2820 cm⁻¹ (N–H), 1600 cm⁻¹ (aromatic C=C), 1500 cm⁻¹ (C=N), 1250 cm⁻¹ (CH₃), 1010 cm⁻¹ (N=N). ¹H NMR: 8.21–6.68 ppm (26H, aromatic H), 3.89 ppm (12H, OCH₃). ¹³C NMR: 182.62 ppm [1C, (imino-C) C=N], 175.24–117.38 ppm (25C, other carbons). Elemental analysis calcd. for NiC₄₂H₃₈N₈O₄ (**7b**): C, 70.72; H, 5.33; N, 15.71. Found: C, 70.80; H, 5.30; N, 15.78%. M.: 776.70. Mass: m/z (eV), found M: 777.50. Other peaks: 401.55, 345.65, 225.50.

All the synthesized compounds (**1a–7a**, **1b–7b**) were purified by repeated crystallization, dried under reduced pressure and the purity was checked by thin layer chromatography.

2.6. Oxidation product of 1b

Elemental analysis calculated: C, 76.25; H, 5.02; N, 18.73. Found: C, 76.80; H, 5.13; N, 18.57%. Mass: m/z (eV), calculated M: 598.00. Mass spectrum shows the main fragments at m/z 599.10, parent 493.00; 388.00; 311.00; 234.00; 157.00.

2.7. Oxidation product of 7b

Elemental analysis calculated: C, 73.47; H, 5.54; N, 16.32. Found: C, 73.28; H, 5.49; N, 16.20%. Mass: m/z (eV), calculated M: 343.00. Mass spectrum shows the main fragments at m/z 344.00, parent 224.00; 135.00; 131.00; 105.00.

3. Result and discussion

3.1. Synthesis and spectral properties of formazans and their nickel(II) complexes

This study was carried out in four stages. In the first and two steps, formazans and their nickel(II) complexes were synthesized. In the third step, their structures were elucidated then spectroscopic features and the effect of substituents on the absorption properties of compounds were investigated. In the fourth step, electrochemical properties were investigated. The intermediate hydrazones (**c**) were synthesized at pH 5–6 and the syntheses of formazans were carried out at pH 9–12. Nickel(II) complexes of formazans were synthesized at pH 6–8 according to the literature [5] in order to prevent the formation of different isomers. The reaction scheme is given in Scheme 2.

Elemental analysis and mass spectroscopic data are corroborated the structures proposed in Scheme 1. When one examines ¹H NMR data shows that the aromatic-H peak for Ni-TPF (**1b**) are observed at δ = 8.02–7.28 ppm. In nickel(II) complexes of formazans

Scheme 2. Synthesis of formazans and their nickel(II) complexes.

2b-4b; 5b-7b where position of 3-phenyl ring is substituted with *p*-OCH₃ while -CH₃, -OCH₃ is each substituted to *o*-, *m*-, *p*positions of the 1-phenyl ring, the aromatic-H signals (8.23, 8.45 and 8.15 ppm; 8.28, 8.42 and 8.21 ppm, respectively) are shifted towards lower fields according to Ni-TPF (1b). There is a shift towards to lower fields in the case of electron donating groups such as CH₃ and OCH₃ this is not at the same dimension with that of the electron withdrawing groups. This can be explained by the fact that the electron donating effects of CH₃ and OCH₃ can be neglected against the strong electron withdrawing effect of Ni²⁺. When aromatic-H peaks nickel(II) complexes are compared with the corresponding formazans they were observed to shift towards to lower fields. This is in accordance with the fact that the electrons in the structure are withdrawn with the insertion of Ni²⁺ into formazans structure [8,18,19]. N-H peak observed at 1.60-1.18 ppm in formazans disappeared in nickel(II) complexes. This is a further proof that metal ion was inserted in place of proton of N-H group. Also the peaks appeared at 3.90–1.22 ppm were attributed to the solvent (CH₃OH). This was an expected outcome. These data are supported by the IR results.

The δ values for the imino-C (C=N) carbon for Ni-TPF (**1b**) was observed at 174.81 ppm. The attachment of an electron donating group to the 1-phenyl ring such as CH₃ and OCH₃ caused the δ values showed a sligth increase. C=N carbon peaks of nickel(II)

complexes are in lower fields compared with those of corresponding formazans. While C=N peaks observed between 164.50 and 148.80 ppm in formazans are shifted to 186.87–174.80 ppm in nickel(II) complexes. This result is in accordance with the insertion of an electron withdrawing group Ni²⁺ into the system. Other C peaks can also be evaluated in a similar manner [19].

The C=N stretching band of Ni-TPF (1b) was observed at $1500 \,\mathrm{cm}^{-1}$. The band related to the o-,m-, p-substituted CH₃ (2b-4b) on the 1-phenyl ring were observed at 1518, 1500 and 1500 cm^{-1} . These peaks apperared at 1509, 1500 and 1500 cm^{-1} in the case of o-, m-, p-OCH₃ substitution (5b-7b). The C=N bands observed at 1510-1495 cm⁻¹ in formazans were observed to shift to 1518–1500 cm⁻¹ in nickel(II) complexes. The N–H band observed at 3050-2800 cm⁻¹ in formazans was observed to generally disappear in their nickel(II) complexes. However, new peaks observed at 3062–2937cm⁻¹. These peaks were attributed to metal-ligand bonds. This is the verification of the formation of nickel(II) complexes as a result of insertion of Ni²⁺ in place of an H atom in N-H [7,20]. These results confirm the formula given in Scheme 1b-c. However, the N-H band were weakly observed in compounds 4b, 7b. These results are in agreement with the literature [6]. N=N band observed at 1410 cm^{-1} in Ni-TPF (**1b**) this bond was seen to shift to $1027 \text{ cm}^{-1} \text{ in } o$ -, m-, p-CH₃ substituted nickel(II) complexes (**2b**-**4b**) and 1027, 1027 and 1054 cm⁻¹ o-, m-, p-OCH₃ substituted nickel(II)

Compound	λ_{max1} (nm)	$\epsilon~(\times~10^3~M^{-1}~cm^{-1})$	$\lambda_{max2} (nm)$	$\epsilon~(\times10^4~M^{-1}~cm^{-1}$)	λ_{max3} (nm)	$\epsilon~(\times~10^4~M^{-1}~cm^{-1})$	Wavelength shift ($\Delta \lambda_{max}$)
1b	611.0	6.78	448.0	5.00	275.0	7.80	-
2b	654.0	5.16	458.0	3.40	307.0	11.34	43
3b	647.0	5.76	454.0	4.70	299.0	11.20	36
4b	644.0	3.95	452.0	8.80	-	-	33
5b	661.0	3.12	460.0	3.76	311.0	15.60	50
6b	649.0	5.20	464.0	5.30	322.0	12.60	38
7b	642.0	3.67	456.0	1.80	274.0	13.92	31

UV-visible absorption maxima of the nickel(II) complexes formazans 1b-7b (DMSO, 10^{-5} mol/L)

Column 8: $\Delta \lambda_{max} = \lambda_{max1}$ (Ni-TPF), λ_{max1} (substituted nickel(II) complexes of formazans).

complexes (**5b**–**7b**) N=N band was observed to shift towards the lower frequencies in Ni-TPF (**1b**) complex than its respective formazan (**1a**). This band also shifted to lower frequencies in CH₃ and OCH₃ substituted formazans nickel(II) complexes compared to Ni-TPF (**1b**). The results are in agreement with the literature [7,20]. Other aromatic C–H, C=C and CNNC stretching peaks in the complexes and the peaks related to CH₃, OCH₃ in the corresponding compounds were observed in their expected region [20].

There were three peaks observed in the UV–vis spectra of nickel(II) complexes of formazans. The absorptions peaks λ_{max1} the nickel(II) complex, λ_{max2} formazan unit and λ_{max3} hydrazone unit were attributed [8]. The λ_{max1} observed at 482–531 nm in formazans shifted to 611–661 nm in their nickel(II) complexes (Table 1). This is in accordance with the fact that the electrons in the structure are withdrawn with the insertion of Ni²⁺ into complex structure. These results are in compliance with literature [5,6,8–11]. When $\Delta\lambda_{max}$ values are compared according to the type of the substituents it was observed that the amount of shift was higher when 1-pheny ring was attached with electron donating groups such as CH₃ and OCH₃. These results are

Fig. 1. Absorption spectra of (a) 1.0×10^{-5} M DMSO solutions of compounds **2b–4b** compared to Ni-TPF (**1b**); (b) 1.0×10^{-5} M DMSO solutions of compounds **5b–7b** compared to Ni-TPF (**1b**).

depicted in Fig. 1a and b. In the complexes containing CH₃ and OCH₃ the amount of shifts observed in absorption values ($\Delta\lambda_{max}$) was observed to follow the order of o - > m - > p-. If we think that electron withdrawing effect results only from the inductive effect which diminishes as we move from the center this order is an expected outcome.

3.2. Cyclic voltammetry

The cyclic voltammetric behavior of the nickel(II) complexes of formazans were studied in anhydrous DMSO (dimethylsulfoxide) at room temperature. The cyclic voltammograms of substituted (-CH₃ and -OCH₃) nickel(II) complexes (**2b**-**7b**) are compared with the parent compound Ni-TPF (**1b**). Figs. 2–4 show a typical cyclic voltammograms of these compounds.

A cyclic voltammogram of Ni-TPF (**1**) is shown in Fig. 2. The scan showed one anodic wave and one cathodic wave. A cyclic sweep in the -1.60 to +0.00 V range shows an anodic peak at $E_{ox1} = -1260.6$ mV and a cathodic peak at $E_{red1} = -798.1$ mV. As seen from Fig. 2, Ni-TPF (**1b**) gives one-electron transfer. This complex probably gives dimerization or disproportionation reaction following the radical formation step at -1260.6 mV. However, it seems that the substituted groups ($-CH_3$ and $-OCH_3$) have quite effect upon the electrochemical behavior of the nickel(II) complexes of formazans in Figs. 3 and 4.

As seen from Fig. 3 and Table 2, compounds 2b-4b caused major changes in both the peak potential and the peak currents as compared with the parent Ni-TPF (1b). *o*- and *p*-CH₃ sub-

Fig. 2. Cyclic voltammogram of a DMSO solution of 1.0×10^{-5} M Ni-TPF (**1b**) in the presence of 0.1 M TBA⁺BF₄⁻ at Pt electrode. Potential scan rate: 100 mV s⁻¹.

Fig. 3. Representative cyclic voltammogram in DMSO (25 °C, ionic strength, 0.1 M TBA⁺BF₄⁻; ν , 100 mV s⁻¹): (a) 1.0 × 10⁻⁵ M compound 2b and (b) 1.0 × 10⁻⁵ M 4b.

Fig. 4. Representative cyclic voltammogram in DMSO (25 °C, ionic strength, 0.1 M TBA*BF₄⁻; ν , 100 mV s⁻¹): (a) compound 1.0 × 10⁻⁵ M **5b** and (b) 1.0 × 10⁻⁵ M **7b**.

stituted nickel(II) complexes (**2b**, **4b**) directly give tetrazolium cations (TPT⁺) by a single step two-electron transfer. Compound **3b** behaves similarly towards oxidation; they are oxidized by oneelectron process. This complex (**3b**) probably gives dimerization or disproportionation reaction following the radical formation step.

The scans of complexes **2b** and **4b** showed two anodic waves and one cathodic wave. On oxidation of $-CH_3$ substituted nickel(II) complexes, oxidation peaks were observed more cathodic potential in the *o*-, *m*-, *p*-CH₃ (complexes **2b**-**4b**) compared with Ni-TPF (**1b**). A cyclic sweep in the -1.80 to +0.00 V range shows two anodic peaks at $E_{ox1} = -1623.8$ mV, $E_{ox2} = -590.4$ mV and a cathodic peak at $E_{red1} = -807.4$ mV for compound **2b** (Fig. 3a). In the same range, two anodic peaks (E_{ox1} and E_{ox2}) are appeared at -1510.6and -842.9 mV, respectively. A cathodic peak (E_{red1}) is observed at -814.6 mV for compound **4b** (Fig. 3b). In the same range, an anodic peak (E_{ox1}) is obtained at -1570.0 mV and a cathodic peak (E_{red1}) is observed at -840.0 mV for compound **3b**. However, the intensities of the first peak (E_{ox1}) for the complex **3b** are much higher compared with the o-CH₃ substituted nickel(II) complex (**2b**). This shows that the electron transfer rate is much lower in o-CH₃ substituted nickel(II) complex (E_{ox1}) is much higher for the *p*-CH₃ substituted nickel(II) complex **4b** compared with those of *o*- and *m*-CH₃ substituted nickel(II) complexes. The intensity of the first peak (E_{ox1}) is mich electron transfer as p > m - o-CH₃ substituted nickel(II) complexes. These results also are in accordance with the spectroscopic data.

As seen from Fig. 4 and Table 2, compounds **5b**–**7b** caused amount changes in both the peak potential and the peak currents as compared with the parent Ni-TPF (**1b**). o-, m-, p-OCH₃ substi-

Table	e 2
-------	-----

Voltamperometric results of nickel(II) complexes (1b-7b)

Compound	$E_{\rm ox1}~({\rm mV})$	<i>I</i> _{pox1} (μA)	$E_{\rm ox2}~({\rm mV})$	<i>I</i> _{pox2} (μA)	E_{red1} (mV)	I _{pred1} (μA)	$\Delta E_{\rm p}~({\rm mV})$	k_s (cm s ⁻¹)
1b	-1260.6	3.086	-	1.789	-798.1	2.657	-462.5	$11.964 imes 10^{-3}$
2b	-1623.8	3.445	-590.4	1.799	-807.4	12.070	-820.9	1.714×10^{-3}
3b	-1570.0	6.260	-	-	-842.2	11.780	-727.8	6.464×10^{-3}
4b	-1510.6	8.765	-842.9	3.280	-814.6	12.220	-696.0	$5.371 imes 10^{-3}$
5b	-1576.8	6.027	-956.2	24.880	-757.9	14.070	-818.9	3.785×10^{-3}
6b	-1590.2	5.456	-795.7	20.879	-890.7	12.457	-699.5	4.605×10^{-3}
7b	-1607.5	5.101	-1008.0	12.260	-795.6	14.044	-811.9	2.298×10^{-3}

Column 8: ΔE_p : $E_{ox1}-E_{red1}$ (mV). Cyclic voltammograms were obtained in DMSO at 25° C at platinum electrode, ionic strength 0.1 M (TBA⁺BF₄⁻), sweep speed: 100 mV s⁻¹. E_{ox} : oxidation; E_{red} : reduction, $k_s/cm s^{-1}$ values.

Table 3

Voltamperometric data of nickel(II) complexes (1b-7b) in DMSO at platinum electrode and 25° C, ionic strength 0.1 M (TBA+BF4⁻), scan rates: 10, 1000 and 10,000 mV s⁻¹

Comp	Scan rate (mV/s)	E_{ox1} (mV)	<i>I</i> _{pox1} (μA)	$E_{\rm ox2}~({\rm mV})$	I _{pox2} (μA)	E_{red1} (mV)	I _{pred1} (μA)
1b	10	-1477.0	3.923	-	-	-803.5	5.287
	1,000	-1168.3	3.430	-	-	-900.5	23.110
	10,000	-1632.0	9.499	-	-	-1144.5	42.190
2b	10	-1656.5	3.367	-1091.8	4.268	-1053.6	9.599
	1,000	-1536.0	44.560	-1306.6	21.000	-1096.0	26.670
	10,000	-1005.0	68.990	-	-	-1094.6	87.490
3b	10	-1593.4	3.490	-	-	-875.9	6.239
	1,000	-1510.0	2.890	-	-	-789.0	17.890
	10,000	-1223.0	66.890	-	-	-1100.3	77.900
4b	10	-1530.0	2.792	-978.3	6.749	-863.4	8.667
	1,000	-1441.7	77.130	-	-	-847.7	32.740
	10,000	-1145.6	140.000	-	-	-941.7	100.700
5b	10	-1559.5	2.499	-936.0	1.299	-885.0	10.300
	1,000	-1515.4	63.760	-1215.4	27.820	-897.6	36.560
	10,000	-1171.8	103.800	-	-	-1077.5	122.500
6b	10	-1597.6	6.780	-	-	-895.6	9.100
	1,000	-1390.5	23.560	-	-	-810.0	43.240
	10,000	-1234.5	56.890	-	-	-978.6	89.100
7b	10	-1597.7	2.381	-1259.5	3.244	-953.5	8.306
	1,000	-1483.0	69.380	-1215.4	30.000	-862.3	32.820
	10,000	-1132.6	79.010	-	-	-986.2	95.010

*E*_{ox}: oxidation; *E*_{red}: reduction.

Table 4

Some of the parameters calculated for nickel(II) complexes (1b-7b)

Compound	$C(\mathrm{mM})$	$I_{\rm ss}~(imes~10^{-10}~{\rm A})$	Cottrell slope (S \times 10 ⁻⁵)	n	<i>n</i> net	$D (\times 10^{-6} \mathrm{cm}^2 \mathrm{s}^{-1})$
1b	7.8	4.417	1.249	0.88	1	1.667
2b	8.1	2.056	1.182	1.63	2	0.330
3b	8.0	4.300	1.395	1.10	1	1.392
4b	7.9	4.610	1.863	1.85	2	0.755
5b	8.0	5.227	1.963	1.79	2	0.846
6b	8.1	6.040	2.096	1.74	2	0.966
7b	7.5	2.454	1.273	1.71	2	0.424

tuted nickel(II) complexes (**5b–7b**) directly give tetrazolium cations (TPT⁺) by a single step two-electron transfer.

At the oxidation peaks were observed more cathodic potential in the *o*-, *m*-, *p*-OCH₃ complexes **5b**–**7b** compared with Ni-TPF (**1b**).

The scans of compounds **5b–7b** showed two anodic waves and one cathodic wave. In the -1.80 to +0.00 V range, two anodic peaks (E_{ox1} and E_{ox2}) are appeared at -1576.8 and -956.2 mV, respectively, and a cathodic peak (E_{red1}) is observed at -757.9 mV

Fig. 5. UME curves of DMSO solutions of 1.0×10^{-5} M compounds Ni-TPF, **1b** (a); **2b** (b); **4b** in the presence of 0.1 M TBA⁺BF₄⁻ at 10 μ m-platinum ultramicro electrode. Potential scan rate: 10 mV s⁻¹.

5605

for compound **5b** (Fig. 4a). In the same range, two anodic peaks at $E_{\text{ox1}} = -1590.2 \text{ mV}$, $E_{\text{ox2}} = -795.7 \text{ mV}$ and a cathodic peak at $E_{\rm red1}$ = -890.7 mV for compound **6b**. In the same range, two anodic peaks (E_{0x1} and E_{0x2}) are appeared at -1607.5 and -1008.0 mV, respectively, and a cathodic peak (E_{red1}) is observed at -795.6 mV for compound **7b** (Fig. 4b). However, the intensities of the first peak (E_{ox1}) for the complex **6b** is much lower compared with the o-OCH₃ substituted nickel(II) complex. This shows that the electron transfer rate is much lower in o-OCH₃ substituted nickel(II) complex. The intensity of the first peak (E_{ox1}) is much lower for the *p*-OCH₃ substituted nickel(II) complex compared with those of o- and m-OCH₃ substituted nickel(II) complexes. This may be explained by the decreasing inductive effect going from o- to p-position. The intensity of the first peak changes as o > m > p-OCH₃ substituted nickel(II) complexes. This is in accordance with the yield of p-OCH₃ substituted nickel(II) complex was the highest followed by m-OCH₃ and o-OCH₃ substituted nickel(II) complexes. These results also are in accordance with the spectroscopic data. -OCH₃ group more cathodic potential was shifted according to -CH₃ group when substitutents were compared each other. This result is agreement with -OCH₃ group is a stronger electron-donating group according to -CH₃ group.

Consequently, peak potentials are dependent upon the type and position of substituents. All the cyclic voltammetric data are tabulated in Tables 2 and 3.

3.3. Lineer sweep voltammetry and chronoamperometry

The number of electron transferred (n) and the diffusion coefficients (D) were determined by the ultramicroelectrode CV technique of Baranski et al. [17]. The diffusion coefficients (D) of the compounds **1b**–**7b** were calculated from the Cottrell equation after the *n* values had been obtained. The *D* values are tabulated in Table 4. The number of electrons transferred was found to be in accordance with the CV data. The diffusion coefficients were also found within expected dimensions. The results of UME and chronoamperometric data are tabulated in Table 4.

3.3.1. The calculation of the number of electrons transferred

The number of electrons transferred was obtained with the use of chronoamperometric Cottrell equation and ultramicro Pt disc electrode (UME) steady state current [17]. The real surface area of the Pt electrode was found to be 2.58 cm² with the use ferrocene.

Scheme 3. (a) Possible oxidation mechanism of compound 1b (Ni-TPF) and compound 3b. (b) Possible oxidation mechanism of compounds 2b, 4b and 5b-7b.

Fig. 6. UME curves of DMSO solutions of 1.0×10^{-5} M compounds **5b** (a); **7b** (b) in the presence of 0.1 M TBA⁺BF₄⁻ at 10 μ m-platinum ultramicro electrode. Potential scan rate: 10 mV s^{-1} .

Fig. 7. The correlation between the λ_{max} and the E_{ox1}/mV (Ag/AgCl) values.

If i_t values are plotted against $t^{-1/2}$ from the resulting slope *n* could easily be calculated. The number electrons calculated are given in Table 4.

As seen from Fig. 5 and Table 4, there is a one-electron transfer wave for Ni-TPF (**1b**). Ni-TPF (**1b**) is fragmented. Ni²⁺ and formazan anion (TPF⁻, **X**) are formed in solution (Scheme 3). TPF⁻ anion gives a single one-electron transfer giving a formazan radical (TPF[•]). These radicals give a disproportionation reaction to give a formazan (TPF) and tetrazolium cation (TPT⁺) or a dimerization reaction resulting a diformazan. Mechanism of the oxidation of compound **1b** is shown in Scheme 3. These results are in agreement with literature [15].

Both the nickel(II) complexes of $-CH_3$ and $-OCH_3$ substituted formazans gave clear S-shaped steady state currents with UME (Figs. 5 and 6). As seen from Fig. 5, there are one-electron transfer wave for compounds **2b** and **4b**. The numbers of electrons transferred are two for *o*-, *p*-CH₃ substituted nickel(II) complexes in UME based cyclic voltammograms of based UME and chronoamperometric (Table 4). This is accordance with CV results (Fig. 3). The appearance of one distinctive peak in *o*-, *p*-CH₃ substituted nickel(II) complexes suggest that the compounds give two-electron transfer. Complexes **2b** and **4b** give one-step

Fig. 8. The correlation between the λ_{max} and the E_{red1}/mV (Ag/AgCl) values.

Fig. 9. The λ_{max} values against Hammett substituents coefficients- σ_{T} .

two-electron transfer giving directly tetrazolium cations. Mechanisms of the oxidation of compounds **2b** and **4b** are shown in Scheme 3b. These results are in agreement with the literature [16].

Table	5
-------	---

The total $\sigma_{\rm T}$ (σ_1 + σ_2) and related $\lambda_{\rm max}$ values

Substituent position	Compound	Abbreviation	$\sigma'(s)$	$\sigma_{ m T}$ (total effect)	λ_{max1} (nm)
<i>m</i> -	1b	H	H: 0	0	611.0
	3b	m-CH ₃ , p-OCH ₃	m-CH ₃ : -0.06; p-OCH ₃ : -0.12	-0.18	647.0
	6b	m-OCH ₃ , p-OCH ₃	m-OCH ₃ : 0.10; p-OCH ₃ : -0.12	-0.02	649.0
p-	4b	<i>p</i> -CH ₃ , <i>p</i> -OCH ₃	<i>p</i> -CH ₃ : -0.14; <i>p</i> -OCH ₃ : -0.12	-0.26	644.0
	7b	<i>p</i> -OCH ₃ , <i>p</i> -OCH ₃	p-OCH ₃ : -0.12; <i>p</i> -OCH ₃ : -0.12	-0.24	642.0

As seen from Figs. 5, there are one-electron transfer wave for compound **3b**. The number of electrons transferred is one for m-CH₃ substituted nickel(II) complexes cyclic voltammograms of based UME and chronoamperometric (Table 4). This is accordance with CV results (Fig. 3). The appearance of one distinctive peak in m-CH₃ substituted nickel(II) complex suggest that the compound gives one-electron transfer. This complex (**3b**) is fragmented. Ni²⁺ and substituted formazan radicals are occurred in solution (Scheme 3a). These radicals give a disproportionation reaction to give a substituted formazan and tetrazolium cation or a dimerization reaction result a diformazan. Mechanism of the oxidation of m-CH₃ substituted nickel(II) complex (**3b**) is shown in Schemes 3a. These results are in agreement with the literature [15].

As seen from Fig. 6, there are one-electron transfer wave for compounds **5b**–**7b**. The numbers of electrons transferred are two for *o*-, *m*-, *p*-OCH₃ substituted nickel(II) complexes cyclic voltammograms of based UME and chronoamperometric (Table 4). This is accordance with CV results (Fig. 4). The appearance of one distinctive peak in *o*-, *m*-, *p*-OCH₃ substituted nickel(II) complexes suggest that the compounds give two-electron transfer. Complexes **5b**–**7b** give one-step two-electron transfer giving directly tetrazolium cations. Mechanisms of the oxidation of compounds **5b**–**7b** are shown in Scheme 3b. These results are in agreement with the literature [16].

4. Conclusions

Nickel(II) complexes of formazan were synthesized. The products obtained were purified by repeated crystallization from methanol and the purity was checked by TLC. Spectroscopic characteristics of the prepared complexes are discussed. Determined peak potentials (E_{ox} and E_{red}), diffusion coefficients, number of electrons transferred (n) and heterogeneous rate constants (k_s) were obtained with the use of cyclic voltammetry, lineer sweep voltammetry and chronoamperometry. The oxidation products prepared by controlled potential electrolysis (CPE) were isolated and identified by different techniques: GC–mass and elemental analysis. The oxidation mechanism was occurred in a single step two-electron or one-electron transfer to a disproportionation or dimerization reactions following the radical formation step.

The spectral and redox properties were compared. There was a relatively good correlation between the λ_{max} and peak potentials (E_{ox1} and E_{red1} values) (Figs. 7 and 8).

It was also investigated whether the Hammett substituent coefficients could be used to evaluate the total effect of the two different substituents, upon the λ_{max} values and thus the color. Hammett substituent coefficients σ have been related with λ_{max} values for only one substituent in the structure up to now. The total σ_T ($\sigma_1 + \sigma_2 = \sigma_T$) and related λ_{max} values are at Table 5. λ_{max} values have been correlated to Hammett substituent coefficients (σ_T). Representative $\lambda_{max} - \sigma_T$ plots are illustrated in Fig. 9.

There were lineer correlation between Hammett substituent coefficients- σ with λ_{max} values for the nickel(II) complexes.

Acknowledgement

We are very grateful to the Gazi University Research Fund for providing financial support for this Project (No. 04/2004-13).

References

- [1] J.W. Lewis, C. Sandorfy, Can. J. Chem. 61 (1983) 809.
- [2] A.R. Katritzky, S.A. Belyakov, D. Cheng, H.D. Durst, Sythesis 5 (1995) 577.
- [3] H. Tezcan, N. Ozkan, Dyes Pigments 56 (2003) 159.
- [4] H. Tezcan, T. Uyar, R. Tezcan, Turk. J. Spectrom. Aegean Univ. 10 (1989) 82.
- [5] W. Czajkowski, R. Stolarski, M. Szymczyk, G. Wrzeszcz, Dyes Pigments 47 (2000) 143.
- [6] Y. Gök, M. Tüfekci, E. Ozcan, Synth. React. Inorg. Met. -Org. Chem. 23 (1993) 861.
- [7] Y.M. Issa, M.S. Rizk, W.S. Tayor, M.H. Soliman, J. Indian Chem. Soc. 70 (1993) 5.
- [8] D.A. Brown, H. Bögge, G.N. Lipunova, A. Müller, W. Plass, K.G. Walsh, Inorg. Chim. Acta 280 (1998) 30.
- [9] A. Uchiumi, A. Takatsu, H. Tanaka, Anal. Sci. 7 (1991) 459.
- [10] Y. Kawamura, J. Yamauchi, H. Ohya-Nishiguchi, Bull. Chem. Soc. Jpn. 66 (1993) 3593.
- [11] M. Szymczyk, A. El-Shafei, H.S. Freeman, Dyes Pigments 71 (2006) 206.
- [12] V.C. Schiele, Ber. 30 (1964) 308.
- [13] A.M. Mattson, C.O. Jensen, R.A. Dutcher, Science 5 (1947) 294.
- [14] H. Wan, R. Williams, P. Doherty, D.F. Williams, J. Mater. Sci.: Mater. Med. 5 (1994) 154.
- [15] K. Umemoto, Bull. Chem. Soc. Jpn. 62 (1989) 3783.
- [16] G.M. Abou Elenien, J. Electroanal. Chem. 375 (1994) 301.
- [17] A.S. Baranski, W.R. Fawcett, C.M. Gilbert, Am. Chem. Soc. 57 (1) (1985) 166.
- [18] D.H. Williams, I. Fleming, Spectroscopic Methods in Organic Chemistry, McGraw-Hill Publishing Company Limited, London, 1966.
- [19] F. Schiman, Nuclear Magnetic Resonance of Complex Molecules, vol. 1, Vieweg and Sohn GmbH, Braunschweig, 1970.
- [20] L.J. Bellamy, The Infrared Spectra of Complex Molecules, Methuen, London, 1962.